Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
May-2018 Volume 15 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2018 Volume 15 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Rho/Rho-associated protein kinase signaling pathway‑mediated downregulation of runt-related transcription factor 2 expression promotes the differentiation of dental pulp stem cells into odontoblasts

  • Authors:
    • Xiaoqing Huang
    • Xiaoling Chen
    • Hongbai Chen
    • Dongwei Xu
    • Chen Lin
    • Bin Peng
  • View Affiliations / Copyright

    Affiliations: Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China, Department of Endodontics, Xiamen Stomatological Hospital, Xiamen, Fujian 361003, P.R. China, Department of Periodontics, Xiamen Stomatological Hospital, Xiamen, Fujian 361003, P.R. China, State Key Laboratory, Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
  • Pages: 4457-4464
    |
    Published online on: March 21, 2018
       https://doi.org/10.3892/etm.2018.5982
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The present study investigated the role of runt‑related transcription factor 2 (Runx2) in regulating the differentiation of human dental pulp stem cells (hDPSCs) into odontoblasts under the mediation of the Rho/Rho‑associated protein kinase (ROCK) signaling pathway. hDPSCs and human bone marrow mesenchymal stem cells (hBMSCs) were mineralized to induce differentiation. The expression levels of odontoblast‑ and osteoblast‑specific proteins, dentin sialophosphoprotein (DSPP), osteocalcin (OCN) and Runx2, were measured using western blot analysis. The hDPSCs were treated with Rho/ROCK signaling pathway inhibitor, C3 exoenzyme, and mineralized prior to determining the protein expression levels of RhoA, ROCK, Runx2, OCN, DSPP, and mRNA expression levels of early mineralization genes, including alkaline phosphatase, collagen type I, Msh homeobox 2 and distal‑less homeobox 2, and late mineralization genes, including DSPP, dentin matrix protein‑1 (DMP‑1), bone sialoprotein (BSP) and OCN. Flow cytometry data indicated that 95% of the isolated hDPSCs were positive for mesenchymal stem cell markers, including cluster of differentiation (CD)29, CD90 or CD105, and vascular endothelial cell marker, CD146, whereas <5% of the hDPSCs were positive for hematopoietic stem cell markers, CD34 and CD45. The expression levels of DSPP in hDPSCs and OCN in hBMSCs were significantly upregulated with increased time in mineralization medium (P<0.01), which suggested that hDPSCs and hBMSCs were differentiated into odontoblasts and osteoblasts, respectively. During the osteogenic process, Runx2 protein was highly expressed in mesenchymal stem cells following stimulation with mineralization medium compared with cells that received no stimulation. During odontoblast differentiation in hDPSCs, Runx2 protein was highly expressed in the early stage; however, the expression declined in the late stage. Furthermore, treatment with C3 exoenzyme significantly downregulated the expression of RhoA, ROCK and Runx2 compared with the control in hDPSCs (P<0.01). Additionally, in mineralization solution, C3 exoenzyme also significantly downregulated the expression of Runx2 (P<0.01); however, the Rho/ROCK signaling pathway inhibitor did not significantly impact the expression of early mineralization genes. By contrast, C3 exoenzyme significantly upregulated the expression of DSPP and DMP‑1, and downregulated the expression of BSP and OCN (P<0.01). The present findings suggested that odontoblast differentiation in hDPSCs may be regulated by Rho/ROCK signaling pathway‑mediated downregulation of Runx2.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Corbella S, Taschieri S, Samaranayake L, Tsesis I, Nemcovsky C and Del Fabbro M: Implant treatment choice after extraction of a vertically fractured tooth. A proposal for a clinical classification of bony defects based on a systematic review of literature. Clin Oral Implants Res. 25:946–956. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Ortega-Martinez J, Pérez-Pascual T, Mareque-Bueno S, Hernández-Alfaro F and Ferrés-Padró E: Immediate implants following tooth extraction. A systematic review. Med Oral Patol Oral Cir Bucal. 17:e251–e261. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Gonda T, Ikebe K, Ono T and Nokubi T: Effect of magnetic attachment with stress breaker on lateral stress to abutment tooth under overdenture. J Oral Rehabil. 31:1001–1006. 2004. View Article : Google Scholar : PubMed/NCBI

4 

Zhao Y, Wang L, Jin Y and Shi S: Fas ligand regulates the immunomodulatory properties of dental pulp stem cells. J Dent Res. 91:948–854. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Ledesma-Martinez E, Mendoza-Núñez VM and Santiago-Osorio E: Mesenchymal stem cells derived from dental pulp: A review. Stem Cells Int. 2016:47095722016. View Article : Google Scholar : PubMed/NCBI

6 

Nuti N, Corallo C, Chan BM, Ferrari M and Gerami-Naini B: Multipotent differentiation of human dental pulp stem cells: A literature review. Stem Cell Rev. 12:511–523. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Kabir R, Gupta M, Aggarwal A, Sharma D, Sarin A and Kola MZ: Imperative role of dental pulp stem cells in regenerative therapies: A systematic review. Niger J Surg. 20:1–8. 2014.PubMed/NCBI

8 

Shi S, Robey PG and Gronthos S: Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone. 29:532–539. 2001. View Article : Google Scholar : PubMed/NCBI

9 

Téclès O, Laurent P, Zygouritsas S, Burger AS, Camps J, Dejou J and About I: Activation of human dental pulp progenitor/stem cells in response to odontoblast injury. Arch Oral Biol. 50:103–108. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Wang J, Dong H, Wang W and Gu JD: Reverse-transcriptional gene expression of anammox and ammonia-oxidizing archaea and bacteria in soybean and rice paddy soils of Northeast China. Appl Microbiol Biotechnol. 98:2675–2686. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Nosrat IV, Smith CA, Mullally P, Olson L and Nosrat CA: Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. Eur J Neurosci. 19:2388–2398. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Király M, Porcsalmy B, Pataki A, Kádár K, Jelitai M, Molnár B, Hermann P, Gera I, Grimm WD, Ganss B, et al: Simultaneous PKC and cAMP activation induces differentiation of human dental pulp stem cells into functionally active neurons. Neurochem Int. 55:323–332. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Zhang W, Walboomers XF, Shi S, Fan M and Jansen JA: Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng. 12:2813–2823. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Petrovic V and Stefanovic V: Dental tissue-new source for stem cells. ScientificWorldJournal. 9:1167–1177. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Sun SS, Zhang L, Yang J and Zhou X: Role of runt-related transcription factor 2 in signal network of tumors as an inter-mediator. Cancer Lett. 361:1–7. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Wojtowicz AM, Templeman KL, Hutmacher DW, Guldberg RE and Garcia AJ: Runx2 overexpression in bone marrow stromal cells accelerates bone formation in critical-sized femoral defects. Tissue Eng Part A. 16:2795–2808. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

18 

Ducy P, Zhang R, Geoffroy V, Ridall AL and Karsenty G: Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell. 89:747–754. 1997. View Article : Google Scholar : PubMed/NCBI

19 

Xu N, Guan L, He Y, Li D, Han B and Yang F: Dynamic expression of Runx2 during the differnetiation of odontoblsts and osteoblasts. Chin J Conser Dent. 23:209–13. 2013.(In Chinese).

20 

Nasu K, Tsuno A, Yuge A and Narahara H: Mevalonate-Ras homology (rho)/rho-associated coiled-coil-forming protein kinase (ROCK)-mediated signaling pathway as a therapeutic target for the treatment of endometriosis-associated fibrosis. Curr Signal Transduct Ther. 5:141–148. 2010. View Article : Google Scholar

21 

Niu LN, Sun JQ, Li QH, Jiao K, Shen LJ, Wu D, Tay F and Chen JH: Intrafibrillar-silicified collagen scaffolds enhance the osteogenic capacity of human dental pulp stem cells. J Dent. 42:839–849. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Gronthos S, Arthur A, Bartold PM and Shi S: A method to isolate and culture expand human dental pulp stem cells. Methods Mol Biol. 698:107–121. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Bruderer M, Richards RG, Alini M and Stoddart MJ: Role and regulation of RUNX2 in osteogenesis. Eur Cell Mater. 28:269–286. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Gronthos S, Mankani M, Brahim J, Robey PG and Shi S: Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 97:13625–13630. 2000. View Article : Google Scholar : PubMed/NCBI

25 

He WX, Niu ZY, Zhao SL, Jin WL, Gao J and Smith AJ: TGF-beta activated Smad signalling leads to a Smad3-mediated down-regulation of DSPP in an odontoblast cell line. Arch Oral Biol. 49:911–918. 2004. View Article : Google Scholar : PubMed/NCBI

26 

Rocha ÉD, de Brito NJ, Dantas MM, Silva Ade A, Almeida Md and Brandão-Neto J: Effect of zinc supplementation on GH, IGF1, IGFBP3, OCN, and ALP in non-zinc-deficient children. J Am Coll Nutr. 34:290–299. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Vimalraj S, Arumugam B, Miranda PJ and Selvamurugan N: Runx2: Structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol. 78:202–208. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Feng Y, LoGrasso PV, Defert O and Li R: Rho kinase (ROCK) inhibitors and their therapeutic potential. J Med Chem. 59:2269–2300. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Julian L and Olson MF: Rho-associated coiled-coil containing kinases (ROCK): Structure, regulation, and functions. Small GTPases. 5:e298462014. View Article : Google Scholar : PubMed/NCBI

30 

Tripathi BK, Grant T, Mertins P, Qian X, Wang D, Papageorge AG, Carr SA and Lowy DR: AKT positively regulates Rho-GTP by attenuating the GAP activity of the DLC1 tumor suppressor: A mechanistic study with translational implications. Cancer Res. 76 14 Suppl:S43772016. View Article : Google Scholar

31 

Menna L, Pablo and Cardama: PROTEINAS DE LIGACAO AO GTP [Descritor de assunto]. Front Psychol. 6:623–626. 2015.PubMed/NCBI

32 

Nour-Eldine W, Ghantous CM, Zibara K, et al: Adiponectin Attenuates Angiotensin II-Induced Vascular Smooth Muscle Cell Remodeling through Nitric Oxide and the RhoA/ROCK Pathway[J]. Frontiers in Pharmacology. 7:862016. View Article : Google Scholar : PubMed/NCBI

33 

Prowse PD, Elliott CG, Hutter J and Hamilton DW: Inhibition of Rac and ROCK signalling influence osteoblast adhesion, differentiation and mineralization on titanium topographies. PLoS One. 8:e588982013. View Article : Google Scholar : PubMed/NCBI

34 

Tang Z, Shi D, Jia B, Chen J, Zong C, Shen D, Zheng Q, Wang J and Tong X: Exchange protein activated by cyclic adenosine monophosphate regulates the switch between adipogenesis and osteogenesis of human mesenchymal stem cells through increasing the activation of phosphatidylinositol 3-kinase. Int J Biochem Cell Biol. 44:1106–1120. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Santos A, Bakker AD, de Blieck-Hogervorst JM and Klein-Nulend J: WNT5A induces osteogenic differentiation of human adipose stem cells via rho-associated kinase ROCK. Cytotherapy. 12:924–932. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Kusuyama J, Bandow K, Shamoto M, Kakimoto K, Ohnishi T and Matsuguchi T: Low intensity pulsed ultrasound (LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway. J Biol Chem. 289:10330–10344. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Li G, Liu L, Shan C, Cheng Q, Budhraja A, Zhou T, Cui H and Gao N: RhoA/ROCK/PTEN signaling is involved in AT-101-mediated apoptosis in human leukemia cells in vitro and in vivo. Cell Death Dis. 5:e9982014. View Article : Google Scholar : PubMed/NCBI

38 

Chen S, Gluhak-Heinrich J, Wang YH, Wu YM, Chuang HH, Chen L, Yuan GH, Dong J, Gay I and MacDougall M: Runx2, osx, and dspp in tooth development. J Dent Res. 88:904–909. 2009. View Article : Google Scholar : PubMed/NCBI

39 

Li S, Kong H, Yao N, Yu Q, Wang P, Lin Y, Wang J, Kuang R, Zhao X and Xu J: The role of runt-related transcription factor 2 (Runx2) in the late stage of odontoblast differentiation and dentin formation. Biochem Biophys Res Commun. 410:698–704. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Gao RT, Zhan LP, Meng C, Zhang N, Chang SM, Yao R and Li C: Homeobox B7 promotes the osteogenic differentiation potential of mesenchymal stem cells by activating RUNX2 and transcript of BSP. Int J Clin Exp Med. 8:10459–10470. 2015.PubMed/NCBI

41 

Zhang X, Ma Y, Fu X, Liu Q, Shao Z, Dai L, Pi Y, Hu X, Zhang J, Duan X, et al: Runx2-modified adipose-derived stem cells promote tendon graft integration in anterior cruciate ligament reconstruction. Sci Rep. 6:190732016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Huang X, Chen X, Chen H, Xu D, Lin C and Peng B: Rho/Rho-associated protein kinase signaling pathway‑mediated downregulation of runt-related transcription factor 2 expression promotes the differentiation of dental pulp stem cells into odontoblasts. Exp Ther Med 15: 4457-4464, 2018.
APA
Huang, X., Chen, X., Chen, H., Xu, D., Lin, C., & Peng, B. (2018). Rho/Rho-associated protein kinase signaling pathway‑mediated downregulation of runt-related transcription factor 2 expression promotes the differentiation of dental pulp stem cells into odontoblasts. Experimental and Therapeutic Medicine, 15, 4457-4464. https://doi.org/10.3892/etm.2018.5982
MLA
Huang, X., Chen, X., Chen, H., Xu, D., Lin, C., Peng, B."Rho/Rho-associated protein kinase signaling pathway‑mediated downregulation of runt-related transcription factor 2 expression promotes the differentiation of dental pulp stem cells into odontoblasts". Experimental and Therapeutic Medicine 15.5 (2018): 4457-4464.
Chicago
Huang, X., Chen, X., Chen, H., Xu, D., Lin, C., Peng, B."Rho/Rho-associated protein kinase signaling pathway‑mediated downregulation of runt-related transcription factor 2 expression promotes the differentiation of dental pulp stem cells into odontoblasts". Experimental and Therapeutic Medicine 15, no. 5 (2018): 4457-4464. https://doi.org/10.3892/etm.2018.5982
Copy and paste a formatted citation
x
Spandidos Publications style
Huang X, Chen X, Chen H, Xu D, Lin C and Peng B: Rho/Rho-associated protein kinase signaling pathway‑mediated downregulation of runt-related transcription factor 2 expression promotes the differentiation of dental pulp stem cells into odontoblasts. Exp Ther Med 15: 4457-4464, 2018.
APA
Huang, X., Chen, X., Chen, H., Xu, D., Lin, C., & Peng, B. (2018). Rho/Rho-associated protein kinase signaling pathway‑mediated downregulation of runt-related transcription factor 2 expression promotes the differentiation of dental pulp stem cells into odontoblasts. Experimental and Therapeutic Medicine, 15, 4457-4464. https://doi.org/10.3892/etm.2018.5982
MLA
Huang, X., Chen, X., Chen, H., Xu, D., Lin, C., Peng, B."Rho/Rho-associated protein kinase signaling pathway‑mediated downregulation of runt-related transcription factor 2 expression promotes the differentiation of dental pulp stem cells into odontoblasts". Experimental and Therapeutic Medicine 15.5 (2018): 4457-4464.
Chicago
Huang, X., Chen, X., Chen, H., Xu, D., Lin, C., Peng, B."Rho/Rho-associated protein kinase signaling pathway‑mediated downregulation of runt-related transcription factor 2 expression promotes the differentiation of dental pulp stem cells into odontoblasts". Experimental and Therapeutic Medicine 15, no. 5 (2018): 4457-4464. https://doi.org/10.3892/etm.2018.5982
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team