|
1
|
Maeda JL, Raetzman SO and Friedman BS:
What hospital inpatient services contributed the most to the
2001–2006 growth in the cost per case? Health Serv Res.
47:1814–1835. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Lagu T, Rothberg MB, Shieh MS, Pekow PS,
Steingrub JS and Lindenauer PK: Hospitalizations, costs, and
outcomes of severe sepsis in the United States 2003 to 2007. Crit
Care Med. 40:754–761. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Matsuda A, Jacob A, Wu R, Aziz M, Yang WL,
Matsutani T, Suzuki H, Furukawa K, Uchida E and Wang P: Novel
therapeutic targets for sepsis: regulation of exaggerated
inflammatory responses. J Nippon Med Sch. 79:4–18. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Song R, Kim J, Yu D, Park C and Park J:
Kinetics of IL-6 and TNF-α changes in a canine model of sepsis
induced by endotoxin. Vet Immunol Immunopathol. 146:143–149. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Bhatia M1, He M, Zhang H and Moochhala S:
Sepsis as a model of SIRS. Front Biosci (Landmark Ed).
14:4703–4711. 2009. View
Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wu HP, Wu CL, Chen CK, Chung K, Tseng JC,
Liu YC and Chuang DY: The interleukin-4 expression in patients with
severe sepsis. J Crit Care. 23:519–524. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Urbonas V, Eidukaitė A and Tamulienė I:
Increased interleukin-10 levels correlate with bacteremia and
sepsis in febrile neutropenia pediatric oncology patients.
Cytokine. 57:313–315. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gustot T: Multiple organ failure in
sepsis: prognosis and role of systemic inflammatory response. Curr
Opin Crit Care. 17:153–159. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Mills CD: M1 and M2 macrophages: oracles
of health and disease. Crit Rev Immunol. 32:463–488. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Martinez FO, Sica A, Mantovani A and
Locati M: Macrophage activation and polarization. Front Biosci.
13:453–461. 2008. View
Article : Google Scholar : PubMed/NCBI
|
|
11
|
Pan XQ: The mechanism of the anticancer
function of M1 macrophages and their use in the clinic. Chin J
Cancer. 31:557–563. 2012.PubMed/NCBI
|
|
12
|
Qin H, Holdbrooks AT, Liu Y, Reynolds SL,
Yanagisawa LL and Benveniste EN: SOCS3 deficiency promotes M1
macrophage polarization and inflammation. J Immunol. 189:3439–3448.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Benoit M, Desnues B and Mege JL:
Macrophage polarization in bacterial infections. J Immunol.
181:3733–3739. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Abdu SB: Schistosoma mansoni induce
granulomatous inflammation and lesion to the enteric nervous system
in mouse colon. J Egypt Soc Parasitol. 39:183–190. 2009.PubMed/NCBI
|
|
15
|
Babu S, Kumaraswami V and Nutman TB:
Alternatively activated and immunoregulatory monocytes in human
filarial infections. J Infect Dis. 199:1827–1837. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bai X, Yu JL, Wang F, Zhao Y, Liu MY and
Wang GM: Alternatively activated macrophages in helminth
infections. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za
Zhi. 29:219–223. 2011.(In Chinese). PubMed/NCBI
|
|
17
|
da Silva RF, Lappalainen J, Lee-Rueckert M
and Kovanen PT: Conversion of human M-CSF macrophages into foam
cells reduces their proinflammatory responses to classical
M1-polarizing activation. Atherosclerosis. 248:170–178. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Cui J, Wang ZQ and Xu BL: The epidemiology
of human trichinellosis in China during 2004–2009. Acta Trop.
118:1–5. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Gruden-Movsesijan A, Ilic N,
Mostarica-Stojkovic M, Stosic-Grujicic S, Milic M and
Sofronic-Milosavljevic L: Mechanisms of modulation of experimental
autoimmune encephalomyelitis by chronic Trichinella spiralis
infection in Dark Agouti rats. Parasite Immunol. 32:450–459. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Knopp S, Steinmann P, Keiser J and
Utzinger J: Nematode infections: soil-transmitted helminths and
trichinella. Infect Dis Clin North Am. 26:341–358. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Du L, Wei H, Li L, Shan H, Yu Y, Wang Y
and Zhang G: Regulation of recombinant Trichinella spiralis 53-kDa
protein (rTsP53) on alternatively activated macrophages via STAT6
but not IL-4Rα in vitro. Cell Immunol. 288:1–7. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Park HK, Cho MK, Choi SH, Kim YS and Yu
HS: Trichinella spiralis: infection reduces airway allergic
inflammation in mice. Exp Parasitol. 127:539–544. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Bruschi F and Chiumiento L:
Immunomodulation in trichinellosis: does Trichinella really
escape the host immune system? Endocr Metab Immune Disord Drug
Targets. 12:4–15. 2012. View Article : Google Scholar : PubMed/NCBI
|