Open Access

Gene expression profiling analysis of keloids with and without hydrocortisone treatment

  • Authors:
    • Hongyi Wang
    • Liangliang Quan
    • Jiulong Liang
    • Jie Shi
    • Tao Qiu
    • Ye Zhang
    • Yang Wang
    • Qiang Hui
    • Yu Zhang
    • Kai Tao
  • View Affiliations

  • Published online on: October 3, 2017     https://doi.org/10.3892/etm.2017.5263
  • Pages: 5283-5288
  • Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The present study aimed to investigate the genetic effects of hydrocortisone (HC) treatment on keloids and screen medicines to be used in a combination therapy of keloids with HC. The dataset GSE7890 was downloaded from Gene Expression Omnibus. It contained data regarding 4 fibroblast samples from normal scar tissue and 5 samples from keloid tissue with HC treatment, as well as 5 samples from normal scar and 5 samples from keloids without HC treatment. Following the identification of differentially expressed genes (DEGs), the functions of these DEGs were analyzed by Gene Ontology (GO) and pathway enrichment analyses. Furthermore, adverse effects of HC were identified using WebGestalt. Additionally, candidate small molecule drugs associated with keloids were selected from a connectivity map database. A total of 166 and 41 DEGs, with and without HC treatment respectively, were only present in dermal fibroblasts from keloids (termed genesets A and B, respectively). A set of 26 DEGs was present following both treatments (geneset C). A number of DEGs in geneset B (COL18A1 and JAG1) were associated with endothelial cell differentiation. However, in genesets A and C, certain genes (CCNB1 and CCNB2) were involved in the cell cycle and p53 signaling pathways, and a number of genes (IL1R1 and COL1A1) were associated with bone loss. Additionally, numerous small molecule drugs (including acemetacin) were associated with keloids. Thus, it has been determined that HC may treat keloids by targeting genes associated to endothelial cell differentiation (COL18A1 and JAG1). However, HC has a number of adverse effects, including bone loss. Acemetacin may be applied in a combination therapy, along with HC, to treat keloids.
View Figures
View References

Related Articles

Journal Cover

December-2017
Volume 14 Issue 6

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Wang H, Quan L, Liang J, Shi J, Qiu T, Zhang Y, Wang Y, Hui Q, Zhang Y, Tao K, Tao K, et al: Gene expression profiling analysis of keloids with and without hydrocortisone treatment. Exp Ther Med 14: 5283-5288, 2017
APA
Wang, H., Quan, L., Liang, J., Shi, J., Qiu, T., Zhang, Y. ... Tao, K. (2017). Gene expression profiling analysis of keloids with and without hydrocortisone treatment. Experimental and Therapeutic Medicine, 14, 5283-5288. https://doi.org/10.3892/etm.2017.5263
MLA
Wang, H., Quan, L., Liang, J., Shi, J., Qiu, T., Zhang, Y., Wang, Y., Hui, Q., Zhang, Y., Tao, K."Gene expression profiling analysis of keloids with and without hydrocortisone treatment". Experimental and Therapeutic Medicine 14.6 (2017): 5283-5288.
Chicago
Wang, H., Quan, L., Liang, J., Shi, J., Qiu, T., Zhang, Y., Wang, Y., Hui, Q., Zhang, Y., Tao, K."Gene expression profiling analysis of keloids with and without hydrocortisone treatment". Experimental and Therapeutic Medicine 14, no. 6 (2017): 5283-5288. https://doi.org/10.3892/etm.2017.5263