|
1
|
Hirai H, Maru Y, Hagiwara K, Nishida J and
Takaku F: A novel putative tyrosine kinase receptor encoded by the
eph gene. Science. 238:1717–1720. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Klein R: Bidirectional modulation of
synaptic functions by Eph/ephrin signaling. Nat Neurosci. 12:15–20.
2009. View
Article : Google Scholar : PubMed/NCBI
|
|
3
|
Aoto J and Chen L: Bidirectional
ephrin/Eph signaling in synaptic functions. Brain Res. 1184:72–80.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Flanagan JG and Vanderhaeghen P: The
ephrins and Eph receptors in neural development. Annu Rev Neurosci.
21:309–345. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wilkinson DG: Multiple roles of EPH
receptors and ephrins in neural development. Nat Rev Neurosci.
2:155–164. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
6
|
Goldshmit Y, McLenachan S and Turnley A:
Roles of Eph receptors and ephrins in the normal and damaged adult
CNS. Brain Res Rev. 52:327–345. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chumley MJ, Catchpole T, Silvany RE,
Kernie SG and Henkemeyer M: EphB receptors regulate stem/progenitor
cell proliferation, migration, and polarity during hippocampal
neurogenesis. J Neurosci. 27:13481–13490. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Labrador JP, Brambilla R and Klein R: The
N-terminal globular domain of Eph receptors is sufficient for
ligand binding and receptor signaling. EMBO J. 16:3889–3897. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lackmann M, Oates AC, Dottori M, Smith FM,
Do C, Power M, Kravets L and Boyd AW: Distinct subdomains of the
EphA3 receptor mediate ligand binding and receptor dimerization. J
Biol Chem. 273:20228–20237. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Bruckner K and Klein R: Signaling by Eph
receptors and their ephrin ligands. Curr Opin Neurobiol. 8:375–382.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Holland SJ, Peles E, Pawson T and
Schlessinger J: Cell-contact-dependent signalling in axon growth
and guidance: Eph receptor tyrosine kinases and receptor protein
tyrosine phosphatase beta. Curr Opin Neurobiol. 8:117–127. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Nimnual AS, Yatsula BA and Bar-Sagi D:
Coupling of Ras and Rac guanosine triphosphatases through the Ras
exchanger Sos. Science. 279:560–563. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Schultz J, Ponting CP, Hofmann K and Bork
P: SAM as a protein interaction domain involved in developmental
regulation. Protein science Protein Sci. 6:249–253. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Stapleton D, Balan I, Pawson T and Sicheri
F: The crystal structure of an Eph receptor SAM domain reveals a
mechanism for modular dimerization. Nat Struct Biol. 6:44–49. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kullander K and Klein R: Mechanisms and
functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol.
3:475–486. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lin D, Gish GD, Songyang Z and Pawson T:
The carboxyl terminus of B class ephrins constitutes a PDZ domain
binding motif. J Biol Chem. 274:3726–3733. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Pasquale EB: Eph receptor signalling casts
a wide net on cell behaviour. Nat Rev Mol Cell Biol. 6:462–475.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Mellitzer G, Xu Q and Wilkinson DG: Eph
receptors and ephrins restrict cell intermingling and
communication. Nature. 400:77–81. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Klein R: Eph/ephrin signaling in
morphogenesis, neural development and plasticity. Curr Opin Cell
Biol. 16:580–589. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Davis S, Gale NW, Aldrich TH, Maisonpierre
PC, Lhotak V, Pawson T, Goldfarb M and Yancopoulos GD: Ligands for
EPH-related receptor tyrosine kinases that require membrane
attachment or clustering for activity. Science. 266:816–819. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Stein E, Lane AA, Cerretti DP,
Schoecklmann HO, Schroff AD, Van Etten RL and Daniel TO: Eph
receptors discriminate specific ligand oligomers to determine
alternative signaling complexes, attachment, and assembly
responses. Genes Dev. 12:667–678. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Carter N, Nakamoto T, Hirai H and Hunter
T: EphrinA1-induced cytoskeletal re-organization requires FAK and
p130(cas). Nat Cell Biol. 4:565–573. 2002.PubMed/NCBI
|
|
23
|
Lawrenson ID, Wimmer-Kleikamp SH, Lock P,
Schoenwaelder SM, Down M, Boyd AW, Alewood PF and Lackmann M:
Ephrin-A5 induces rounding, blebbing and de-adhesion of
EphA3-expressing 293T and melanoma cells by CrkII and Rho-mediated
signalling. J Cell Sci. 115:1059–1072. 2002.PubMed/NCBI
|
|
24
|
Cowan CA and Henkemeyer M: Ephrins in
reverse, park and drive. Trends Cell Biol. 12:339–346. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Davy A and Soriano P: Ephrin signaling in
vivo: Look both ways. Dev Dyn. 232:1–10. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Jing X, Miwa H, Sawada T, Nakanishi I,
Kondo T, Miyajima M and Sakaguchi K: Ephrin-A1-mediated
dopaminergic neurogenesis and angiogenesis in a rat model of
Parkinson's disease. PLos One. 7:e320192012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Holland SJ, Gale NW, Gish GD, Roth RA,
Songyang Z, Cantley LC, Henkemeyer M, Yancopoulos GD and Pawson T:
Juxtamembrane tyrosine residues couple the Eph family receptor
EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO
J. 16:3877–3888. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Henkemeyer M, Marengere LE, McGlade J,
Olivier JP, Conlon RA, Holmyard DP, Letwin K and Pawson T:
Immunolocalization of the Nuk receptor tyrosine kinase suggests
roles in segmental patterning of the brain and axonogenesis.
Oncogene. 9:1001–1014. 1994.PubMed/NCBI
|
|
29
|
Becker E, Huynh-Do U, Holland S, Pawson T,
Daniel TO and Skolnik EY: Nck-interacting Ste20 kinase couples Eph
receptors to c-Jun N-terminal kinase and integrin activation. Mol
Cell Biol. 20:1537–1545. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wahl S, Barth H, Ciossek T, Aktories K and
Mueller BK: Ephrin-A5 induces collapse of growth cones by
activating Rho and Rho kinase. J Cell Biol. 149:263–270. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Shamah SM, Lin MZ, Goldberg JL, Estrach S,
Sahin M, Hu L, Bazalakova M, Neve RL, Corfas G, Debant A and
Greenberg ME: EphA receptors regulate growth cone dynamics through
the novel guanine nucleotide exchange factor ephexin. Cell.
105:233–244. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zhou X, Suh J, Cerretti DP, Zhou R and
DiCicco-Bloom E: Ephrins stimulate neurite outgrowth during early
cortical neurogenesis. Journal of neuroscience research.
66:1054–1063. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Takasu MA, Dalva MB, Zigmond RE and
Greenberg ME: Modulation of NMDA receptor-dependent calcium influx
and gene expression through EphB receptors. Science. 295:491–495.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Tong J, Elowe S, Nash P and Pawson T:
Manipulation of EphB2 regulatory motifs and SH2 binding sites
switches MAPK signaling and biological activity. J Biol Chem.
278:6111–6119. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Goldshmit Y, Galea MP, Wise G, Bartlett PF
and Turnley AM: Axonal regeneration and lack of astrocytic gliosis
in EphA4-deficient mice. J Neurosci. 24:10064–10073. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lisabeth EM, Falivelli G and Pasquale EB:
Eph receptor signaling and ephrins. Cold Spring Harb Perspect Biol.
5:2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Dickson BJ: Rho GTPases in growth cone
guidance. Curr Opin Neurobiol. 11:103–110. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Giniger E: How do Rho family GTPases
direct axon growth and guidance? A proposal relating signaling
pathways to growth cone mechanics. Differentiation. 70:385–396.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Lehmann M, Fournier A, Selles-Navarro I,
Dergham P, Sebok A, Leclerc N, Tigyi G and McKerracher L:
Inactivation of Rho signaling pathway promotes CNS axon
regeneration. J Neurosci. 19:7537–7547. 1999.PubMed/NCBI
|
|
40
|
Dergham P, Ellezam B, Essagian C,
Avedissian H, Lubell WD and McKerracher L: Rho signaling pathway
targeted to promote spinal cord repair. J Neurosci. 22:6570–6577.
2002.PubMed/NCBI
|
|
41
|
Fournier AE, Takizawa BT and Strittmatter
SM: Rho kinase inhibition enhances axonal regeneration in the
injured CNS. J Neurosci. 23:1416–1423. 2003.PubMed/NCBI
|
|
42
|
Nikolic M: The role of Rho GTPases and
associated kinases in regulating neurite outgrowth. Int J Biochem
Cell Biol. 34:731–745. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Sahin M, Greer PL, Lin MZ, Poucher H,
Eberhart J, Schmidt S, Wright TM, Shamah SM, O'connell S and Cowan
CW: Eph-dependent tyrosine phosphorylation of ephexin1 modulates
growth cone collapse. Neuron. 46:191–204. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Henkemeyer M, Itkis OS, Ngo M, Hickmott PW
and Ethell IM: Multiple EphB receptor tyrosine kinases shape
dendritic spines in the hippocampus. J Cell Biol. 163:1313–1326.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Fang Y, Cho KS, Tchedre K, Lee SW, Guo C,
Kinouchi H, Fried S, Sun X and Chen DF: Ephrin-A3 suppresses Wnt
signaling to control retinal stem cell potency. Stem Cells.
31:349–359. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Steinle JJ, Meininger CJ, Forough R, Wu G,
Wu MH and Granger HJ: Eph B4 receptor signaling mediates
endothelial cell migration and proliferation via the
phosphatidylinositol 3-kinase pathway. J Biol Chem.
277:43830–43835. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lai KO, Chen Y, Po HM, Lok KC, Gong K and
Ip NY: Identification of the Jak/Stat proteins as novel downstream
targets of EphA4 signaling in muscle: implications in the
regulation of acetylcholinesterase expression. J Biol Chem.
279:13383–13392. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Macrae M, Neve RM, Rodriguez-Viciana P,
Haqq C, Yeh J, Chen C, Gray JW and McCormick F: A conditional
feedback loop regulates Ras activity through EphA2. Cancer Cell.
8:111–118. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Holmberg J, Armulik A, Senti KA, Edoff K,
Spalding K, Momma S, Cassidy R, Flanagan JG and Frisén J: Ephrin-A2
reverse signaling negatively regulates neural progenitor
proliferation and neurogenesis. Genes Dev. 19:462–471. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Grunwald IC, Korte M, Adelmann G, Plueck
A, Kullander K, Adams RH, Frotscher M, Bonhoeffer T and Klein R:
Hippocampal plasticity requires postsynaptic ephrinBs. Nat
Neurosci. 7:33–40. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
51
|
Davy A, Aubin J and Soriano P: Ephrin-B1
forward and reverse signaling are required during mouse
development. Genes Dev. 18:572–583. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Davy A, Gale NW, Murray EW, Klinghoffer
RA, Soriano P, Feuerstein C and Robbins SM: Compartmentalized
signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine
kinase to regulate cellular adhesion. Genes Dev. 13:3125–3135.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Davy A and Robbins SM: Ephrin-A5 modulates
cell adhesion and morphology in an integrin-dependent manner. EMBO
J. 19:5396–5405. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Suetterlin P, Marler KM and Drescher U:
Axonal ephrinA/EphA interactions, and the emergence of order in
topographic projections. Semin Cell Dev Biol. 23:1–6. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Torres R, Firestein BL, Dong H, Staudinger
J, Olson EN, Huganir RL, Bredt DS, Gale NW and Yancopoulos GD: PDZ
proteins bind, cluster, and synaptically colocalize with Eph
receptors and their ephrin ligands. Neuron. 21:1453–1463. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Holland SJ, Gale NW, Mbamalu G,
Yancopoulos GD, Henkemeyer M and Pawson T: Bidirectional signalling
through the EPH-family receptor Nuk and its transmembrane ligands.
Nature. 383:722–725. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Bruckner K, Pasquale EB and Klein R:
Tyrosine phosphorylation of transmembrane ligands for Eph
receptors. Science. 275:1640–1643. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kalo MS, Yu HH and Pasquale EB: In vivo
tyrosine phosphorylation sites of activated ephrin-B1 and ephB2
from neural tissue. J Biol Chem. 276:38940–38948. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Cowan CA and Henkemeyer M: The SH2/SH3
adaptor Grb4 transduces B-ephrin reverse signals. Nature.
413:174–179. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Palmer A, Zimmer M, Erdmann KS, Eulenburg
V, Porthin A, Heumann R, Deutsch U and Klein R: EphrinB
phosphorylation and reverse signaling: Regulation by Src kinases
and PTP-BL phosphatase. Mol Cell. 9:725–737. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hsueh YP and Sheng M: Eph receptors,
ephrins, and PDZs gather in neuronal synapses. Neuron.
21:1227–1229. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Salcedo R, Wasserman K, Young HA, Grimm
MC, Howard OM, Anver MR, Kleinman HK, Murphy WJ and Oppenheim JJ:
Vascular endothelial growth factor and basic fibroblast growth
factor induce expression of CXCR4 on human endothelial cells: In
vivo neovascularization induced by stromal-derived factor-1alpha.
Am J Pathol. 154:1125–1135. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lu Q, Sun EE, Klein RS and Flanagan JG:
Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein
and selectively inhibits G protein-coupled chemoattraction. Cell.
105:69–79. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Liebl DJ, Morris CJ, Henkemeyer M and
Parada LF: mRNA expression of ephrins and Eph receptor tyrosine
kinases in the neonatal and adult mouse central nervous system. J
Neurosci Res. 71:7–22. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Murai KK and Pasquale EB: Can Eph
receptors stimulate the mind? Neuron. 33:159–162. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Hruska M and Dalva MB: Ephrin regulation
of synapse formation, function and plasticity. Mol Cell Neurosci.
50:35–44. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Murai KK, Nguyen LN, Irie F, Yamaguchi Y
and Pasquale EB: Control of hippocampal dendritic spine morphology
through ephrin-A3/EphA4 signaling. Nat Neurosci. 6:153–160. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Vasileiou I, Adamakis I, Patsouris E and
Theocharis S: Ephrins and pain. Expert Opin Ther Targets.
17:879–887. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Bouvier D, Corera AT, Tremblay ME, Riad M,
Chagnon M, Murai KK, Pasquale EB, Fon EA and Doucet G: Pre-synaptic
and post-synaptic localization of EphA4 and EphB2 in adult mouse
forebrain. J Neurochem. 106:682–695. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
McKinnell IW, Makarenkova H, de Curtis I,
Turmaine M and Patel K: EphA4, RhoB and the molecular development
of feather buds are maintained by the integrity of the actin
cytoskeleton. Dev Biol. 270:94–105. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Heintz TG, Eva R and Fawcett JW: Regional
regulation of purkinje cell dendritic spines by integrins and
Eph/Ephrins. PLoS One. 11:e01585582016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhu XN, Liu XD, Zhuang H, Henkemeyer M,
Yang JY and Xu NJ: Amygdala EphB2 signaling regulates glutamatergic
neuron maturation and innate fear. J Neurosci. 36:10151–10162.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Rodenas-Ruano A, Perez-Pinzon MA, Green
EJ, Henkemeyer M and Liebl DJ: Distinct roles for ephrinB3 in the
formation and function of hippocampal synapses. Dev Biol.
292:34–45. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Cisse M and Checler F: Eph receptors: New
players in Alzheimer's disease pathogenesis. Neurobiol Dis.
73:137–149. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kalo MS and Pasquale EB: Signal transfer
by eph receptors. Cell Tissue Res. 298:1–9. 1999. View Article : Google Scholar
|
|
76
|
Zhou XL, Zhang CJ, Wang Y, Wang M, Sun LH,
Yu LN, Cao JL and Yan M: EphrinB-EphB signaling regulates spinal
pain processing via PKCgamma. Neuroscience. 307:64–72. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Dalva MB, Takasu MA, Lin MZ, Shamah SM, Hu
L, Gale NW and Greenberg ME: EphB receptors interact with NMDA
receptors and regulate excitatory synapse formation. Cell.
103:945–956. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Grunwald IC, Korte M, Wolfer D, Wilkinson
GA, Unsicker K, Lipp HP, Bonhoeffer T and Klein R:
Kinase-independent requirement of EphB2 receptors in hippocampal
synaptic plasticity. Neuron. 32:1027–1040. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Armstrong JN, Saganich MJ, Xu NJ,
Henkemeyer M, Heinemann SF and Contractor A: B-ephrin reverse
signaling is required for NMDA-independent long-term potentiation
of mossy fibers in the hippocampus. J Neurosci. 26:3474–3481. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Lim BK, Matsuda N and Poo MM: Ephrin-B
reverse signaling promotes structural and functional synaptic
maturation in vivo. Nat Neurosci. 11:160–169. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Filosa A, Paixão S, Honsek SD, Carmona MA,
Becker L, Feddersen B, Gaitanos L, Rudhard Y, Schoepfer R and
Klopstock T: Neuron-glia communication via EphA4/ephrin-A3
modulates LTP through glial glutamate transport. Nat Neurosci.
12:1285–1292. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Carmona MA, Murai KK, Wang L, Roberts AJ
and Pasquale EB: Glial ephrin-A3 regulates hippocampal dendritic
spine morphology and glutamate transport. Proc Natl Acad Sci USA.
106:pp. 12524–12529. 2009; View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Battaglia AA, Sehayek K, Grist J, McMahon
SB and Gavazzi I: EphB receptors and ephrin-B ligands regulate
spinal sensory connectivity and modulate pain processing. Nat
Neurosci. 6:339–340. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
84
|
Song XJ, Cao JL, Li HC, Zheng JH, Song XS
and Xiong LZ: Upregulation and redistribution of ephrinB and EphB
receptor in dorsal root ganglion and spinal dorsal horn neurons
after peripheral nerve injury and dorsal rhizotomy. Eur J Pain.
12:1031–1039. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Slack S, Battaglia A, Cibert-Goton V and
Gavazzi I: EphrinB2 induces tyrosine phosphorylation of NR2B via
Src-family kinases during inflammatory hyperalgesia. Neuroscience.
156:175–183. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Ruan JP, Zhang HX, Lu XF, Liu YP and Cao
JL: EphrinBs/EphBs signaling is involved in modulation of spinal
nociceptive processing through a mitogen-activated protein
kinases-dependent mechanism. Anesthesiology. 112:1234–1249. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Yu LN, Zhou XL, Yu J, Huang H, Jiang LS,
Zhang FJ, Cao JL and Yan M: PI3K contributed to modulation of
spinal nociceptive information related to ephrinBs/EphBs. PLoS One.
7:e409302012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Laussu J, Khuong A, Gautrais J and Davy A:
Beyond boundaries-Eph:ephrin signaling in neurogenesis. Cell Adh
Migr. 8:349–359. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Aoki M, Yamashita T and Tohyama M: EphA
receptors direct the differentiation of mammalian neural precursor
cells through a mitogen-activated protein kinase-dependent pathway.
J Biol Chem. 279:32643–32650. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Ricard J, Salinas J, Garcia L and Liebl
DJ: EphrinB3 regulates cell proliferation and survival in adult
neurogenesis. Mol Cell Neurosci. 31:713–722. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Theus MH, Ricard J, Bethea JR and Liebl
DJ: EphB3 limits the expansion of neural progenitor cells in the
subventricular zone by regulating p53 during homeostasis and
following traumatic brain injury. Stem Cells. 28:1231–1242.
2010.PubMed/NCBI
|
|
92
|
del Valle K, Theus MH, Bethea JR, Liebl DJ
and Ricard J: Neural progenitors proliferation is inhibited by
EphB3 in the developing subventricular zone. Int J Dev Neurosci.
29:9–14. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Baumann G, Travieso L, Liebl DJ and Theus
MH: Pronounced hypoxia in the subventricular zone following
traumatic brain injury and the neural stem/progenitor cell
response. Exp Biol Med (Maywood). 238:830–841. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Khodosevich K, Watanabe Y and Monyer H:
EphA4 preserves postnatal and adult neural stem cells in an
undifferentiated state in vivo. J Cell Sci. 124:1268–1279. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Ottone C, Krusche B, Whitby A, Clements M,
Quadrato G, Pitulescu ME, Adams RH and Parrinello S: Direct
cell-cell contact with the vascular niche maintains quiescent
neural stem cells. Nat Cell Biol. 16:1045–1056. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zhou N, Zhao WD, Liu DX, Liang Y, Fang WG,
Li B and Chen YH: Inactivation of EphA2 promotes tight junction
formation and impairs angiogenesis in brain endothelial cells.
Microvasc Res. 82:113–121. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Hassan-Mohamed I, Giorgio C, Incerti M,
Russo S, Pala D, Pasquale EB, Zanotti I, Vicini P, Barocelli E,
Rivara S, et al: UniPR129 is a competitive small molecule
Eph-ephrin antagonist blocking in vitro angiogenesis at low
micromolar concentrations. Br J Pharmacol. 171:5195–5208. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wiedemann E, Jellinghaus S, Ende G,
Augstein A, Sczech R, Wielockx B, Weinert S, Strasser RH and Poitz
DM: Regulation of endothelial migration and proliferation by
ephrin-A1. Cell Signal. 29:84–95. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Miranda JD, White LA, Marcillo AE, Willson
CA, Jagid J and Whittemore SR: Induction of Eph B3 after spinal
cord injury. Exp Neurol. 156:218–222. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Moreno-Flores MT and Wandosell F:
Up-regulation of Eph tyrosine kinase receptors after excitotoxic
injury in adult hippocampus. Neuroscience. 91:193–201. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Rodger J, Lindsey KA, Leaver SG, King CE,
Dunlop SA and Beazley LD: Expression of ephrin-A2 in the superior
colliculus and EphA5 in the retina following optic nerve section in
adult rat. Eur J Neurosci. 14:1929–1936. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Willson CA, Irizarry-Ramírez M, Gaskins
HE, Cruz-Orengo L, Figueroa JD, Whittemore SR and Miranda JD:
Upregulation of EphA receptor expression in the injured adult rat
spinal cord. Cell Transplant. 11:229–239. 2002.PubMed/NCBI
|
|
103
|
Bundesen LQ, Scheel TA, Bregman BS and
Kromer LF: Ephrin-B2 and EphB2 regulation of astrocyte-meningeal
fibroblast interactions in response to spinal cord lesions in adult
rats. J Neurosci. 23:7789–7800. 2003.PubMed/NCBI
|
|
104
|
del Zoppo GJ: Stroke and neurovascular
protection. N Engl J Med. 354:553–555. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Ren Z, Chen X, Yang J, Kress BT, Tong J,
Liu H, Takano T, Zhao Y and Nedergaard M: Improved axonal
regeneration after spinal cord injury in mice with conditional
deletion of ephrin B2 under the GFAP promoter. Neuroscience.
241:89–99. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Pasquale EB: Eph-ephrin bidirectional
signaling in physiology and disease. Cell. 133:38–52. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Lukes A, Mun-Bryce S, Lukes M and
Rosenberg GA: Extracellular matrix degradation by
metalloproteinases and central nervous system diseases. Mol
Neurobiol. 19:267–284. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Bunge RP, Puckett WR and Hiester ED:
Observations on the pathology of several types of human spinal cord
injury, with emphasis on the astrocyte response to penetrating
injuries. Adv Neurol. 72:305–315. 1997.PubMed/NCBI
|
|
109
|
Fawcett JW and Asher RA: The glial scar
and central nervous system repair. Brain Res Bull. 49:377–391.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Dawson MR, Levine JM and Reynolds R:
NG2-expressing cells in the central nervous system: are they
oligodendroglial progenitors? J Neurosci Res. 61:471–479. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Song I and Dityatev A: Crosstalk between
glia, extracellular matrix and neurons. Brain Res Bull. S0361–9230.
2017.
|
|
112
|
Schnell L, Fearn S, Klassen H, Schwab ME
and Perry VH: Acute inflammatory responses to mechanical lesions in
the CNS: differences between brain and spinal cord. Eur J Neurosci.
11:3648–3658. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
McGraw J, Hiebert GW and Steeves JD:
Modulating astrogliosis after neurotrauma. J Neurosci Res.
63:109–115. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Xie M, Yi C, Luo X, Xu S, Yu Z, Tang Y,
Zhu W, Du Y, Jia L and Zhang Q: Glial gap junctional communication
involvement in hippocampal damage after middle cerebral artery
occlusion. Ann Neurol. 70:121–132. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Stichel CC and Muller HW: The CNS lesion
scar: New vistas on an old regeneration barrier. Cell Tissue Res.
294:1–9. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Bush TG, Puvanachandra N, Horner CH,
Polito A, Ostenfeld T, Svendsen CN, Mucke L, Johnson MH and
Sofroniew MV: Leukocyte infiltration, neuronal degeneration, and
neurite outgrowth after ablation of scar-forming, reactive
astrocytes in adult transgenic mice. Neuron. 23:297–308. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Faulkner JR, Herrmann JE, Woo MJ, Tansey
KE, Doan NB and Sofroniew MV: Reactive astrocytes protect tissue
and preserve function after spinal cord injury. J Neurosci.
24:2143–2155. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Jakeman LB and Reier PJ: Axonal
projections between fetal spinal cord transplants and the adult rat
spinal cord: A neuroanatomical tracing study of local interactions.
J Comp Neurol. 307:311–334. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Fernandez-Klett F and Priller J: The
fibrotic scar in neurological disorders. Brain Pathol. 24:404–413.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Joly S, Jordi N, Schwab ME and Pernet V:
The Ephrin receptor EphA4 restricts axonal sprouting and enhances
branching in the injured mouse optic nerve. Eur J Neurosci.
40:3021–3031. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Goldshmit Y, Spanevello MD, Tajouri S, Li
L, Rogers F, Pearse M, Galea M, Bartlett PF, Boyd AW and Turnley
AM: EphA4 blockers promote axonal regeneration and functional
recovery following spinal cord injury in mice. PLos One.
6:e246362011. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Choi DW: Excitotoxic cell death. J
Neurobiol. 23:1261–1276. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Yang J, Luo X, Huang X, Ning Q, Xie M and
Wang W: Ephrin-A3 reverse signaling regulates hippocampal neuronal
damage and astrocytic glutamate transport after transient global
ischemia. J Neurochem. 131:383–394. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Nikolakopoulou AM, Koeppen J, Garcia M,
Leish J, Obenaus A and Ethell IM: Astrocytic Ephrin-B1 regulates
synapse remodeling following traumatic brain injury. ASN Neuro.
8:1–18. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Zhao C, Deng W and Gage FH: Mechanisms and
functional implications of adult neurogenesis. Cell. 132:645–660.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Butti E, Cusimano M, Bacigaluppi M and
Martino G: Neurogenic and non-neurogenic functions of endogenous
neural stem cells. Front Neurosci. 8:922014. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Das A, Gupta T, Davla S, Prieto-Godino LL,
Diegelmann S, Reddy OV, Raghavan KV, Reichert H, Lovick J and
Hartenstein V: Neuroblast lineage-specific origin of the neurons of
the Drosophila larval olfactory system. Dev Biol. 373:322–337.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Doeppner TR, Bretschneider E, Doehring M,
Segura I, Sentürk A, Acker-Palmer A, Hasan MR, ElAli A, Hermann DM
and Bähr M: Enhancement of endogenous neurogenesis in ephrin-B3
deficient mice after transient focal cerebral ischemia. Acta
Neuropathol. 122:429–442. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Catchpole T and Henkemeyer M: EphB2
tyrosine kinase-dependent forward signaling in migration of
neuronal progenitors that populate and form a distinct region of
the dentate niche. J Neurosci. 31:11472–11483. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Xing S, He Y, Ling L, Hou Q, Yu J, Zeng J
and Pei Z: Blockade of EphB2 enhances neurogenesis in the
subventricular zone and improves neurological function after
cerebral cortical infarction in hypertensive rats. Brain Res.
1230:237–246. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Yue X, Dreyfus C, Kong TA and Zhou R: A
subset of signal transduction pathways is required for hippocampal
growth cone collapse induced by ephrin-A5. Dev Neurobiol.
68:1269–1286. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Wegmeyer H, Egea J, Rabe N, Gezelius H,
Filosa A, Enjin A, Varoqueaux F, Deininger K, Schnütgen F, Brose N,
et al: EphA4-dependent axon guidance is mediated by the RacGAP
alpha2-chimaerin. Neuron. 55:756–767. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Shu Y, Xiao B, Wu Q, Liu T, Du Y, Tang H,
Chen S, Feng L, Long L and Li Y: The Ephrin-A5/EphA4 interaction
modulates neurogenesis and angiogenesis by the p-Akt and p-ERK
pathways in a mouse model of TLE. Mol Neurobiol. 53:561–576. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Chen X, Yang H, Zhou X, Zhang L and Lu X:
MiR-93 Targeting EphA4 promotes neurite outgrowth from spinal cord
neurons. J Mol Neurosci. 58:517–524. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Prestoz L, Chatzopoulou E, Lemkine G,
Spassky N, Lebras B, Kagawa T, Ikenaka K, Zalc B and Thomas JL:
Control of axonophilic migration of oligodendrocyte precursor cells
by Eph-ephrin interaction. Neuron Glia Biol. 1:73–83. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Benson MD, Romero MI, Lush ME, Lu QR,
Henkemeyer M and Parada LF: Ephrin-B3 is a myelin-based inhibitor
of neurite outgrowth. Proc Natl Acad Sci USA. 102:pp. 10694–10699.
2005; View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Tsenkina Y, Ricard J, Runko E,
Quiala-Acosta MM, Mier J and Liebl DJ: EphB3 receptors function as
dependence receptors to mediate oligodendrocyte cell death
following contusive spinal cord injury. Cell Death Dis.
6:e19222015. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Lodola A, Giorgio C, Incerti M, Zanotti I
and Tognolini M: Targeting Eph/ephrin system in cancer therapy. Eur
J Med Chem. 142:152–162. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Brantley-Sieders DM, Caughron J, Hicks D,
Pozzi A, Ruiz JC and Chen J: EphA2 receptor tyrosine kinase
regulates endothelial cell migration and vascular assembly through
phosphoinositide 3-kinase-mediated Rac1 GTPase activation. J Cell
Sci. 117:2037–2049. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Hassan-Mohamed I, Giorgio C, Incerti M,
Russo S, Pala D, Pasquale EB, Zanotti I, Vicini P, Barocelli E,
Rivara S, et al: UniPR129 is a competitive small molecule
Eph-ephrin antagonist blocking in vitro angiogenesis at low
micromolar concentrations. Br J Pharmacol,. 171:5195–5208. 2014.
View Article : Google Scholar
|
|
141
|
Tae N, Lee S, Kim O, Park J, Na S and Lee
JH: Syntenin promotes VEGF-induced VEGFR2 endocytosis and
angiogenesis by increasing ephrin-B2 function in endothelial cells.
Oncotarget. 8:38886–38901. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Feng L, Shu Y, Wu Q, Liu T, Long H, Yang
H, Li Y and Xiao B: EphA4 may contribute to microvessel remodeling
in the hippocampal CA1 and CA3 areas in a mouse model of temporal
lobe epilepsy. Mol Med Rep. 15:37–46. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Shu Y, Xiao B, Wu Q, Liu T, Du Y, Tang H,
Chen S, Feng L, Long L and Li Y: The Ephrin-A5/EphA4 interaction
modulates neurogenesis and angiogenesis by the p-Akt and p-ERK
pathways in a mouse model of TLE. Mol Neurobiol. 53:561–576. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Cherry JD, Olschowka JA and O'Banion MK:
Neuroinflammation and M2 microglia: The good, the bad, and the
inflamed. J Neuroinflammation. 11:982014. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Chan B and Sukhatme VP: Receptor tyrosine
kinase EphA2 mediates thrombin-induced upregulation of ICAM-1 in
endothelial cells in vitro. Thromb Res. 123:745–752. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Fang WB, Ireton RC, Zhuang G, Takahashi T,
Reynolds A and Chen J: Overexpression of EPHA2 receptor
destabilizes adherens junctions via a RhoA-dependent mechanism. J
Cell Sci. 121:358–368. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Yuan K, Hong TM, Chen JJ, Tsai WH and Lin
MT: Syndecan-1 up-regulated by ephrinB2/EphB4 plays dual roles in
inflammatory angiogenesis. Blood. 104:1025–1033. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Shen LL, Zhang LX, Wang LM, Zhou RJ, Yang
CZ, Zhang J and Yang PS: Disturbed Expression of EphB4, but Not
EphrinB2, inhibited bone regeneration in an in vivo inflammatory
microenvironment. Mediators Inflamm. 2016:64304072016. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Zhao J, Yuan G, Cendan CM, Nassar MA,
Lagerström MC, Kullander K, Gavazzi I and Wood JN:
Nociceptor-expressed ephrin-B2 regulates inflammatory and
neuropathic pain. Mol Pain. 6:772010. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Geng D, Kang L, Su Y, Jia J, Ma J, Li S,
Du J and Cui H: Protective effects of EphB2 on Abeta1-42
oligomer-induced neurotoxicity and synaptic NMDA receptor signaling
in hippocampal neurons. Neurochem Int. 63:283–290. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Cissé M, Halabisky B, Harris J, Devidze N,
Dubal DB, Sun B, Orr A, Lotz G, Kim DH, Hamto P, et al: Reversing
EphB2 depletion rescues cognitive functions in Alzheimer model.
Nature. 469:47–52. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Henderson JT, Georgiou J, Jia Z, Robertson
J, Elowe S, Roder JC and Pawson T: The receptor tyrosine kinase
EphB2 regulates NMDA-dependent synaptic function. Neuron.
32:1041–1056. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Fu AK, Hung KW, Huang H, Gu S, Shen Y,
Cheng EY, Ip FC, Huang X, Fu WY and Ip NY: Blockade of EphA4
signaling ameliorates hippocampal synaptic dysfunctions in mouse
models of Alzheimer's disease. Proc Natl Acad Sci USA. 111:pp.
9959–9964. 2014; View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Hardiman O, Al-Chalabi A, Chio A, Corr EM,
Logroscino G, Robberecht W, Shaw PJ, Simmons Z and van den Berg LH:
Amyotrophic lateral sclerosis. Nat Rev Dis Primers. 3:170712017.
View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Tsuda H, Han SM, Yang Y, Tong C, Lin YQ,
Mohan K, Haueter C, Zoghbi A, Harati Y, Kwan J, et al: The
amyotrophic lateral sclerosis 8 protein VAPB is cleaved, secreted,
and acts as a ligand for Eph receptors. Cell. 133:963–977. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Van Hoecke A, Schoonaert L, Lemmens R,
Timmers M, Staats KA, Laird AS, Peeters E, Philips T, Goris A,
Dubois B, et al: EPHA4 is a disease modifier of amyotrophic lateral
sclerosis in animal models and in humans. Nat Med. 18:1418–1422.
2012. View Article : Google Scholar : PubMed/NCBI
|