Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
March-2018 Volume 15 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2018 Volume 15 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Roles of Eph/ephrin bidirectional signaling in central nervous system injury and recovery (Review)

  • Authors:
    • Jin‑Shan Yang
    • Hui‑Xing Wei
    • Ping‑Ping Chen
    • Gang Wu
  • View Affiliations / Copyright

    Affiliations: Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
    Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2219-2227
    |
    Published online on: January 4, 2018
       https://doi.org/10.3892/etm.2018.5702
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Multiple cellular components are involved in the complex pathological process following central nervous system (CNS) injury, including neurons, glial cells and endothelial cells. Previous studies and neurotherapeutic clinical trials have assessed the molecular mechanisms that underlie neuronal cell death following CNS injury. However, this approach has largely failed to reduce CNS damage or improve the functional recovery of patients. Erythropoietin‑producing human hepatocellular (Eph) receptors and ephrin ligands have attracted considerable attention since their discovery, due to their extensive distribution and unique bidirectional signaling between astrocytes and neurons. Previous studies have investigated the roles of Eph/ephrin bidirectional signaling in the developing central nervous system. It was determined that Eph/ephrin bidirectional signaling is expressed in various CNS regions and cell types, and that it serves diverse roles in the adult CNS. In the present review, the roles of Eph/ephrin bidirectional signaling in CNS injuries are assessed.
View Figures

Figure 1

View References

1 

Hirai H, Maru Y, Hagiwara K, Nishida J and Takaku F: A novel putative tyrosine kinase receptor encoded by the eph gene. Science. 238:1717–1720. 1987. View Article : Google Scholar : PubMed/NCBI

2 

Klein R: Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nat Neurosci. 12:15–20. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Aoto J and Chen L: Bidirectional ephrin/Eph signaling in synaptic functions. Brain Res. 1184:72–80. 2007. View Article : Google Scholar : PubMed/NCBI

4 

Flanagan JG and Vanderhaeghen P: The ephrins and Eph receptors in neural development. Annu Rev Neurosci. 21:309–345. 1998. View Article : Google Scholar : PubMed/NCBI

5 

Wilkinson DG: Multiple roles of EPH receptors and ephrins in neural development. Nat Rev Neurosci. 2:155–164. 2001. View Article : Google Scholar : PubMed/NCBI

6 

Goldshmit Y, McLenachan S and Turnley A: Roles of Eph receptors and ephrins in the normal and damaged adult CNS. Brain Res Rev. 52:327–345. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Chumley MJ, Catchpole T, Silvany RE, Kernie SG and Henkemeyer M: EphB receptors regulate stem/progenitor cell proliferation, migration, and polarity during hippocampal neurogenesis. J Neurosci. 27:13481–13490. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Labrador JP, Brambilla R and Klein R: The N-terminal globular domain of Eph receptors is sufficient for ligand binding and receptor signaling. EMBO J. 16:3889–3897. 1997. View Article : Google Scholar : PubMed/NCBI

9 

Lackmann M, Oates AC, Dottori M, Smith FM, Do C, Power M, Kravets L and Boyd AW: Distinct subdomains of the EphA3 receptor mediate ligand binding and receptor dimerization. J Biol Chem. 273:20228–20237. 1998. View Article : Google Scholar : PubMed/NCBI

10 

Bruckner K and Klein R: Signaling by Eph receptors and their ephrin ligands. Curr Opin Neurobiol. 8:375–382. 1998. View Article : Google Scholar : PubMed/NCBI

11 

Holland SJ, Peles E, Pawson T and Schlessinger J: Cell-contact-dependent signalling in axon growth and guidance: Eph receptor tyrosine kinases and receptor protein tyrosine phosphatase beta. Curr Opin Neurobiol. 8:117–127. 1998. View Article : Google Scholar : PubMed/NCBI

12 

Nimnual AS, Yatsula BA and Bar-Sagi D: Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science. 279:560–563. 1998. View Article : Google Scholar : PubMed/NCBI

13 

Schultz J, Ponting CP, Hofmann K and Bork P: SAM as a protein interaction domain involved in developmental regulation. Protein science Protein Sci. 6:249–253. 1997. View Article : Google Scholar : PubMed/NCBI

14 

Stapleton D, Balan I, Pawson T and Sicheri F: The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nat Struct Biol. 6:44–49. 1999. View Article : Google Scholar : PubMed/NCBI

15 

Kullander K and Klein R: Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol. 3:475–486. 2002. View Article : Google Scholar : PubMed/NCBI

16 

Lin D, Gish GD, Songyang Z and Pawson T: The carboxyl terminus of B class ephrins constitutes a PDZ domain binding motif. J Biol Chem. 274:3726–3733. 1999. View Article : Google Scholar : PubMed/NCBI

17 

Pasquale EB: Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol. 6:462–475. 2005. View Article : Google Scholar : PubMed/NCBI

18 

Mellitzer G, Xu Q and Wilkinson DG: Eph receptors and ephrins restrict cell intermingling and communication. Nature. 400:77–81. 1999. View Article : Google Scholar : PubMed/NCBI

19 

Klein R: Eph/ephrin signaling in morphogenesis, neural development and plasticity. Curr Opin Cell Biol. 16:580–589. 2004. View Article : Google Scholar : PubMed/NCBI

20 

Davis S, Gale NW, Aldrich TH, Maisonpierre PC, Lhotak V, Pawson T, Goldfarb M and Yancopoulos GD: Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science. 266:816–819. 1994. View Article : Google Scholar : PubMed/NCBI

21 

Stein E, Lane AA, Cerretti DP, Schoecklmann HO, Schroff AD, Van Etten RL and Daniel TO: Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev. 12:667–678. 1998. View Article : Google Scholar : PubMed/NCBI

22 

Carter N, Nakamoto T, Hirai H and Hunter T: EphrinA1-induced cytoskeletal re-organization requires FAK and p130(cas). Nat Cell Biol. 4:565–573. 2002.PubMed/NCBI

23 

Lawrenson ID, Wimmer-Kleikamp SH, Lock P, Schoenwaelder SM, Down M, Boyd AW, Alewood PF and Lackmann M: Ephrin-A5 induces rounding, blebbing and de-adhesion of EphA3-expressing 293T and melanoma cells by CrkII and Rho-mediated signalling. J Cell Sci. 115:1059–1072. 2002.PubMed/NCBI

24 

Cowan CA and Henkemeyer M: Ephrins in reverse, park and drive. Trends Cell Biol. 12:339–346. 2002. View Article : Google Scholar : PubMed/NCBI

25 

Davy A and Soriano P: Ephrin signaling in vivo: Look both ways. Dev Dyn. 232:1–10. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Jing X, Miwa H, Sawada T, Nakanishi I, Kondo T, Miyajima M and Sakaguchi K: Ephrin-A1-mediated dopaminergic neurogenesis and angiogenesis in a rat model of Parkinson's disease. PLos One. 7:e320192012. View Article : Google Scholar : PubMed/NCBI

27 

Holland SJ, Gale NW, Gish GD, Roth RA, Songyang Z, Cantley LC, Henkemeyer M, Yancopoulos GD and Pawson T: Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J. 16:3877–3888. 1997. View Article : Google Scholar : PubMed/NCBI

28 

Henkemeyer M, Marengere LE, McGlade J, Olivier JP, Conlon RA, Holmyard DP, Letwin K and Pawson T: Immunolocalization of the Nuk receptor tyrosine kinase suggests roles in segmental patterning of the brain and axonogenesis. Oncogene. 9:1001–1014. 1994.PubMed/NCBI

29 

Becker E, Huynh-Do U, Holland S, Pawson T, Daniel TO and Skolnik EY: Nck-interacting Ste20 kinase couples Eph receptors to c-Jun N-terminal kinase and integrin activation. Mol Cell Biol. 20:1537–1545. 2000. View Article : Google Scholar : PubMed/NCBI

30 

Wahl S, Barth H, Ciossek T, Aktories K and Mueller BK: Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. J Cell Biol. 149:263–270. 2000. View Article : Google Scholar : PubMed/NCBI

31 

Shamah SM, Lin MZ, Goldberg JL, Estrach S, Sahin M, Hu L, Bazalakova M, Neve RL, Corfas G, Debant A and Greenberg ME: EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell. 105:233–244. 2001. View Article : Google Scholar : PubMed/NCBI

32 

Zhou X, Suh J, Cerretti DP, Zhou R and DiCicco-Bloom E: Ephrins stimulate neurite outgrowth during early cortical neurogenesis. Journal of neuroscience research. 66:1054–1063. 2001. View Article : Google Scholar : PubMed/NCBI

33 

Takasu MA, Dalva MB, Zigmond RE and Greenberg ME: Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science. 295:491–495. 2002. View Article : Google Scholar : PubMed/NCBI

34 

Tong J, Elowe S, Nash P and Pawson T: Manipulation of EphB2 regulatory motifs and SH2 binding sites switches MAPK signaling and biological activity. J Biol Chem. 278:6111–6119. 2003. View Article : Google Scholar : PubMed/NCBI

35 

Goldshmit Y, Galea MP, Wise G, Bartlett PF and Turnley AM: Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice. J Neurosci. 24:10064–10073. 2004. View Article : Google Scholar : PubMed/NCBI

36 

Lisabeth EM, Falivelli G and Pasquale EB: Eph receptor signaling and ephrins. Cold Spring Harb Perspect Biol. 5:2013. View Article : Google Scholar : PubMed/NCBI

37 

Dickson BJ: Rho GTPases in growth cone guidance. Curr Opin Neurobiol. 11:103–110. 2001. View Article : Google Scholar : PubMed/NCBI

38 

Giniger E: How do Rho family GTPases direct axon growth and guidance? A proposal relating signaling pathways to growth cone mechanics. Differentiation. 70:385–396. 2002. View Article : Google Scholar : PubMed/NCBI

39 

Lehmann M, Fournier A, Selles-Navarro I, Dergham P, Sebok A, Leclerc N, Tigyi G and McKerracher L: Inactivation of Rho signaling pathway promotes CNS axon regeneration. J Neurosci. 19:7537–7547. 1999.PubMed/NCBI

40 

Dergham P, Ellezam B, Essagian C, Avedissian H, Lubell WD and McKerracher L: Rho signaling pathway targeted to promote spinal cord repair. J Neurosci. 22:6570–6577. 2002.PubMed/NCBI

41 

Fournier AE, Takizawa BT and Strittmatter SM: Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci. 23:1416–1423. 2003.PubMed/NCBI

42 

Nikolic M: The role of Rho GTPases and associated kinases in regulating neurite outgrowth. Int J Biochem Cell Biol. 34:731–745. 2002. View Article : Google Scholar : PubMed/NCBI

43 

Sahin M, Greer PL, Lin MZ, Poucher H, Eberhart J, Schmidt S, Wright TM, Shamah SM, O'connell S and Cowan CW: Eph-dependent tyrosine phosphorylation of ephexin1 modulates growth cone collapse. Neuron. 46:191–204. 2005. View Article : Google Scholar : PubMed/NCBI

44 

Henkemeyer M, Itkis OS, Ngo M, Hickmott PW and Ethell IM: Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J Cell Biol. 163:1313–1326. 2003. View Article : Google Scholar : PubMed/NCBI

45 

Fang Y, Cho KS, Tchedre K, Lee SW, Guo C, Kinouchi H, Fried S, Sun X and Chen DF: Ephrin-A3 suppresses Wnt signaling to control retinal stem cell potency. Stem Cells. 31:349–359. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Steinle JJ, Meininger CJ, Forough R, Wu G, Wu MH and Granger HJ: Eph B4 receptor signaling mediates endothelial cell migration and proliferation via the phosphatidylinositol 3-kinase pathway. J Biol Chem. 277:43830–43835. 2002. View Article : Google Scholar : PubMed/NCBI

47 

Lai KO, Chen Y, Po HM, Lok KC, Gong K and Ip NY: Identification of the Jak/Stat proteins as novel downstream targets of EphA4 signaling in muscle: implications in the regulation of acetylcholinesterase expression. J Biol Chem. 279:13383–13392. 2004. View Article : Google Scholar : PubMed/NCBI

48 

Macrae M, Neve RM, Rodriguez-Viciana P, Haqq C, Yeh J, Chen C, Gray JW and McCormick F: A conditional feedback loop regulates Ras activity through EphA2. Cancer Cell. 8:111–118. 2005. View Article : Google Scholar : PubMed/NCBI

49 

Holmberg J, Armulik A, Senti KA, Edoff K, Spalding K, Momma S, Cassidy R, Flanagan JG and Frisén J: Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev. 19:462–471. 2005. View Article : Google Scholar : PubMed/NCBI

50 

Grunwald IC, Korte M, Adelmann G, Plueck A, Kullander K, Adams RH, Frotscher M, Bonhoeffer T and Klein R: Hippocampal plasticity requires postsynaptic ephrinBs. Nat Neurosci. 7:33–40. 2004. View Article : Google Scholar : PubMed/NCBI

51 

Davy A, Aubin J and Soriano P: Ephrin-B1 forward and reverse signaling are required during mouse development. Genes Dev. 18:572–583. 2004. View Article : Google Scholar : PubMed/NCBI

52 

Davy A, Gale NW, Murray EW, Klinghoffer RA, Soriano P, Feuerstein C and Robbins SM: Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion. Genes Dev. 13:3125–3135. 1999. View Article : Google Scholar : PubMed/NCBI

53 

Davy A and Robbins SM: Ephrin-A5 modulates cell adhesion and morphology in an integrin-dependent manner. EMBO J. 19:5396–5405. 2000. View Article : Google Scholar : PubMed/NCBI

54 

Suetterlin P, Marler KM and Drescher U: Axonal ephrinA/EphA interactions, and the emergence of order in topographic projections. Semin Cell Dev Biol. 23:1–6. 2012. View Article : Google Scholar : PubMed/NCBI

55 

Torres R, Firestein BL, Dong H, Staudinger J, Olson EN, Huganir RL, Bredt DS, Gale NW and Yancopoulos GD: PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands. Neuron. 21:1453–1463. 1998. View Article : Google Scholar : PubMed/NCBI

56 

Holland SJ, Gale NW, Mbamalu G, Yancopoulos GD, Henkemeyer M and Pawson T: Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature. 383:722–725. 1996. View Article : Google Scholar : PubMed/NCBI

57 

Bruckner K, Pasquale EB and Klein R: Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science. 275:1640–1643. 1997. View Article : Google Scholar : PubMed/NCBI

58 

Kalo MS, Yu HH and Pasquale EB: In vivo tyrosine phosphorylation sites of activated ephrin-B1 and ephB2 from neural tissue. J Biol Chem. 276:38940–38948. 2001. View Article : Google Scholar : PubMed/NCBI

59 

Cowan CA and Henkemeyer M: The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Nature. 413:174–179. 2001. View Article : Google Scholar : PubMed/NCBI

60 

Palmer A, Zimmer M, Erdmann KS, Eulenburg V, Porthin A, Heumann R, Deutsch U and Klein R: EphrinB phosphorylation and reverse signaling: Regulation by Src kinases and PTP-BL phosphatase. Mol Cell. 9:725–737. 2002. View Article : Google Scholar : PubMed/NCBI

61 

Hsueh YP and Sheng M: Eph receptors, ephrins, and PDZs gather in neuronal synapses. Neuron. 21:1227–1229. 1998. View Article : Google Scholar : PubMed/NCBI

62 

Salcedo R, Wasserman K, Young HA, Grimm MC, Howard OM, Anver MR, Kleinman HK, Murphy WJ and Oppenheim JJ: Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: In vivo neovascularization induced by stromal-derived factor-1alpha. Am J Pathol. 154:1125–1135. 1999. View Article : Google Scholar : PubMed/NCBI

63 

Lu Q, Sun EE, Klein RS and Flanagan JG: Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell. 105:69–79. 2001. View Article : Google Scholar : PubMed/NCBI

64 

Liebl DJ, Morris CJ, Henkemeyer M and Parada LF: mRNA expression of ephrins and Eph receptor tyrosine kinases in the neonatal and adult mouse central nervous system. J Neurosci Res. 71:7–22. 2003. View Article : Google Scholar : PubMed/NCBI

65 

Murai KK and Pasquale EB: Can Eph receptors stimulate the mind? Neuron. 33:159–162. 2002. View Article : Google Scholar : PubMed/NCBI

66 

Hruska M and Dalva MB: Ephrin regulation of synapse formation, function and plasticity. Mol Cell Neurosci. 50:35–44. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Murai KK, Nguyen LN, Irie F, Yamaguchi Y and Pasquale EB: Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci. 6:153–160. 2003. View Article : Google Scholar : PubMed/NCBI

68 

Vasileiou I, Adamakis I, Patsouris E and Theocharis S: Ephrins and pain. Expert Opin Ther Targets. 17:879–887. 2013. View Article : Google Scholar : PubMed/NCBI

69 

Bouvier D, Corera AT, Tremblay ME, Riad M, Chagnon M, Murai KK, Pasquale EB, Fon EA and Doucet G: Pre-synaptic and post-synaptic localization of EphA4 and EphB2 in adult mouse forebrain. J Neurochem. 106:682–695. 2008. View Article : Google Scholar : PubMed/NCBI

70 

McKinnell IW, Makarenkova H, de Curtis I, Turmaine M and Patel K: EphA4, RhoB and the molecular development of feather buds are maintained by the integrity of the actin cytoskeleton. Dev Biol. 270:94–105. 2004. View Article : Google Scholar : PubMed/NCBI

71 

Heintz TG, Eva R and Fawcett JW: Regional regulation of purkinje cell dendritic spines by integrins and Eph/Ephrins. PLoS One. 11:e01585582016. View Article : Google Scholar : PubMed/NCBI

72 

Zhu XN, Liu XD, Zhuang H, Henkemeyer M, Yang JY and Xu NJ: Amygdala EphB2 signaling regulates glutamatergic neuron maturation and innate fear. J Neurosci. 36:10151–10162. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Rodenas-Ruano A, Perez-Pinzon MA, Green EJ, Henkemeyer M and Liebl DJ: Distinct roles for ephrinB3 in the formation and function of hippocampal synapses. Dev Biol. 292:34–45. 2006. View Article : Google Scholar : PubMed/NCBI

74 

Cisse M and Checler F: Eph receptors: New players in Alzheimer's disease pathogenesis. Neurobiol Dis. 73:137–149. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Kalo MS and Pasquale EB: Signal transfer by eph receptors. Cell Tissue Res. 298:1–9. 1999. View Article : Google Scholar

76 

Zhou XL, Zhang CJ, Wang Y, Wang M, Sun LH, Yu LN, Cao JL and Yan M: EphrinB-EphB signaling regulates spinal pain processing via PKCgamma. Neuroscience. 307:64–72. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Dalva MB, Takasu MA, Lin MZ, Shamah SM, Hu L, Gale NW and Greenberg ME: EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell. 103:945–956. 2000. View Article : Google Scholar : PubMed/NCBI

78 

Grunwald IC, Korte M, Wolfer D, Wilkinson GA, Unsicker K, Lipp HP, Bonhoeffer T and Klein R: Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron. 32:1027–1040. 2001. View Article : Google Scholar : PubMed/NCBI

79 

Armstrong JN, Saganich MJ, Xu NJ, Henkemeyer M, Heinemann SF and Contractor A: B-ephrin reverse signaling is required for NMDA-independent long-term potentiation of mossy fibers in the hippocampus. J Neurosci. 26:3474–3481. 2006. View Article : Google Scholar : PubMed/NCBI

80 

Lim BK, Matsuda N and Poo MM: Ephrin-B reverse signaling promotes structural and functional synaptic maturation in vivo. Nat Neurosci. 11:160–169. 2008. View Article : Google Scholar : PubMed/NCBI

81 

Filosa A, Paixão S, Honsek SD, Carmona MA, Becker L, Feddersen B, Gaitanos L, Rudhard Y, Schoepfer R and Klopstock T: Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci. 12:1285–1292. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Carmona MA, Murai KK, Wang L, Roberts AJ and Pasquale EB: Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc Natl Acad Sci USA. 106:pp. 12524–12529. 2009; View Article : Google Scholar : PubMed/NCBI

83 

Battaglia AA, Sehayek K, Grist J, McMahon SB and Gavazzi I: EphB receptors and ephrin-B ligands regulate spinal sensory connectivity and modulate pain processing. Nat Neurosci. 6:339–340. 2003. View Article : Google Scholar : PubMed/NCBI

84 

Song XJ, Cao JL, Li HC, Zheng JH, Song XS and Xiong LZ: Upregulation and redistribution of ephrinB and EphB receptor in dorsal root ganglion and spinal dorsal horn neurons after peripheral nerve injury and dorsal rhizotomy. Eur J Pain. 12:1031–1039. 2008. View Article : Google Scholar : PubMed/NCBI

85 

Slack S, Battaglia A, Cibert-Goton V and Gavazzi I: EphrinB2 induces tyrosine phosphorylation of NR2B via Src-family kinases during inflammatory hyperalgesia. Neuroscience. 156:175–183. 2008. View Article : Google Scholar : PubMed/NCBI

86 

Ruan JP, Zhang HX, Lu XF, Liu YP and Cao JL: EphrinBs/EphBs signaling is involved in modulation of spinal nociceptive processing through a mitogen-activated protein kinases-dependent mechanism. Anesthesiology. 112:1234–1249. 2010. View Article : Google Scholar : PubMed/NCBI

87 

Yu LN, Zhou XL, Yu J, Huang H, Jiang LS, Zhang FJ, Cao JL and Yan M: PI3K contributed to modulation of spinal nociceptive information related to ephrinBs/EphBs. PLoS One. 7:e409302012. View Article : Google Scholar : PubMed/NCBI

88 

Laussu J, Khuong A, Gautrais J and Davy A: Beyond boundaries-Eph:ephrin signaling in neurogenesis. Cell Adh Migr. 8:349–359. 2014. View Article : Google Scholar : PubMed/NCBI

89 

Aoki M, Yamashita T and Tohyama M: EphA receptors direct the differentiation of mammalian neural precursor cells through a mitogen-activated protein kinase-dependent pathway. J Biol Chem. 279:32643–32650. 2004. View Article : Google Scholar : PubMed/NCBI

90 

Ricard J, Salinas J, Garcia L and Liebl DJ: EphrinB3 regulates cell proliferation and survival in adult neurogenesis. Mol Cell Neurosci. 31:713–722. 2006. View Article : Google Scholar : PubMed/NCBI

91 

Theus MH, Ricard J, Bethea JR and Liebl DJ: EphB3 limits the expansion of neural progenitor cells in the subventricular zone by regulating p53 during homeostasis and following traumatic brain injury. Stem Cells. 28:1231–1242. 2010.PubMed/NCBI

92 

del Valle K, Theus MH, Bethea JR, Liebl DJ and Ricard J: Neural progenitors proliferation is inhibited by EphB3 in the developing subventricular zone. Int J Dev Neurosci. 29:9–14. 2011. View Article : Google Scholar : PubMed/NCBI

93 

Baumann G, Travieso L, Liebl DJ and Theus MH: Pronounced hypoxia in the subventricular zone following traumatic brain injury and the neural stem/progenitor cell response. Exp Biol Med (Maywood). 238:830–841. 2013. View Article : Google Scholar : PubMed/NCBI

94 

Khodosevich K, Watanabe Y and Monyer H: EphA4 preserves postnatal and adult neural stem cells in an undifferentiated state in vivo. J Cell Sci. 124:1268–1279. 2011. View Article : Google Scholar : PubMed/NCBI

95 

Ottone C, Krusche B, Whitby A, Clements M, Quadrato G, Pitulescu ME, Adams RH and Parrinello S: Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nat Cell Biol. 16:1045–1056. 2014. View Article : Google Scholar : PubMed/NCBI

96 

Zhou N, Zhao WD, Liu DX, Liang Y, Fang WG, Li B and Chen YH: Inactivation of EphA2 promotes tight junction formation and impairs angiogenesis in brain endothelial cells. Microvasc Res. 82:113–121. 2011. View Article : Google Scholar : PubMed/NCBI

97 

Hassan-Mohamed I, Giorgio C, Incerti M, Russo S, Pala D, Pasquale EB, Zanotti I, Vicini P, Barocelli E, Rivara S, et al: UniPR129 is a competitive small molecule Eph-ephrin antagonist blocking in vitro angiogenesis at low micromolar concentrations. Br J Pharmacol. 171:5195–5208. 2014. View Article : Google Scholar : PubMed/NCBI

98 

Wiedemann E, Jellinghaus S, Ende G, Augstein A, Sczech R, Wielockx B, Weinert S, Strasser RH and Poitz DM: Regulation of endothelial migration and proliferation by ephrin-A1. Cell Signal. 29:84–95. 2017. View Article : Google Scholar : PubMed/NCBI

99 

Miranda JD, White LA, Marcillo AE, Willson CA, Jagid J and Whittemore SR: Induction of Eph B3 after spinal cord injury. Exp Neurol. 156:218–222. 1999. View Article : Google Scholar : PubMed/NCBI

100 

Moreno-Flores MT and Wandosell F: Up-regulation of Eph tyrosine kinase receptors after excitotoxic injury in adult hippocampus. Neuroscience. 91:193–201. 1999. View Article : Google Scholar : PubMed/NCBI

101 

Rodger J, Lindsey KA, Leaver SG, King CE, Dunlop SA and Beazley LD: Expression of ephrin-A2 in the superior colliculus and EphA5 in the retina following optic nerve section in adult rat. Eur J Neurosci. 14:1929–1936. 2001. View Article : Google Scholar : PubMed/NCBI

102 

Willson CA, Irizarry-Ramírez M, Gaskins HE, Cruz-Orengo L, Figueroa JD, Whittemore SR and Miranda JD: Upregulation of EphA receptor expression in the injured adult rat spinal cord. Cell Transplant. 11:229–239. 2002.PubMed/NCBI

103 

Bundesen LQ, Scheel TA, Bregman BS and Kromer LF: Ephrin-B2 and EphB2 regulation of astrocyte-meningeal fibroblast interactions in response to spinal cord lesions in adult rats. J Neurosci. 23:7789–7800. 2003.PubMed/NCBI

104 

del Zoppo GJ: Stroke and neurovascular protection. N Engl J Med. 354:553–555. 2006. View Article : Google Scholar : PubMed/NCBI

105 

Ren Z, Chen X, Yang J, Kress BT, Tong J, Liu H, Takano T, Zhao Y and Nedergaard M: Improved axonal regeneration after spinal cord injury in mice with conditional deletion of ephrin B2 under the GFAP promoter. Neuroscience. 241:89–99. 2013. View Article : Google Scholar : PubMed/NCBI

106 

Pasquale EB: Eph-ephrin bidirectional signaling in physiology and disease. Cell. 133:38–52. 2008. View Article : Google Scholar : PubMed/NCBI

107 

Lukes A, Mun-Bryce S, Lukes M and Rosenberg GA: Extracellular matrix degradation by metalloproteinases and central nervous system diseases. Mol Neurobiol. 19:267–284. 1999. View Article : Google Scholar : PubMed/NCBI

108 

Bunge RP, Puckett WR and Hiester ED: Observations on the pathology of several types of human spinal cord injury, with emphasis on the astrocyte response to penetrating injuries. Adv Neurol. 72:305–315. 1997.PubMed/NCBI

109 

Fawcett JW and Asher RA: The glial scar and central nervous system repair. Brain Res Bull. 49:377–391. 1999. View Article : Google Scholar : PubMed/NCBI

110 

Dawson MR, Levine JM and Reynolds R: NG2-expressing cells in the central nervous system: are they oligodendroglial progenitors? J Neurosci Res. 61:471–479. 2000. View Article : Google Scholar : PubMed/NCBI

111 

Song I and Dityatev A: Crosstalk between glia, extracellular matrix and neurons. Brain Res Bull. S0361–9230. 2017.

112 

Schnell L, Fearn S, Klassen H, Schwab ME and Perry VH: Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord. Eur J Neurosci. 11:3648–3658. 1999. View Article : Google Scholar : PubMed/NCBI

113 

McGraw J, Hiebert GW and Steeves JD: Modulating astrogliosis after neurotrauma. J Neurosci Res. 63:109–115. 2001. View Article : Google Scholar : PubMed/NCBI

114 

Xie M, Yi C, Luo X, Xu S, Yu Z, Tang Y, Zhu W, Du Y, Jia L and Zhang Q: Glial gap junctional communication involvement in hippocampal damage after middle cerebral artery occlusion. Ann Neurol. 70:121–132. 2011. View Article : Google Scholar : PubMed/NCBI

115 

Stichel CC and Muller HW: The CNS lesion scar: New vistas on an old regeneration barrier. Cell Tissue Res. 294:1–9. 1998. View Article : Google Scholar : PubMed/NCBI

116 

Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, Mucke L, Johnson MH and Sofroniew MV: Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron. 23:297–308. 1999. View Article : Google Scholar : PubMed/NCBI

117 

Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB and Sofroniew MV: Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci. 24:2143–2155. 2004. View Article : Google Scholar : PubMed/NCBI

118 

Jakeman LB and Reier PJ: Axonal projections between fetal spinal cord transplants and the adult rat spinal cord: A neuroanatomical tracing study of local interactions. J Comp Neurol. 307:311–334. 1991. View Article : Google Scholar : PubMed/NCBI

119 

Fernandez-Klett F and Priller J: The fibrotic scar in neurological disorders. Brain Pathol. 24:404–413. 2014. View Article : Google Scholar : PubMed/NCBI

120 

Joly S, Jordi N, Schwab ME and Pernet V: The Ephrin receptor EphA4 restricts axonal sprouting and enhances branching in the injured mouse optic nerve. Eur J Neurosci. 40:3021–3031. 2014. View Article : Google Scholar : PubMed/NCBI

121 

Goldshmit Y, Spanevello MD, Tajouri S, Li L, Rogers F, Pearse M, Galea M, Bartlett PF, Boyd AW and Turnley AM: EphA4 blockers promote axonal regeneration and functional recovery following spinal cord injury in mice. PLos One. 6:e246362011. View Article : Google Scholar : PubMed/NCBI

122 

Choi DW: Excitotoxic cell death. J Neurobiol. 23:1261–1276. 1992. View Article : Google Scholar : PubMed/NCBI

123 

Yang J, Luo X, Huang X, Ning Q, Xie M and Wang W: Ephrin-A3 reverse signaling regulates hippocampal neuronal damage and astrocytic glutamate transport after transient global ischemia. J Neurochem. 131:383–394. 2014. View Article : Google Scholar : PubMed/NCBI

124 

Nikolakopoulou AM, Koeppen J, Garcia M, Leish J, Obenaus A and Ethell IM: Astrocytic Ephrin-B1 regulates synapse remodeling following traumatic brain injury. ASN Neuro. 8:1–18. 2016. View Article : Google Scholar : PubMed/NCBI

125 

Zhao C, Deng W and Gage FH: Mechanisms and functional implications of adult neurogenesis. Cell. 132:645–660. 2008. View Article : Google Scholar : PubMed/NCBI

126 

Butti E, Cusimano M, Bacigaluppi M and Martino G: Neurogenic and non-neurogenic functions of endogenous neural stem cells. Front Neurosci. 8:922014. View Article : Google Scholar : PubMed/NCBI

127 

Das A, Gupta T, Davla S, Prieto-Godino LL, Diegelmann S, Reddy OV, Raghavan KV, Reichert H, Lovick J and Hartenstein V: Neuroblast lineage-specific origin of the neurons of the Drosophila larval olfactory system. Dev Biol. 373:322–337. 2013. View Article : Google Scholar : PubMed/NCBI

128 

Doeppner TR, Bretschneider E, Doehring M, Segura I, Sentürk A, Acker-Palmer A, Hasan MR, ElAli A, Hermann DM and Bähr M: Enhancement of endogenous neurogenesis in ephrin-B3 deficient mice after transient focal cerebral ischemia. Acta Neuropathol. 122:429–442. 2011. View Article : Google Scholar : PubMed/NCBI

129 

Catchpole T and Henkemeyer M: EphB2 tyrosine kinase-dependent forward signaling in migration of neuronal progenitors that populate and form a distinct region of the dentate niche. J Neurosci. 31:11472–11483. 2011. View Article : Google Scholar : PubMed/NCBI

130 

Xing S, He Y, Ling L, Hou Q, Yu J, Zeng J and Pei Z: Blockade of EphB2 enhances neurogenesis in the subventricular zone and improves neurological function after cerebral cortical infarction in hypertensive rats. Brain Res. 1230:237–246. 2008. View Article : Google Scholar : PubMed/NCBI

131 

Yue X, Dreyfus C, Kong TA and Zhou R: A subset of signal transduction pathways is required for hippocampal growth cone collapse induced by ephrin-A5. Dev Neurobiol. 68:1269–1286. 2008. View Article : Google Scholar : PubMed/NCBI

132 

Wegmeyer H, Egea J, Rabe N, Gezelius H, Filosa A, Enjin A, Varoqueaux F, Deininger K, Schnütgen F, Brose N, et al: EphA4-dependent axon guidance is mediated by the RacGAP alpha2-chimaerin. Neuron. 55:756–767. 2007. View Article : Google Scholar : PubMed/NCBI

133 

Shu Y, Xiao B, Wu Q, Liu T, Du Y, Tang H, Chen S, Feng L, Long L and Li Y: The Ephrin-A5/EphA4 interaction modulates neurogenesis and angiogenesis by the p-Akt and p-ERK pathways in a mouse model of TLE. Mol Neurobiol. 53:561–576. 2016. View Article : Google Scholar : PubMed/NCBI

134 

Chen X, Yang H, Zhou X, Zhang L and Lu X: MiR-93 Targeting EphA4 promotes neurite outgrowth from spinal cord neurons. J Mol Neurosci. 58:517–524. 2016. View Article : Google Scholar : PubMed/NCBI

135 

Prestoz L, Chatzopoulou E, Lemkine G, Spassky N, Lebras B, Kagawa T, Ikenaka K, Zalc B and Thomas JL: Control of axonophilic migration of oligodendrocyte precursor cells by Eph-ephrin interaction. Neuron Glia Biol. 1:73–83. 2004. View Article : Google Scholar : PubMed/NCBI

136 

Benson MD, Romero MI, Lush ME, Lu QR, Henkemeyer M and Parada LF: Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth. Proc Natl Acad Sci USA. 102:pp. 10694–10699. 2005; View Article : Google Scholar : PubMed/NCBI

137 

Tsenkina Y, Ricard J, Runko E, Quiala-Acosta MM, Mier J and Liebl DJ: EphB3 receptors function as dependence receptors to mediate oligodendrocyte cell death following contusive spinal cord injury. Cell Death Dis. 6:e19222015. View Article : Google Scholar : PubMed/NCBI

138 

Lodola A, Giorgio C, Incerti M, Zanotti I and Tognolini M: Targeting Eph/ephrin system in cancer therapy. Eur J Med Chem. 142:152–162. 2017. View Article : Google Scholar : PubMed/NCBI

139 

Brantley-Sieders DM, Caughron J, Hicks D, Pozzi A, Ruiz JC and Chen J: EphA2 receptor tyrosine kinase regulates endothelial cell migration and vascular assembly through phosphoinositide 3-kinase-mediated Rac1 GTPase activation. J Cell Sci. 117:2037–2049. 2004. View Article : Google Scholar : PubMed/NCBI

140 

Hassan-Mohamed I, Giorgio C, Incerti M, Russo S, Pala D, Pasquale EB, Zanotti I, Vicini P, Barocelli E, Rivara S, et al: UniPR129 is a competitive small molecule Eph-ephrin antagonist blocking in vitro angiogenesis at low micromolar concentrations. Br J Pharmacol,. 171:5195–5208. 2014. View Article : Google Scholar

141 

Tae N, Lee S, Kim O, Park J, Na S and Lee JH: Syntenin promotes VEGF-induced VEGFR2 endocytosis and angiogenesis by increasing ephrin-B2 function in endothelial cells. Oncotarget. 8:38886–38901. 2017. View Article : Google Scholar : PubMed/NCBI

142 

Feng L, Shu Y, Wu Q, Liu T, Long H, Yang H, Li Y and Xiao B: EphA4 may contribute to microvessel remodeling in the hippocampal CA1 and CA3 areas in a mouse model of temporal lobe epilepsy. Mol Med Rep. 15:37–46. 2017. View Article : Google Scholar : PubMed/NCBI

143 

Shu Y, Xiao B, Wu Q, Liu T, Du Y, Tang H, Chen S, Feng L, Long L and Li Y: The Ephrin-A5/EphA4 interaction modulates neurogenesis and angiogenesis by the p-Akt and p-ERK pathways in a mouse model of TLE. Mol Neurobiol. 53:561–576. 2016. View Article : Google Scholar : PubMed/NCBI

144 

Cherry JD, Olschowka JA and O'Banion MK: Neuroinflammation and M2 microglia: The good, the bad, and the inflamed. J Neuroinflammation. 11:982014. View Article : Google Scholar : PubMed/NCBI

145 

Chan B and Sukhatme VP: Receptor tyrosine kinase EphA2 mediates thrombin-induced upregulation of ICAM-1 in endothelial cells in vitro. Thromb Res. 123:745–752. 2009. View Article : Google Scholar : PubMed/NCBI

146 

Fang WB, Ireton RC, Zhuang G, Takahashi T, Reynolds A and Chen J: Overexpression of EPHA2 receptor destabilizes adherens junctions via a RhoA-dependent mechanism. J Cell Sci. 121:358–368. 2008. View Article : Google Scholar : PubMed/NCBI

147 

Yuan K, Hong TM, Chen JJ, Tsai WH and Lin MT: Syndecan-1 up-regulated by ephrinB2/EphB4 plays dual roles in inflammatory angiogenesis. Blood. 104:1025–1033. 2004. View Article : Google Scholar : PubMed/NCBI

148 

Shen LL, Zhang LX, Wang LM, Zhou RJ, Yang CZ, Zhang J and Yang PS: Disturbed Expression of EphB4, but Not EphrinB2, inhibited bone regeneration in an in vivo inflammatory microenvironment. Mediators Inflamm. 2016:64304072016. View Article : Google Scholar : PubMed/NCBI

149 

Zhao J, Yuan G, Cendan CM, Nassar MA, Lagerström MC, Kullander K, Gavazzi I and Wood JN: Nociceptor-expressed ephrin-B2 regulates inflammatory and neuropathic pain. Mol Pain. 6:772010. View Article : Google Scholar : PubMed/NCBI

150 

Geng D, Kang L, Su Y, Jia J, Ma J, Li S, Du J and Cui H: Protective effects of EphB2 on Abeta1-42 oligomer-induced neurotoxicity and synaptic NMDA receptor signaling in hippocampal neurons. Neurochem Int. 63:283–290. 2013. View Article : Google Scholar : PubMed/NCBI

151 

Cissé M, Halabisky B, Harris J, Devidze N, Dubal DB, Sun B, Orr A, Lotz G, Kim DH, Hamto P, et al: Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature. 469:47–52. 2011. View Article : Google Scholar : PubMed/NCBI

152 

Henderson JT, Georgiou J, Jia Z, Robertson J, Elowe S, Roder JC and Pawson T: The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron. 32:1041–1056. 2001. View Article : Google Scholar : PubMed/NCBI

153 

Fu AK, Hung KW, Huang H, Gu S, Shen Y, Cheng EY, Ip FC, Huang X, Fu WY and Ip NY: Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimer's disease. Proc Natl Acad Sci USA. 111:pp. 9959–9964. 2014; View Article : Google Scholar : PubMed/NCBI

154 

Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, Shaw PJ, Simmons Z and van den Berg LH: Amyotrophic lateral sclerosis. Nat Rev Dis Primers. 3:170712017. View Article : Google Scholar : PubMed/NCBI

155 

Tsuda H, Han SM, Yang Y, Tong C, Lin YQ, Mohan K, Haueter C, Zoghbi A, Harati Y, Kwan J, et al: The amyotrophic lateral sclerosis 8 protein VAPB is cleaved, secreted, and acts as a ligand for Eph receptors. Cell. 133:963–977. 2008. View Article : Google Scholar : PubMed/NCBI

156 

Van Hoecke A, Schoonaert L, Lemmens R, Timmers M, Staats KA, Laird AS, Peeters E, Philips T, Goris A, Dubois B, et al: EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans. Nat Med. 18:1418–1422. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yang JS, Wei HX, Chen PP and Wu G: Roles of Eph/ephrin bidirectional signaling in central nervous system injury and recovery (Review). Exp Ther Med 15: 2219-2227, 2018.
APA
Yang, J., Wei, H., Chen, P., & Wu, G. (2018). Roles of Eph/ephrin bidirectional signaling in central nervous system injury and recovery (Review). Experimental and Therapeutic Medicine, 15, 2219-2227. https://doi.org/10.3892/etm.2018.5702
MLA
Yang, J., Wei, H., Chen, P., Wu, G."Roles of Eph/ephrin bidirectional signaling in central nervous system injury and recovery (Review)". Experimental and Therapeutic Medicine 15.3 (2018): 2219-2227.
Chicago
Yang, J., Wei, H., Chen, P., Wu, G."Roles of Eph/ephrin bidirectional signaling in central nervous system injury and recovery (Review)". Experimental and Therapeutic Medicine 15, no. 3 (2018): 2219-2227. https://doi.org/10.3892/etm.2018.5702
Copy and paste a formatted citation
x
Spandidos Publications style
Yang JS, Wei HX, Chen PP and Wu G: Roles of Eph/ephrin bidirectional signaling in central nervous system injury and recovery (Review). Exp Ther Med 15: 2219-2227, 2018.
APA
Yang, J., Wei, H., Chen, P., & Wu, G. (2018). Roles of Eph/ephrin bidirectional signaling in central nervous system injury and recovery (Review). Experimental and Therapeutic Medicine, 15, 2219-2227. https://doi.org/10.3892/etm.2018.5702
MLA
Yang, J., Wei, H., Chen, P., Wu, G."Roles of Eph/ephrin bidirectional signaling in central nervous system injury and recovery (Review)". Experimental and Therapeutic Medicine 15.3 (2018): 2219-2227.
Chicago
Yang, J., Wei, H., Chen, P., Wu, G."Roles of Eph/ephrin bidirectional signaling in central nervous system injury and recovery (Review)". Experimental and Therapeutic Medicine 15, no. 3 (2018): 2219-2227. https://doi.org/10.3892/etm.2018.5702
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team