Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
December-2017 Volume 14 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2017 Volume 14 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Inhibitory effect of oxidative damage on cardiomyocyte differentiation from Wharton's jelly‑derived mesenchymal stem cells

  • Authors:
    • Natakarn Nimsanor
    • Jitrada Phetfong
    • Chotiros Plabplueng
    • Kulachart Jangpatarapongsa
    • Virapong Prachayasittikul
    • Aungkura Supokawej
  • View Affiliations / Copyright

    Affiliations: Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand, Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand, Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
    Copyright: © Nimsanor et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 5329-5338
    |
    Published online on: October 2, 2017
       https://doi.org/10.3892/etm.2017.5249
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ischemic heart diseases are a serious health problem worldwide. The transplantation of mesenchymal stem cells (MSCs) has been investigated in numerous clinical trials on various other diseases due to the self‑renewal capacity of these cells and their potential to differentiate into a variety of cell types. The presence of excess reactive oxygen species in injured myocardium causes cardiac dysfunction and leads to inefficient repair of the heart. The poor outcomes of stem cell transplantation have been suggested to result from residual oxidative damage affecting the transplanted cells. The aim of the present study was to compare the effects of hydrogen peroxide (H2O2) on Wharton's jelly‑derived MSCs (WJ‑MSCs) and bone marrow‑derived MSCs (BM‑MSCs) in vitro, in order to provide information useful for the future selection of MSC types for cardiac differentiation and transplantation. H2O2 at concentrations of 200, 500 and 1,000 µM was applied to WJ‑MSCs and BM‑MSCs under cardiogenic differentiation conditions. The morphology of MSCs treated with H2O2 was similar to that of untreated cells, whereas the cell density decreased in direct association with the dose of H2O2. Cardiac differentiation markers were then evaluated by immunofluorescence analysis of GATA4 and cardiac troponin T (cTnT). The fluorescence intensity levels of the two markers were identified to be diminished by increasing doses of H2O2 from 500 to 1,000 µM. The expression levels of homeobox protein Nkx2.5, cTnT and cardiac α‑actin were also examined, and were identified to be low in the WJ‑MSCs treated with 1,000 µM H2O2, which was similar to the findings observed in BM‑MSCs. These results suggested that oxidative stress affects cardiomyocyte differentiation via the downregulation of cardiac genes and cardiac proteins. Furthermore, it should be noted that there was a marked difference in the effect depending on the source of MSCs. This evidence provided supportive information for the use of stem cells in transplantation.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

McAloon CJ, Boylan LM, Hamborg T, Stallard N, Osman F, Lim PB and Hayat SA: The changing face of cardiovascular disease 2000–2012: An analysis of the world health organisation global health estimates data. Int J Cardiol. 224:256–264. 2016. View Article : Google Scholar : PubMed/NCBI

2 

von Harsdorf R, Li PF and Dietz R: Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation. 99:2934–2941. 1999. View Article : Google Scholar : PubMed/NCBI

3 

Xu Z, Park SS, Mueller RA, Bagnell RC, Patterson C and Boysen PG: Adenosine produces nitric oxide and prevents mitochondrial oxidant damage in rat cardiomyocytes. Cardiovasc Res. 65:803–812. 2005. View Article : Google Scholar : PubMed/NCBI

4 

Tao L, Gao E, Jiao X, Yuan Y, Li S, Christopher TA, Lopez BL, Koch W, Chan L, Goldstein BJ and Ma XL: Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress. Circulation. 115:1408–1416. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Bernstein HS and Srivastava D: Stem cell therapy for cardiac disease. Pediatr Res. 71:491–499. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Gao LR, Zhang NK, Ding QA, Chen HY, Hu X, Jiang S, Li TC, Chen Y, Wang ZG, Ye Y and Zhu ZM: Common expression of stemness molecular markers and early cardiac transcription factors in human Wharton's jelly-derived mesenchymal stem cells and embryonic stem cells. Cell Transplant. 22:1883–1900. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Li Q, Han SM, Song WJ, Park SC, Ryu MO and Youn HY: Anti-inflammatory effects of Oct4/Sox2-overexpressing human adipose tissue-derived mesenchymal stem cells. In Vivo. 31:349–356. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Shahini A, Mistriotis P, Asmani M, Zhao R and Andreadis ST: NANOG restores contractility of mesenchymal stem cell-based senescent microtissues. Tissue Eng Part A. 23:535–545. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Zhou C, Yang B, Tian Y, Jiao H, Zheng W, Wang J and Guan F: Immunomodulatory effect of human umbilical cord Wharton's jelly-derived mesenchymal stem cells on lymphocytes. Cell Immunol. 272:33–38. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Baksh D, Yao R and Tuan RS: Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 25:1384–1392. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Ng F, Boucher S, Koh S, Sastry KS, Chase L, Lakshmipathy U, Choong C, Yang Z, Vemuri MC, Rao MS and Tanavde V: PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): Transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood. 112:295–307. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K and Kyurkchiev S: Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells. 6:552–570. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Xiang MX, He AN, Wang JA and Gui C: Protective paracrine effect of mesenchymal stem cells on cardiomyocytes. J Zhejiang Univ Sci B. 10:619–624. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Rodrigues M, Turner O, Stolz D, Griffith LG and Wells A: Production of reactive oxygen species by multipotent stromal cells/mesenchymal stem cells upon exposure to fas ligand. Cell Transplant. 21:2171–2187. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Elahi MM, Kong YX and Matata BM: Oxidative stress as a mediator of cardiovascular disease. Oxid Med Cell Longev. 2:259–269. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Jin G, Qiu G, Wu D, Hu Y, Qiao P, Fan C and Gao F: Allogeneic bone marrow-derived mesenchymal stem cells attenuate hepatic ischemia-reperfusion injury by suppressing oxidative stress and inhibiting apoptosis in rats. Int J Mol Med. 31:1395–1401. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj and Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 8:315–317. 2006. View Article : Google Scholar : PubMed/NCBI

18 

Brandl A, Meyer M, Bechmann V, Nerlich M and Angele P: Oxidative stress induces senescence in human mesenchymal stem cells. Exp Cell Res. 317:1541–1547. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Burova E, Borodkina A, Shatrova A and Nikolsky N: Sublethal oxidative stress induces the premature senescence of human mesenchymal stem cells derived from endometrium. Oxid Med Cell Longev. 2013:4749312013. View Article : Google Scholar : PubMed/NCBI

20 

Supokawej A, Kheolamai P, Nartprayut K, U-Pratya Y, Manochantr S, Chayosumrit M and Issaragrisil S: Cardiogenic and myogenic gene expression in mesenchymal stem cells after 5-azacytidine treatment. Turk J Haematol. 30:115–121. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

22 

Dunn KW, Kamocka MM and McDonald JH: A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol. 300:C723–C742. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Sheikhzadeh F, Ward RK, Carraro A, Chen ZY, van Niekerk D, Miller D, Ehlen T, MacAulay CE, Follen M, Lane PM and Guillaud M: Quantification of confocal fluorescence microscopy for the detection of cervical intraepithelial neoplasia. Biomed Eng Online. 14:962015. View Article : Google Scholar : PubMed/NCBI

24 

Benameur L, Charif N, Li Y, Stoltz JF and de Isla N: Toward an understanding of mechanism of aging-induced oxidative stress in human mesenchymal stem cells. Biomed Mater Eng. 25 Suppl 1:S41–S46. 2015.

25 

Gan P, Gao Z, Zhao X and Qi G: Surfactin inducing mitochondria-dependent ROS to activate MAPKs, NF-κB and inflammasomes in macrophages for adjuvant activity. Sci Rep. 6:393032016. View Article : Google Scholar : PubMed/NCBI

26 

Zhao W, Zhao T, Chen Y, Ahokas RA and Sun Y: Oxidative stress mediates cardiac fibrosis by enhancing transforming growth factor-beta1 in hypertensive rats. Mol Cell Biochem. 317:43–50. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Chen S, Chen X, Wu X, Wei S, Han W, Lin J, Kang M and Chen L: Hepatocyte growth factor-modified mesenchymal stem cells improve ischemia/reperfusion-induced acute lung injury in rats. Gene Ther. 24:3–11. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Mureli S, Gans CP, Bare DJ, Geenen DL, Kumar NM and Banach K: Mesenchymal stem cells improve cardiac conduction by upregulation of connexin 43 through paracrine signaling. Am J Physiol Heart Circ Physiol. 304:H600–H609. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Reppel L, Schiavi J, Charif N, Leger L, Yu H, Pinzano A, Henrionnet C, Stoltz JF, Bensoussan D and Huselstein C: Chondrogenic induction of mesenchymal stromal/stem cells from Wharton's jelly embedded in alginate hydrogel and without added growth factor: An alternative stem cell source for cartilage tissue engineering. Stem Cell Res Ther. 6:2602015. View Article : Google Scholar : PubMed/NCBI

30 

Valle-Prieto A and Conget PA: Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells Dev. 19:1885–1893. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Balasubramanian S, Venugopal P, Sundarraj S, Zakaria Z, Majumdar AS and Ta M: Comparison of chemokine and receptor gene expression between Wharton's jelly and bone marrow-derived mesenchymal stromal cells. Cytotherapy. 14:26–33. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Pu L, Meng M, Wu J, Zhang J, Hou Z, Gao H, Xu H, Liu B, Tang W, Jiang L and Li Y: Compared to the amniotic membrane, Wharton's jelly may be a more suitable source of mesenchymal stem cells for cardiovascular tissue engineering and clinical regeneration. Stem Cell Res Ther. 8:722017. View Article : Google Scholar : PubMed/NCBI

33 

Batsali AK, Pontikoglou C, Koutroulakis D, Pavlaki KI, Damianaki A, Mavroudi I, Alpantaki K, Kouvidi E, Kontakis G and Papadaki HA: Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther. 8:1022017. View Article : Google Scholar : PubMed/NCBI

34 

Vinoth KJ, Manikandan J, Sethu S, Balakrishnan L, Heng A, Lu K, Poonepalli A, Hande MP and Cao T: Differential resistance of human embryonic stem cells and somatic cell types to hydrogen peroxide-induced genotoxicity may be dependent on innate basal intracellular ROS levels. Folia Histochem Cytobiol. 53:169–174. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Ertaş G, Ural E, Ural D, Aksoy A, Kozdağ G, Gacar G and Karaöz E: Comparative analysis of apoptotic resistance of mesenchymal stem cells isolated from human bone marrow and adipose tissue. ScientificWorldJournal. 2012:1056982012. View Article : Google Scholar : PubMed/NCBI

36 

Zhang G, Zou X, Huang Y, Wang F, Miao S, Liu G, Chen M and Zhu Y: Mesenchymal stromal cell-derived extracellular vesicles protect against acute kidney injury through anti-oxidation by Enhancing Nrf2/ARE activation in rats. kidney Blood Press Res. 41:119–128. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Zhang J, Chen GH, Wang YW, Zhao J, Duan HF, Liao LM, Zhang XZ, Chen YD and Chen H: Hydrogen peroxide preconditioning enhances the therapeutic efficacy of Wharton's Jelly mesenchymal stem cells after myocardial infarction. Chin Med J (Engl). 125:3472–3478. 2012.PubMed/NCBI

38 

Zhang Y, Sivakumaran P, Newcomb AE, Hernandez D, Harris N, Khanabdali R, Liu GS, Kelly DJ, Pébay A, Hewitt AW, et al: Cardiac repair with a novel population of mesenchymal stem cells resident in the Human Heart. Stem Cells. 33:3100–3113. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Bai J, Hu Y, Wang YR, Liu LF, Chen J, Su SP and Wang Y: Comparison of human amniotic fluid-derived and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells: Characterization and myocardial differentiation capacity. J Geriatr Cardiol. 9:166–171. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Wang FW, Wang Z, Zhang YM, Du ZX, Zhang XL, Liu Q, Guo YJ, Li XG and Hao AJ: Protective effect of melatonin on bone marrow mesenchymal stem cells against hydrogen peroxide-induced apoptosis in vitro. J Cell Biochem. 114:2346–2355. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Choo KB, Tai L, Hymavathee KS, Wong CY, Nguyen PN, Huang CJ, Cheong SK and Kamarul T: Oxidative stress-induced premature senescence in Wharton's jelly-derived mesenchymal stem cells. Int J Med Sci. 11:1201–1207. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Wang Y, Yi XD and Li CD: Suppression of mTOR signaling pathway promotes bone marrow mesenchymal stem cells differentiation into osteoblast in degenerative scoliosis: In vivo and in vitro. Mol Biol Rep. 44:129–137. 2016. View Article : Google Scholar : PubMed/NCBI

43 

López Y, Lutjemeier B, Seshareddy K, Trevino EM, Hageman KS, Musch TI, Borgarelli M and Weiss ML: Wharton's jelly or bone marrow mesenchymal stromal cells improve cardiac function following myocardial infarction for more than 32 weeks in a rat model: A preliminary report. Curr Stem Cell Res Ther. 8:46–59. 2013. View Article : Google Scholar : PubMed/NCBI

44 

D'Autréaux B and Toledano MB: ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 8:813–824. 2007. View Article : Google Scholar : PubMed/NCBI

45 

Kobayashi CI and Suda T: Regulation of reactive oxygen species in stem cells and cancer stem cells. J Cell Physiol. 227:421–430. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Nimsanor N, Phetfong J, Plabplueng C, Jangpatarapongsa K, Prachayasittikul V and Supokawej A: Inhibitory effect of oxidative damage on cardiomyocyte differentiation from Wharton's jelly‑derived mesenchymal stem cells. Exp Ther Med 14: 5329-5338, 2017.
APA
Nimsanor, N., Phetfong, J., Plabplueng, C., Jangpatarapongsa, K., Prachayasittikul, V., & Supokawej, A. (2017). Inhibitory effect of oxidative damage on cardiomyocyte differentiation from Wharton's jelly‑derived mesenchymal stem cells. Experimental and Therapeutic Medicine, 14, 5329-5338. https://doi.org/10.3892/etm.2017.5249
MLA
Nimsanor, N., Phetfong, J., Plabplueng, C., Jangpatarapongsa, K., Prachayasittikul, V., Supokawej, A."Inhibitory effect of oxidative damage on cardiomyocyte differentiation from Wharton's jelly‑derived mesenchymal stem cells". Experimental and Therapeutic Medicine 14.6 (2017): 5329-5338.
Chicago
Nimsanor, N., Phetfong, J., Plabplueng, C., Jangpatarapongsa, K., Prachayasittikul, V., Supokawej, A."Inhibitory effect of oxidative damage on cardiomyocyte differentiation from Wharton's jelly‑derived mesenchymal stem cells". Experimental and Therapeutic Medicine 14, no. 6 (2017): 5329-5338. https://doi.org/10.3892/etm.2017.5249
Copy and paste a formatted citation
x
Spandidos Publications style
Nimsanor N, Phetfong J, Plabplueng C, Jangpatarapongsa K, Prachayasittikul V and Supokawej A: Inhibitory effect of oxidative damage on cardiomyocyte differentiation from Wharton's jelly‑derived mesenchymal stem cells. Exp Ther Med 14: 5329-5338, 2017.
APA
Nimsanor, N., Phetfong, J., Plabplueng, C., Jangpatarapongsa, K., Prachayasittikul, V., & Supokawej, A. (2017). Inhibitory effect of oxidative damage on cardiomyocyte differentiation from Wharton's jelly‑derived mesenchymal stem cells. Experimental and Therapeutic Medicine, 14, 5329-5338. https://doi.org/10.3892/etm.2017.5249
MLA
Nimsanor, N., Phetfong, J., Plabplueng, C., Jangpatarapongsa, K., Prachayasittikul, V., Supokawej, A."Inhibitory effect of oxidative damage on cardiomyocyte differentiation from Wharton's jelly‑derived mesenchymal stem cells". Experimental and Therapeutic Medicine 14.6 (2017): 5329-5338.
Chicago
Nimsanor, N., Phetfong, J., Plabplueng, C., Jangpatarapongsa, K., Prachayasittikul, V., Supokawej, A."Inhibitory effect of oxidative damage on cardiomyocyte differentiation from Wharton's jelly‑derived mesenchymal stem cells". Experimental and Therapeutic Medicine 14, no. 6 (2017): 5329-5338. https://doi.org/10.3892/etm.2017.5249
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team