|
1
|
Schulz M: Dark remedy: the impact of
thalidomide and its revival as a vital medicine. BMJ. 322:16082001.
View Article : Google Scholar
|
|
2
|
Han ZX, Xu J, Wang HM, Ma J, Sun X and Du
XP: Antiemetic role of thalidomide in a rat model of
cisplatin-induced emesis. Cell Biochem Biophys. 70:361–365. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Vargesson N: Thalidomide-induced
teratogenesis: History and mechanisms. Birth Defects Res C Embryo
Today. 105:140–156. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Teo S, Resztak KE, Scheffler MA, Kook KA,
Zeldis JB, Stirling DI and Thomas SD: Thalidomide in the treatment
of leprosy. Microbes Infect. 4:1193–1202. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Lopez-Millan B, de la Guardia Diaz R,
Roca-Ho H, García-Herrero CM, Lavoie JR, Rosu-Myles M, Gonzalez-Rey
E, O'Valle F, Criado G, Delgado M and Menendez P: Therapeutic
effect of the immunomodulatory drug lenalidomide, but not
pomalidomide, in experimental models of rheumatoid arthritis and
inflammatory bowel disease. Exp Mol Med. 49:e2902017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Bartlett JB, Dredge K and Dalgleish AG:
The evolution of thalidomide and its IMiD derivatives as anticancer
agents. Nat Rev Cancer. 4:314–322. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Galustian C, Meyer B, Labarthe MC, Dredge
K, Klaschka D, Henry J, Todryk S, Chen R, Muller G, Stirling D, et
al: The anti-cancer agents lenalidomide and pomalidomide inhibit
the proliferation and function of T regulatory cells. Cancer
Immunol Immunother. 58:1033–1045. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Moreira AL, Sampaio EP, Zmuidzinas A,
Frindt P, Smith KA and Kaplan G: Thalidomide exerts its inhibitory
action on tumor necrosis factor alpha by enhancing mRNA
degradation. J Exp Med. 177:1675–1680. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Keifer JA, Guttridge DC, Ashburner BP and
Baldwin AS Jr: Inhibition of NF-kappa B activity by thalidomide
through suppression of Ikappa B kinase activity. J Biol Chem.
276:22382–22387. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Sampaio EP, Kaplan G, Miranda A, Nery JA,
Miguel CP, Viana SM and Sarno EN: The influence of thalidomide on
the clinical and immunologic manifestation of erythema nodosum
leprosum. J Infect Dis. 168:408–414. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zuo XX, Gong YH, Zhou YO, Luo H and Xiao
XZ: The plasmic translocation and release of high mobility group
box chromosomal protein 1 in peripheral blood monocytes of patients
with rheumatoid arthritis and the effect of thalidomide. Zhonghua
Nei Ke Za Zhi. 47:374–377. 2008.PubMed/NCBI
|
|
12
|
Barkin JA, Schonfeld WB and Deshpande AR:
Successful use of thalidomide for refractory esophageal Crohn's
disease. Am J Gastroenterol. 108:855–857. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Fourcade C, Mauboussin JM, Lechiche C,
Lavigne JP and Sotto A: Thalidomide in the treatment of immune
reconstitution inflammatory syndrome in HIV patients with
neurological tuberculosis. AIDS Patient Care STDS. 28:567–569.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Beedie SL, Peer CJ, Pisle S, Gardner ER,
Mahony C, Barnett S, Ambrozak A, Gütschow M, Chau CH, Vargesson N
and Figg WD: Anti-Cancer properties of a novel class of
tetrafluorinated thalidomide analogs. Mol Cancer Ther.
14:2228–2237. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lee CJ, Kim KW, Lee HM, Nahm FS, Lim YJ,
Park JH and Kim CS: The effect of thalidomide on spinal cord
ischemia/reperfusion injury in a rabbit model. Spinal Cord.
45:149–157. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Muller GW, Corral LG, Shire MG, Wang H,
Moreira A, Kaplan G and Stirling DI: Structural modifications of
thalidomide produce analogs with enhanced tumor necrosis factor
inhibitory activity. J Med Chem. 39:3238–3240. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Muller GW, Chen R, Huang SY, Corral LG,
Wong LM, Patterson RT, Chen Y, Kaplan G and Stirling DI:
Amino-substituted thalidomide analogs: Potent inhibitors of
TNF-alpha production. Bioorg Med Chem Lett. 9:1625–1630. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Leask A and Abraham DJ: TGF-beta signaling
and the fibrotic response. FASEB J. 18:816–827. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Javelaud D and Mauviel A: Crosstalk
mechanisms between the mitogen-activated protein kinase pathways
and Smad signaling downstream of TGF-beta: Implications for
carcinogenesis. Oncogene. 24:5742–5750. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhang YE: Non-Smad pathways in TGF-beta
signaling. Cell Res. 19:128–139. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Choe JY, Jung HJ, Park KY, Kum YS, Song
GG, Hyun DS, Park SH and Kim SK: Anti-fibrotic effect of
thalidomide through inhibiting TGF-beta-induced ERK1/2 pathways in
bleomycin-induced lung fibrosis in mice. Inflamm Res. 59:177–188.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Liang CJ, Yen YH, Hung LY, Wang SH, Pu CM,
Chien HF, Tsai JS, Lee CW, Yen FL and Chen YL: Thalidomide inhibits
fibronectin production in TGF-β1-treated normal and keloid
fibroblasts via inhibition of the p38/Smad3 pathway. Biochem
Pharmacol. 85:1594–1602. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
George A, Marziniak M, Schäfers M, Toyka
KV and Sommer C: Thalidomide treatment in chronic constrictive
neuropathy decreases endoneurial tumor necrosis factor-alpha,
increases interleukin-10 and has long-term effects on spinal cord
dorsal horn met-enkephalin. Pain. 88:267–275. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Shannon E, Noveck R, Sandoval F and Kamath
B: Thalidomide suppressed IL-1beta while enhancing TNF-alpha and
IL-10, when cells in whole blood were stimulated with
lipopolysaccharide. Immunopharmacol Immunotoxicol. 30:447–457.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Li S, Pal R, Monaghan SA, Schafer P,
Ouyang H, Mapara M, Galson DL and Lentzsch S: IMiD immunomodulatory
compounds block C/EBP-beta translation through eIF4E
down-regulation resulting in inhibition of MM. Blood.
117:5157–5165. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Li H, Yoon JH, Won HJ, Ji HS, Yuk HJ, Park
KH, Park HY and Jeong TS: Isotrifoliol inhibits pro-inflammatory
mediators by suppression of TLR/NF-κB and TLR/MAPK signaling in
LPS-induced RAW264.7 cells. Int Immunopharmacol. 110–119. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Lai CS, Lee JH, Ho CT, Liu CB, Wang JM,
Wang YJ and Pan MH: Rosmanol potently inhibits
lipopolysaccharide-induced iNOS and COX-2 expression through
downregulating MAPK, NF-kappaB, STAT3 and C/EBP signaling pathways.
J Agric Food Chem. 57:10990–10998. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hoang B, Zhu L, Shi Y, Frost P, Yan H,
Sharma S, Sharma S, Goodglick L, Dubinett S and Lichtenstein A:
Oncogenic RAS mutations in myeloma cells selectively induce cox-2
expression, which participates in enhanced adhesion to fibronectin
and chemoresistance. Blood. 107:4484–4490. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Prince HM, Mileshkin L, Roberts A, Ganju
V, Underhill C, Catalano J, Bell R, Seymour JF, Westerman D,
Simmons PJ, et al: A multicenter phase II trial of thalidomide and
celecoxib for patients with relapsed and refractory multiple
myeloma. Clin Cancer Res. 11:5504–5514. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Knight R: IMiDs: A novel class of
immunomodulators. Semin Oncol. 32 4 Suppl 5:S24–S30. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Teo SK: Properties of thalidomide and its
analogues: Implications for anticancer therapy. AAPS J. 7:E14–E19.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Galustian C, Meyer B, Labarthe MC, Dredge
K, Klaschka D, Henry J, Todryk S, Chen R, Muller G, Stirling D, et
al: The anti-cancer agents lenalidomide and pomalidomide inhibit
the proliferation and function of T regulatory cells. Cancer
Immunol Immunother. 58:1033–1045. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Luptakova K, Rosenblatt J, Glotzbecker B,
Mills H, Stroopinsky D, Kufe T, Vasir B, Arnason J, Tzachanis D,
Zwicker JI, et al: Lenalidomide enhances anti-myeloma cellular
immunity. Cancer Immunol Immunother. 62:39–49. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Altman A and Villalba M: Protein kinase
C-theta (PKC theta): A key enzyme in T cell life and death. J
Biochem. 132:841–846. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Payvandi F, Wu L, Naziruddin SD, Haley M,
Parton A, Schafer PH, Chen RS, Muller GW, Hughes CC and Stirling
DI: Immunomodulatory drugs (IMiDs) increase the production of IL-2
from stimulated T cells by increasing PKC-theta activation and
enhancing the DNA-binding activity of AP-1 but not NF-kappaB,
OCT-1, or NF-AT. J Interferon Cytokine Res. 25:604–616. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kim BS, Kim JY, Lee JG, Cho Y, Huh KH, Kim
MS and Kim YS: Immune modulatory effect of thalidomide on T cells.
Transplant Proc. 47:787–790. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Gandhi AK, Kang J, Havens CG, Conklin T,
Ning Y, Wu L, Ito T, Ando H, Waldman MF, Thakurta A, et al:
Immunomodulatory agents lenalidomide and pomalidomide co-stimulate
T cells by inducing degradation of T cell repressors Ikaros and
Aiolos via modulation of the E3 ubiquitin ligase complex
CRL4(CRBN). Br J Haematol1. 64:811–821. 2014. View Article : Google Scholar
|
|
38
|
Zhu D, Corral LG, Fleming YW and Stein B:
Immunomodulatory drugs Revlimid (lenalidomide) and CC-4047 induce
apoptosis of both hematological and solid tumor cells through NK
cell activation. Cancer Immunol Immunother. 57:1849–1859. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wu L, Adams M, Carter T, Chen R, Muller G,
Stirling D, Schafer P and Bartlett JB: lenalidomide enhances
natural killer cell and monocyte-mediated antibody-dependent
cellular cytotoxicity of rituximab-treated CD20+ tumor cells. Clin
Cancer Res. 14:4650–4657. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yaccoby S, Johnson CL, Mahaffey SC,
Wezeman MJ, Barlogie B and Epstein J: Antimyeloma efficacy of
thalidomide in the SCID-hu model. Blood. 100:4162–4168. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lv P, Luo HS, Zhou XP, Xiao YJ, Paul SC,
Si XM and Zhou YH: Reversal effect of thalidomide on established
hepatic cirrhosis in rats via inhibition of nuclear
factor-kappaB/inhibitor of nuclear factor-kappaB pathway. Arch Med
Res. 38:15–27. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Lebrin F, Srun S, Raymond K, Martin S, van
den Brink S, Freitas C, Bréant C, Mathivet T, Larrivée B, Thomas
JL, et al: Thalidomide stimulates vessel maturation and reduces
epistaxis in individuals with hereditary hemorrhagic
telangiectasia. Nat Med. 16:420–428. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Gupta D, Treon SP, Shima Y, Hideshima T,
Podar K, Tai YT, Lin B, Lentzsch S, Davies FE, Chauhan D, et al:
Adherence of multiple myeloma cells to bone marrow stromal cells
upregulates vascular endothelial growth factor secretion:
Therapeutic applications. Leukemia. 15:1950–1961. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yabu T, Tomimoto H, Taguchi Y, Yamaoka S,
Igarashi Y and Okazaki T: Thalidomide-induced antiangiogenic action
is mediated by ceramide through depletion of VEGF receptors and is
antagonized by sphingosine-1-phosphate. Blood. 106:125–134. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Dredge K, Horsfall R, Robinson SP, Zhang
LH, Lu L, Tang Y, Shirley MA, Muller G, Schafer P, Stirling D, et
al: Orally administered lenalidomide (CC-5013) is anti-angiogenic
in vivo and inhibits endothelial cell migration and Akt
phosphorylation in vitro. Microvasc Res. 69:56–63. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Komorowski J, Jerczyńska H, Siejka A,
Barańska P, Ławnicka H, Pawłowska Z and Stepień H: Effect of
thalidomide affecting VEGF secretion, cell migration, adhesion and
capillary tube formation of human endothelial EA. hy 926 cells.
Life sciences. 78:2558–2563. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Jinnin M: Mechanisms of skin fibrosis in
systemic sclerosis. J Dermatol. 37:11–25. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Oliver SJ, Moreira A and Kaplan G: Immune
stimulation in scleroderma patients treated with thalidomide. Clin
Immunol. 97:109–120. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Weingärtner S, Zerr P, Tomcik M,
Palumbo-Zerr K, Distler A, Dees C, Beyer C, Shankar SL, Cedzik D,
Schafer PH, et al: Pomalidomide is effective for prevention and
treatment of experimental skin fibrosis. Ann Rheum Dis.
71:1895–1899. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ingen-Housz-Oro S, Ortonne N, Elhai M,
Allanore Y, Aucouturier P and Chosidow O: IgG4-related skin disease
successfully treated by thalidomide: A report of 2 cases with
emphasis on pathological aspects. JAMA Dermatol. 149:742–187. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Selman M, King TE and Pardo A: American
Thoracic Society; European Respiratory Society; American College of
Chest Physicians: Idiopathic pulmonary fibrosis: Prevailing and
evolving hypotheses about its pathogenesis and implications for
therapy. Ann Intern Med. 134:136–151. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
SHI Jie, Qiang N-X and YU Min: Clinical
research and correlated cytokine study of thalidomide combined with
prednisone on idiopathic pulmonary fibrosis. Practical Pharmacy and
Clinical Remedies. 10:52012.
|
|
53
|
Zhang L and Yang WL: Effect of thalidomide
on the expressions of IL-6, TNF-α and TGF-β1 in BALF of elder
patients with idiopathic pulmonary fibrosis. Journal of Xian
Jiaotong University (Medical Sciences). 5:622–625. 2012.
|
|
54
|
Tabata C, Tabata R, Kadokawa Y, Hisamori
S, Takahashi M, Mishima M, Nakano T and Kubo H: Thalidomide
prevents bleomycin-induced pulmonary fibrosis in mice. J Immunol.
179:708–714. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Knobloch J, Jungck D and Koch A: Apoptosis
induction by thalidomide: Critical for limb teratogenicity but
therapeutic potential in idiopathic pulmonary fibrosis? Curr Mol
Pharmacol. 4:26–61. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Horton MR, Santopietro V, Mathew L, Horton
KM, Polito AJ, Liu MC, Danoff SK and Lechtzin N: Thalidomide for
the treatment of cough in idiopathic pulmonary fibrosis: A
randomized trial. Ann Intern Med. 157:398–406. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Rethinking thalidomide: Environ Health
Perspect. 103:1321995.
|
|
58
|
Mall JW, Schwenk W, Philipp AW, Büttemeyer
R and Pollmann C: Intraperitoneal administration of the
angiogenesis inhibitor thalidomide does not impair anastomotic
healing following large bowel resection in a rabbit model. World J
Surg. 27:1119–1123. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kruse FE, Joussen AM, Rohrschneider K,
Becker MD and Völcker HE: Thalidomide inhibits corneal angiogenesis
induced by vascular endothelial growth factor. Graefes Arch Clin
Exp Ophthalmol. 236:461–466. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ribeiro JC, Vagnaldo Fechine F, Ribeiro
MZ, Barreiro EJ, Lima LM, Ricardo NM, de Moraes Amaral ME and de
Moraes Odorico M: Potential inhibitory effect of LASSBio-596, a new
thalidomide hybrid, on inflammatory corneal angiogenesis in
rabbits. Ophthalmic Res. 48:177–185. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Abbas A, Khan B, Feroze AH and Hyman GF:
Thalidomide prevents donor corneal graft neovascularization in an
alkali burn model of corneal angiogenesis. J Pak Med Assoc.
52:476–482. 2002.PubMed/NCBI
|
|
62
|
Lee YK and Chung SK: The inhibitory effect
of thalidomide analogue on corneal neovascularization in rabbits.
Cornea. 32:1142–1148. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Srinivasan S, Perez-Gomez I, O'Donnell C
and Batterbury M: Corneal endothelial abnormalities associated with
thalidomide toxicity. Cornea. 24:103–105. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Huang YH and Tseng SH: Corneal snowflakes.
Lancet. 380:5062012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Guex-Crosier Y, Pittet N and Herbort CP:
The effect of thalidomide and supidimide on endotoxin-induced
uveitis in rats. Graefes Arch Clin Exp Ophthalmol. 233:90–93. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Rodrigues GB, Passos GF, Di Giunta G,
Figueiredo CP, Rodrigues EB, Grumman A Jr, Medeiros R and Calixto
JB: Preventive and therapeutic anti-inflammatory effects of
systemic and topical thalidomide on endotoxin-induced uveitis in
rats. Exp Eye Res. 84:553–560. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Parentin F, Da Pozzo S, Lepore L and
Perissutti P: Thalidomide effectiveness for bilateral chronic
idiopathic anterior uveitis in a three-year-old child.
Ophthalmologica. 215:70–73. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ip M and Gorin MB: Recurrence of a
choroidal neovascular membrane in a patient with punctate inner
choroidopathy treated with daily doses of thalidomide. Am J
Ophthalmol. 122:594–595. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Rabinowitz R, Katz G, Rosner M, Pri-Chen S
and Spierer A: The effect of thalidomide on neovascularization in a
mouse model of retinopathy of prematurity. Graefes Arch Clin Exp
Ophthalmol. 246:843–848. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Verma AS and Fitzpatrick DR: Anophthalmia
and microphthalmia. Orphanet J Rare Dis. 2:472007. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ema M, Ise R, Kato H, Oneda S, Hirose A,
Hirata-Koizumi M, Singh AV, Knudsen TB and Ihara T: Fetal
malformations and early embryonic gene expression response in
cynomolgus monkeys maternally exposed to thalidomide. Reprod
Toxicol. 29:49–56. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Christian MS, Laskin OL, Sharper V,
Hoberman A, Stirling DI and Latriano L: Evaluation of the
developmental toxicity of lenalidomide in rabbits. Birth Defects
Res B Dev Reprod Toxicol. 80:188–207. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zeldis JB, Carter TL, Knight RD and Hui J:
Pomalidomide is teratogenic in rats and rabbits and can be
neurotoxic in humans. Proc Natl Acad Sci USA. 110:pp. E48192013,
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Narita N, Kato M, Tazoe M, Miyazaki K,
Narita M and Okado N: Increased monoamine concentration in the
brain and blood of fetal thalidomide- and valproic acid-exposed
rat: Putative animal models for autism. Pediatr Res. 52:576–579.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Elkinson S and McCormack PL: Pomalidomide:
First global approval. Drugs. 73:595–604. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lacy MQ: New immunomodulatory drugs in
myeloma. Curr Hematol Malig Rep. 6:120–125. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Streetly MJ, Gyertson K, Daniel Y, Zeldis
JB, Kazmi M and Schey SA: Alternate day pomalidomide retains
anti-myeloma effect with reduced adverse events and evidence of in
vivo immunomodulation. Br J Haematol. 141:41–51. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Lacy MQ, Kumar SK, LaPlant BR, Laumann K,
Gertz MA, Hayman SR, Buadi FK, Dispenzieri A, Lust JA, Russell R,
et al: Pomalidomide plus low-dose dexamethasone (Pom/Dex) in
relapsed myeloma: Long term follow up and factors predicing outcome
in 345 patients. Blood. 120:2012012.
|
|
79
|
Daver N, Shastri A, Kadia T, Newberry K,
Pemmaraju N, Jabbour E, Zhou L, Pierce S, Cortes J, Kantarjian H
and Verstovsek S: Phase II study of pomalidomide in combination
with prednisone in patients with myelofibrosis and significant
anemia. Leuk Res. 38:1126–1129. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Weber DM, Chen C, Niesvizky R, Wang M,
Belch A, Stadtmauer EA, Siegel D, Borrello I, Rajkumar SV,
Chanan-Khan AA, et al: Lenalidomide plus dexamethasone for relapsed
multiple myeloma in North America. N Engl J Med. 357:2133–2142.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Dimopoulos M, Spencer A, Attal M, Prince
HM, Harousseau JL, Dmoszynska A, San Miguel J, Hellmann A, Facon T,
Foà R, et al: Lenalidomide plus dexamethasone for relapsed or
refractory multiple myeloma. N Engl J Med. 357:2123–2132. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Chen C, Reece DE, Siegel D, Niesvizky R,
Boccia RV, Stadtmauer EA, Abonour R, Richardson P, Matous J, Kumar
S, et al: Expanded safety experience with lenalidomide plus
dexamethasone in relapsed or refractory multiple myeloma. Br J
Haematol. 146:164–170. 2009. View Article : Google Scholar : PubMed/NCBI
|