Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
January-2018 Volume 15 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2018 Volume 15 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Ultrasound‑targeted microbubble destruction‑mediated Foxp3 knockdown may suppress the tumor growth of HCC mice by relieving immunosuppressive Tregs function

  • Authors:
    • Chunying Shi
    • Yu Zhang
    • Haichao Yang
    • Tianxiu Dong
    • Yaodong Chen
    • Yutong Xu
    • Xiuhua Yang
    • Pengfei Liu
  • View Affiliations / Copyright

    Affiliations: Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin 150001, P.R. China, MRI Department, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin 150001, P.R. China
    Copyright: © Shi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 31-38
    |
    Published online on: November 1, 2017
       https://doi.org/10.3892/etm.2017.5421
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The aim of the present study was to investigate the effect of Forkhead family transcription factor P3 (Foxp3) knockdown on the function of cluster of differentiation (CD)4+CD25+ regulatory T cell (Tregs) and the tumor growth of a hepatocellular carcinoma (HCC) mouse model. CD4+CD25+ Tregs and CD4+CD25‑ T cells were sorted from peripheral blood mononuclear cells (PBMCs) of patients with HCC. Then, ultrasound‑targeted microbubble destruction (UTMD)‑mediated Foxp3‑microRNA (miRNA) was transfected into Tregs. Subsequently, CD4+CD25‑ T cells were co‑cultured with PBMC and Tregs without Foxp3‑miRNA (Foxp3+Tregs) or Tregs with Foxp3‑miRNA (Foxp3‑Tregs) and the proliferation‑inhibition ratio of CD4+CD25‑ T cells was detected using a Cell Counting Kit‑8. Additionally, HCC mice were treated with UTMD‑mediated Foxp3‑shRNA, the tumor volume was calculated and the content of CD4+ and CD25+ T cells in the blood were detected using flow cytometry. The content of interferon‑γ (IFN‑γ), interleukin (IL)‑2, IL‑10, transforming growth factor‑β (TGF‑β) and vascular endothelial growth factor (VEGF) in cultural supernatant and serum were detected by ELISA analysis. Foxp3‑Tregs significantly reduced the inhibition effect of Foxp3+Tregs on the proliferation of CD4+CD25‑ T cells (P<0.01). The content of IFN‑γ and IL‑2 significantly increased, while IL‑10 and TGF‑β significantly decreased in the co‑cultured system of Foxp3‑Tregs compared with the co‑cultured system of Foxp3+Tregs (P<0.01). Following treatment with Foxp3‑shRNA, the average tumor volume, ratio of Tregs/CD4+ T cells and level of IL‑10, TGF‑β and VEGF significantly decreased, however, the level of IFN‑γ and IL‑2 significantly increased compared with un‑treated HCC mice (P<0.05). Foxp3 knockdown may suppress the tumor growth of HCC mice through relieving the immunosuppressive function of Tregs.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Han KH, Kudo M, Ye SL, Choi JY, Poon RP, Seong J, Park JW, Ichida T, Chung JW, Chow P and Cheng AL: Asian consensus workshop report: Expert consensus guideline for the management of intermediate and advanced hepatocellular carcinoma in Asia. Oncology. 81 Suppl 1:S158–S164. 2011. View Article : Google Scholar

2 

Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Maluccio M and Covey A: Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma. CA Cancer J Clin. 62:394–399. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Pardee AD and Butterfield LH: Immunotherapy of hepatocellular carcinoma: Unique challenges and clinical opportunities. Oncoimmunology. 1:48–55. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Ganss R and Hanahan D: Tumor microenvironment can restrict the effectiveness of activated antitumor lymphocytes. Cancer Res. 58:4673–4681. 1998.PubMed/NCBI

6 

Coussens LM and Werb Z: Inflammation and cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Linehan DC and Goedegebuure PS: CD25+ CD4+ regulatory T-cells in cancer. Immunol Res. 32:155–168. 2005. View Article : Google Scholar : PubMed/NCBI

8 

von Boehmer H: Mechanisms of suppression by suppressor T cells. Nat Immunol. 6:338–344. 2005. View Article : Google Scholar : PubMed/NCBI

9 

Fontenot JD and Rudensky AY: A well adapted regulatory contrivance: Rregulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol. 6:331–337. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Tsai BY, Suen JL and Chiang BL: Lentiviral-mediated Foxp3 RNAi suppresses tumor growth of regulatory T cell-like leukemia in a murine tumor model. Gene Ther. 17:972–979. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF and Korangy F: Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 65:2457–2464. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Yang XH, Yamagiwa S, Ichida T, Matsuda Y, Sugahara S, Watanabe H, Sato Y, Abo T, Horwitz DA and Aoyagi Y: Increase of CD4+ CD25+ regulatory T-cells in the liver of patients with hepatocellular carcinoma. J Hepatol. 45:254–262. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Walton CB, Anderson CD, Boulay R and Shohet RV: Introduction to the ultrasound targeted microbubble destruction technique. J Vis Exp. 52:e29632011.

14 

Geis NA, Katus HA and Bekeredjian R: Microbubbles as a vehicle for gene and drug delivery: Current clinical implications and future perspectives. Curr Pharm Design. 18:2166–2183. 2012. View Article : Google Scholar

15 

Li YS, Davidson E, Reid CN and McHale AP: Optimising ultrasound-mediated gene transfer (sonoporation) in vitro and prolonged expression of a transgene in vivo: Potential applications for gene therapy of cancer. Cancer Lett. 273:62–69. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Fujii H, Sun Z, Li SH, Wu J, Fazel S, Weisel RD, Rakowski H, Lindner J and Li RK: Ultrasound-targeted gene delivery induces angiogenesis after a myocardial infarction in mice. JACC Cardiovasc Imaging. 2:869–879. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Carson AR, McTiernan CF, Lavery L, Hodnick A, Grata M, Leng X, Wang J, Chen X, Modzelewski RA and Villanueva FS: Gene therapy of carcinoma using ultrasound-targeted microbubble destruction. Ultrasound Med Biol. 37:393–402. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Kee KM, Wang JH, Lin CY, Wang CC, Cheng YF and Lu SN: Validation of the 7th edition TNM staging system for hepatocellular carcinoma: An analysis of 8,828 patients in a single medical center. Dig Dis Sci. 58:2721–2728. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Saayman SM, Lazar DC, Scott TA, Hart JR, Takahashi M, Burnett JC, Planelles V, Morris KV and Weinberg MS: Potent and targeted activation of latent HIV-1 using the CRISPR/dCas9 activator complex. Mol Ther. 24:488–498. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Ewert KK, Ahmad A, Bouxsein NF, Evans HM and Safinya CR: Non-viral gene delivery with cationic liposome-DNA complexesGene Therapy Protocols. Springer; New York, NY: pp. 159–175. 2008, View Article : Google Scholar

21 

Karmali PP and Chaudhuri A: Cationic liposomes as non-viral carriers of gene medicines: Resolved issues, open questions, and future promises. Med Res Rev. 27:696–722. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Zhang HH, Mei MH, Fei R, Liao WJ, Wang XY, Qin LL, Wang JH, Wei L and Chen HS: Regulatory T cell depletion enhances tumor specific CD8 T-cell responses, elicited by tumor antigen NY-ESO-1b in hepatocellular carcinoma patients, in vitro. Int J Oncol. 36:841–848. 2010.PubMed/NCBI

23 

Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG and Rudensky AY: Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity. 22:329–341. 2005. View Article : Google Scholar : PubMed/NCBI

24 

Dieckmann D, Plottner H, Berchtold S, Berger T and Schuler G: Ex vivo isolation and characterization of CD4(+) CD25(+) T cells with regulatory properties from human blood. J Exp Med. 193:1303–1310. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Shevach EM: CD4+ CD25+ suppressor T cells: More questions than answers. Nature Rev Immunol. 2:389–400. 2002.

26 

Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, Drebin JA, Strasberg SM, Eberlein TJ, Goedegebuure PS and Linehan DC: Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol. 169:2756–2761. 2002. View Article : Google Scholar : PubMed/NCBI

27 

Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T, Miyachi Y, Tsukada T and Sakaguchi S: Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature. 446:685–689. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Pandiyan P, Zheng L, Ishihara S, Reed J and Lenardo MJ: CD4+ CD25+ Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol. 8:1353–1362. 2007. View Article : Google Scholar : PubMed/NCBI

29 

Nair S, Boczkowski D, Fassnacht M, Pisetsky D and Gilboa E: Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res. 67:371–380. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Nishikawa H and Sakaguchi S: Regulatory T cells in tumor immunity. Int J Cancer. 127:759–767. 2010.PubMed/NCBI

31 

Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS and Ferrara N: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 362:841–844. 1993. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Shi C, Zhang Y, Yang H, Dong T, Chen Y, Xu Y, Yang X and Liu P: Ultrasound‑targeted microbubble destruction‑mediated Foxp3 knockdown may suppress the tumor growth of HCC mice by relieving immunosuppressive Tregs function. Exp Ther Med 15: 31-38, 2018.
APA
Shi, C., Zhang, Y., Yang, H., Dong, T., Chen, Y., Xu, Y. ... Liu, P. (2018). Ultrasound‑targeted microbubble destruction‑mediated Foxp3 knockdown may suppress the tumor growth of HCC mice by relieving immunosuppressive Tregs function. Experimental and Therapeutic Medicine, 15, 31-38. https://doi.org/10.3892/etm.2017.5421
MLA
Shi, C., Zhang, Y., Yang, H., Dong, T., Chen, Y., Xu, Y., Yang, X., Liu, P."Ultrasound‑targeted microbubble destruction‑mediated Foxp3 knockdown may suppress the tumor growth of HCC mice by relieving immunosuppressive Tregs function". Experimental and Therapeutic Medicine 15.1 (2018): 31-38.
Chicago
Shi, C., Zhang, Y., Yang, H., Dong, T., Chen, Y., Xu, Y., Yang, X., Liu, P."Ultrasound‑targeted microbubble destruction‑mediated Foxp3 knockdown may suppress the tumor growth of HCC mice by relieving immunosuppressive Tregs function". Experimental and Therapeutic Medicine 15, no. 1 (2018): 31-38. https://doi.org/10.3892/etm.2017.5421
Copy and paste a formatted citation
x
Spandidos Publications style
Shi C, Zhang Y, Yang H, Dong T, Chen Y, Xu Y, Yang X and Liu P: Ultrasound‑targeted microbubble destruction‑mediated Foxp3 knockdown may suppress the tumor growth of HCC mice by relieving immunosuppressive Tregs function. Exp Ther Med 15: 31-38, 2018.
APA
Shi, C., Zhang, Y., Yang, H., Dong, T., Chen, Y., Xu, Y. ... Liu, P. (2018). Ultrasound‑targeted microbubble destruction‑mediated Foxp3 knockdown may suppress the tumor growth of HCC mice by relieving immunosuppressive Tregs function. Experimental and Therapeutic Medicine, 15, 31-38. https://doi.org/10.3892/etm.2017.5421
MLA
Shi, C., Zhang, Y., Yang, H., Dong, T., Chen, Y., Xu, Y., Yang, X., Liu, P."Ultrasound‑targeted microbubble destruction‑mediated Foxp3 knockdown may suppress the tumor growth of HCC mice by relieving immunosuppressive Tregs function". Experimental and Therapeutic Medicine 15.1 (2018): 31-38.
Chicago
Shi, C., Zhang, Y., Yang, H., Dong, T., Chen, Y., Xu, Y., Yang, X., Liu, P."Ultrasound‑targeted microbubble destruction‑mediated Foxp3 knockdown may suppress the tumor growth of HCC mice by relieving immunosuppressive Tregs function". Experimental and Therapeutic Medicine 15, no. 1 (2018): 31-38. https://doi.org/10.3892/etm.2017.5421
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team