|
1
|
Moskowitz MA, Lo EH and Iadecola C: The
science of stroke: Mechanisms in search of treatments. Neuron.
67:181–198. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Demaerschalk BM, Kleindorfer DO, Adeoye
OM, Demchuk AM, Fugate JE, Grotta JC, Khalessi AA, Levy EI, Palesch
YY, Prabhakaran S, et al: Scientific rationale for the inclusion
and exclusion criteria for intravenous alteplase in acute ischemic
stroke: A statement for healthcare professionals from the american
heart association/american stroke association. Stroke. 47:581–641.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Grunwald IQ, Wakhloo AK, Walter S,
Molyneux AJ, Byrne JV, Nagel S, Kühn AL, Papadakis M, Fassbender K,
Balami JS, et al: Endovascular stroke treatment today. AJNR Am J
Neuroradiol. 32:238–243. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tu J, Yang F, Wan J, Liu Y, Zhang J, Wu B,
Liu Y, Zeng S and Wang L: Light-controlled astrocytes promote human
mesenchymal stem cells toward neuronal differentiation and improve
the neurological deficit in stroke rats. Glia. 62:106–121. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wei ZZ, Gu X, Ferdinand A, Lee JH, Ji X,
Ji XM, Yu SP and Wei L: Intranasal delivery of bone marrow
mesenchymal stem cells improved neurovascular regeneration and
rescued neuropsychiatric deficits after neonatal stroke in rats.
Cell Transplant. 24:391–402. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zhang ZG and Chopp M: Exosomes in stroke
pathogenesis and therapy. J Clin Invest. 126:1190–1197. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Lopatina T, Bruno S, Tetta C, Kalinina N,
Porta M and Camussi G: Platelet-derived growth factor regulates the
secretion of extracellular vesicles by adipose mesenchymal stem
cells and enhances their angiogenic potential. Cell Commun Signal.
12:262014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Tan X, Gong YZ, Wu P, Liao DF and Zheng
XL: Mesenchymal stem cell-derived microparticles: A promising
therapeutic strategy. Int J Mol Sci. 15:14348–14363. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Li Y, Hu G and Cheng Q: Implantation of
human umbilical cord mesenchymal stem cells for ischemic stroke:
Perspectives and challenges. Front Med. 9:20–29. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Marquez-Curtis LA, Janowska-Wieczorek A,
McGann LE and Elliott JA: Mesenchymal stromal cells derived from
various tissues: Biological, clinical and cryopreservation aspects.
Cryobiology. 71:181–197. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Olson AL and McNiece IK: Novel clinical
uses for cord blood derived mesenchymal stromal cells. Cytotherapy.
17:796–802. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Pittenger MF, Mackay AM, Beck SC, Jaiswal
RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and
Marshak DR: Multilineage potential of adult human mesenchymal stem
cells. Science. 284:143–147. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Jiang Y, Jahagirdar BN, Reinhardt RL,
Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund
T, Blackstad M, et al: Pluripotency of mesenchymal stem cells
derived from adult marrow. Nature. 418:41–49. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hao L, Zou Z, Tian H, Zhang Y, Zhou H and
Liu L: Stem cell-based therapies for ischemic stroke. Biomed Res
Int. 2014:4687482014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Bernardo ME and Fibbe WE: Mesenchymal
stromal cells: Sensors and switchers of inflammation. Cell Stem
Cell. 13:392–402. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Gornostaeva A, Andreeva E and Buravkova L:
Factors governing the immunosuppressive effects of multipotent
mesenchymal stromal cells in vitro. Cytotechnology. 68:565–577.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Khubutiya MS, Vagabov AV, Temnov AA and
Sklifas AN: Paracrine mechanisms of proliferative, anti-apoptotic
and anti-inflammatory effects of mesenchymal stromal cells in
models of acute organ injury. Cytotherapy. 16:579–585. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Bang OY, Lee JS, Lee PH and Lee G:
Autologous mesenchymal stem cell transplantation in stroke
patients. Ann Neurol. 57:874–882. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH
and Bang OY: STARTING collaborators: A long-term follow-up study of
intravenous autologous mesenchymal stem cell transplantation in
patients with ischemic stroke. Stem Cells. 28:1099–1106. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Honmou O, Houkin K, Matsunaga T, Niitsu Y,
Ishiai S, Onodera R, Waxman SG and Kocsis JD: Intravenous
administration of auto serum-expanded autologous mesenchymal stem
cells in stroke. Brain. 134:1790–1807. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Bhasin A, Srivastava MV, Kumaran SS,
Mohanty S, Bhatia R, Bose S, Gaikwad S, Garg A and Airan B:
Autologous mesenchymal stem cells in chronic stroke. Cerebrovasc
Dis Extra. 1:93–104. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Jiang Y, Zhu W, Zhu J, Wu L, Xu G and Liu
X: Feasibility of delivering mesenchymal stem cells via catheter to
the proximal end of the lesion artery in patients with stroke in
the territory of the middle cerebral artery. Cell Transplant.
22:2291–2298. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Bhasin A, Srivastava MV, Mohanty S, Bhatia
R, Kumaran SS and Bose S: Stem cell therapy: A clinical trial of
stroke. Clin Neurol Neurosurg. 115:1003–1008. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Steinberg GK, Kondziolka D, Wechsler LR,
Lunsford LD, Coburn ML, Billigen JB, Kim AS, Johnson JN, Bates D,
King B, et al: Clinical outcomes of transplanted modified bone
marrow-derived mesenchymal stem cells in stroke: A phase 1/2a
study. Stroke. 47:1817–1824. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Toma C, Wagner WR, Bowry S, Schwartz A and
Villanueva F: Fate of culture-expanded mesenchymal stem cells in
the microvasculature: In vivo observations of cell kinetics. Circ
Res. 104:398–402. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lin YC, Ko TL, Shih YH, Lin MY, Fu TW,
Hsiao HS, Hsu JY and Fu YS: Human umbilical mesenchymal stem cells
promote recovery after ischemic stroke. Stroke. 42:2045–2053. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Vu Q, Xie K, Eckert M, Zhao W and Cramer
SC: Meta-analysis of preclinical studies of mesenchymal stromal
cells for ischemic stroke. Neurology. 82:1277–1286. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Caplan AI and Correa D: The MSC: An injury
drugstore. Cell Stem Cell. 9:11–15. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Basso M and Bonetto V: Extracellular
vesicles and a novel form of communication in the brain. Front
Neurosci. 10:1272016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yu B, Zhang X and Li X: Exosomes derived
from mesenchymal stem cells. Int J Mol Sci. 15:4142–4157. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Doeppner TR, Herz J, Görgens A, Schlechter
J, Ludwig AK, Radtke S, de Miroschedji K, Horn PA, Giebel B and
Hermann DM: Extracellular vesicles improve post-stroke
neuroregeneration and prevent postischemic immunosuppression. Stem
Cells Transl Med. 4:1131–1143. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Xin H, Li Y and Chopp M: Exosomes/miRNAs
as mediating cell-based therapy of stroke. Front Cell Neurosci.
8:3772014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Couzin J: Cell biology: The ins and outs
of exosomes. Science. 308:1862–1863. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
van der Pol E, Boing AN, Harrison P, Sturk
A and Nieuwland R: Classification, functions, and clinical
relevance of extracellular vesicles. Pharmacol Rev. 64:676–705.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yáñez-Mó M, Siljander PR, Andreu Z, Zavec
AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J,
et al: Biological properties of extracellular vesicles and their
physiological functions. J Extracell Vesicles. 4:270662015.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Raposo G and Stoorvogel W: Extracellular
vesicles: Exosomes, microvesicles, and friends. J Cell Biol.
200:373–383. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Katakowski M, Buller B, Zheng X, Lu Y,
Rogers T, Osobamiro O, Shu W, Jiang F and Chopp M: Exosomes from
marrow stromal cells expressing miR-146b inhibit glioma growth.
Cancer Lett. 335:201–204. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhang HG and Grizzle WE: Exosomes: A novel
pathway of local and distant intercellular communication that
facilitates the growth and metastasis of neoplastic lesions. Am J
Pathol. 184:28–41. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Fais S, O'Driscoll L, Borras FE, Buzas E,
Camussi G, Cappello F, Carvalho J, da Silva Cordeiro A, Del
Portillo H, El Andaloussi S, et al: Evidence-based clinical use of
nanoscale extracellular vesicles in nanomedicine. ACS Nano.
10:3886–3899. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ratajczak MZ: The emerging role of
microvesicles in cellular therapies for organ/tissue regeneration.
Nephrol Dial Transplant. 26:1453–1456. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Reiner AT, Witwer KW, van Balkom BWM, de
Beer J, Brodie C, Corteling RL, Gabrielsson S, Gimona M, Ibrahim
AG, de Kleijn D, et al: Concise review: Developing best-practice
models for the therapeutic use of extracellular vesicles. Stem
Cells Transl Med. 6:1730–1739. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Antonyak MA and Cerione RA: Emerging
picture of the distinct traits and functions of microvesicles and
exosomes. Proc Natl Acad Sci USA. 112:3589–3590. 2015.PubMed/NCBI
|
|
43
|
Biancone L, Bruno S, Deregibus MC, Tetta C
and Camussi G: Therapeutic potential of mesenchymal stem
cell-derived microvesicles. Nephrol Dial Transplant. 27:3037–3042.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lai CP and Breakefield XO: Role of
exosomes/microvesicles in the nervous system and use in emerging
therapies. Front Physiol. 3:2282012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Konala VB, Mamidi MK, Bhonde R, Das AK,
Pochampally R and Pal R: The current landscape of the mesenchymal
stromal cell secretome: A new paradigm for cell-free regeneration.
Cytotherapy. 18:13–24. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Gyorgy B, Hung ME, Breakefield XO and
Leonard JN: Therapeutic applications of extracellular vesicles:
Clinical promise and open questions. Annu Rev Pharmacol Toxicol.
55:439–464. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kanninen KM, Bister N, Koistinaho J and
Malm T: Exosomes as new diagnostic tools in CNS diseases. Biochim
Biophys Acta. 1862:403–410. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ban LA, Shackel NA and McLennan SV:
Extracellular vesicles: A new frontier in biomarker discovery for
non-alcoholic fatty liver disease. Int J Mol Sci. 17:3762016.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lai FW, Lichty BD and Bowdish DM:
Microvesicles: Ubiquitous contributors to infection and immunity. J
Leukoc Biol. 97:237–245. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Witwer KW, Buzàs EI, Bemis LT, Bora A,
Lässer C, Lötvall J, Hoen Nolte-'t EN, Piper MG, Sivaraman S, Skog
J, et al: Standardization of sample collection, isolation and
analysis methods in extracellular vesicle research. J Extracell
Vesicles. 2:203602013. View Article : Google Scholar
|
|
51
|
Zlotogorski-Hurvitz A, Dayan D, Chaushu G,
Korvala J, Salo T, Sormunen R and Vered M: Human saliva-derived
exosomes: Comparing methods of isolation. J Histochem Cytochem.
63:181–189. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Van Deun J, Mestdagh P, Sormunen R,
Cocquyt V, Vermaelen K, Vandesompele J, Bracke M, De Wever O and
Hendrix A: The impact of disparate isolation methods for
extracellular vesicles on downstream RNA profiling. J Extracell
Vesicles. 3:248582014. View Article : Google Scholar
|
|
53
|
Sàenz-Cuesta M, Osorio-Querejeta I and
Otaegui D: Extracellular vesicles in multiple sclerosis: What are
they telling us? Front Cell Neurosci. 8:1002014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
György B, Módos K, Pàllinger E, Pálóczi K,
Pásztói M, Misják P, Deli MA, Sipos A, Szalai A, Voszka I, et al:
Detection and isolation of cell-derived microparticles are
compromised by protein complexes resulting from shared biophysical
parameters. Blood. 117:e39–e48. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Shin H, Han C, Labuz JM, Kim J, Kim J, Cho
S, Gho YS, Takayama S and Park J: High-yield isolation of
extracellular vesicles using aqueous two-phase system. Sci Rep.
5:131032015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lacroix R, Robert S, Poncelet P and
Dignat-George F: Overcoming limitations of microparticle
measurement by flow cytometry. Semin Thromb Hemost. 36:807–818.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
van der Vlist EJ, Hoen Nolte-'t EN,
Stoorvogel W, Arkesteijn GJ and Wauben MH: Fluorescent labeling of
nano-sized vesicles released by cells and subsequent quantitative
and qualitative analysis by high-resolution flow cytometry. Nat
Protoc. 7:1311–1326. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Sokolova V, Ludwig AK, Hornung S, Rotan O,
Horn PA, Epple M and Giebel B: Characterisation of exosomes derived
from human cells by nanoparticle tracking analysis and scanning
electron microscopy. Colloids Surf B Biointerfaces. 87:146–150.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Szatanek R, Baj-Krzyworzeka M, Zimoch J,
Lekka M, Siedlar M and Baran J: The methods of choice for
extracellular vesicles (EVs) characterization. Int J Mol Sci.
18:pii: E1153. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Mokarizadeh A, Delirezh N, Morshedi A,
Mosayebi G, Farshid AA and Mardani K: Microvesicles derived from
mesenchymal stem cells: Potent organelles for induction of
tolerogenic signaling. Immunol Lett. 147:47–54. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Chen TS, Lai RC, Lee MM, Choo AB, Lee CN
and Lim SK: Mesenchymal stem cell secretes microparticles enriched
in pre-microRNAs. Nucleic Acids Res. 38:215–224. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wang J, Zhong Y, Ma X, Xiao X, Cheng C,
Chen Y, Iwuchukwu I, Gaines KJ, Zhao B, Liu S, et al: Analyses of
endothelial cells and endothelial progenitor cells released
Microvesicles by using microbead and Q-dot based nanoparticle
tracking analysis. Sci Rep. 6:246792016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Théry C, Amigorena S, Raposo G and Clayton
A: Isolation and characterization of exosomes from cell culture
supernatants and biological fluids. Curr Protoc Cell Biol. Chapter
3: Unit 3.22. 2006. View Article : Google Scholar
|
|
64
|
Jayachandran M, Miller VM, Heit JA and
Owen WG: Methodology for isolation, identification and
characterization of microvesicles in peripheral blood. J Immunol
Methods. 375:207–214. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Li Y, Liu Z, Xin H and Chopp M: The role
of astrocytes in mediating exogenous cell-based restorative therapy
for stroke. Glia. 62:1–16. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Eirin A, Riester SM, Zhu XY, Tang H, Evans
JM, O'Brien D, van Wijnen AJ and Lerman LO: MicroRNA and mRNA cargo
of extracellular vesicles from porcine adipose tissue-derived
mesenchymal stem cells. Gene. 551:55–64. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Phinney DG, Di Giuseppe M, Njah J, Sala E,
Shiva S, St Croix CM, Stolz DB, Watkins SC, Di YP, Leikauf GD, et
al: Mesenchymal stem cells use extracellular vesicles to outsource
mitophagy and shuttle microRNAs. Nat Commun. 6:84722015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Fleury A, Martinez MC and Le Lay S:
Extracellular vesicles as therapeutic tools in cardiovascular
diseases. Front Immunol. 5:3702014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Taylor DD and Gercel-Taylor C:
Exosomes/microvesicles: Mediators of cancer-associated
immunosuppressive microenvironments. Semin Immunopathol.
33:441–454. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kanada M, Bachmann MH, Hardy JW,
Frimannson DO, Bronsart L, Wang A, Sylvester MD, Schmidt TL, Kaspar
RL, Butte MJ, et al: Differential fates of biomolecules delivered
to target cells via extracellular vesicles. Proc Natl Acad Sci USA.
112:E1433–E1442. 2015.PubMed/NCBI
|
|
71
|
Turchinovich A and Cho WC: The origin,
function and diagnostic potential of extracellular microRNA in
human body fluids. Front Genet. 5:302014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Liu RT, Wang SW and Liu J: Exosomes: The
novel vehicles for intercellular communication. Prog Biochem
Biophys. 40:719–727. 2013.
|
|
73
|
György B, Szabó TG, Pàsztói M, Pál Z,
Misják P, Aradi B, László V, Pállinger E, Pap E, Kittel A, et al:
Membrane vesicles, current state-of-the-art: Emerging role of
extracellular vesicles. Cell Mol Life Sci. 68:2667–2688. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Thery C, Ostrowski M and Segura E:
Membrane vesicles as conveyors of immune responses. Nat Rev
Immunol. 9:581–593. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Sheldon H, Heikamp E, Turley H, Dragovic
R, Thomas P, Oon CE, Leek R, Edelmann M, Kessler B, Sainson RC, et
al: New mechanism for Notch signaling to endothelium at a distance
by Delta-like 4 incorporation into exosomes. Blood. 116:2385–2394.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Janowska-Wieczorek A, Majka M, Kijowski J,
Baj-Krzyworzeka M, Reca R, Turner AR, Ratajczak J, Emerson SG,
Kowalska MA and Ratajczak MZ: Platelet-derived microparticles bind
to hematopoietic stem/progenitor cells and enhance their
engraftment. Blood. 98:3143–3149. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Mause SF and Weber C: Microparticles:
Protagonists of a novel communication network for intercellular
information exchange. Circ Res. 107:1047–1057. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Rozmyslowicz T, Majka M, Kijowski J,
Murphy SL, Conover DO, Poncz M, Ratajczak J, Gaulton GN and
Ratajczak MZ: Platelet- and megakaryocyte-derived microparticles
transfer CXCR4 receptor to CXCR4-null cells and make them
susceptible to infection by X4-HIV. AIDS. 17:33–42. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Desrochers LM, Bordeleau F, Reinhart-King
CA, Cerione RA and Antonyak MA: Microvesicles provide a mechanism
for intercellular communication by embryonic stem cells during
embryo implantation. Nat Commun. 7:119582016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Yong PJ, Koh CH and Shim WS: Endothelial
microparticles: Missing link in endothelial dysfunction? Eur J Prev
Cardiol. 20:496–512. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Liu Y, Huang W, Zhang R, Wu J, Li L and
Tang Y: Proteomic analysis of TNF-α-activated endothelial cells and
endothelial microparticles. Mol Med Rep. 7:318–326. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
de Jong OG, Verhaar MC, Chen Y, Vader P,
Gremmels H, Posthuma G, Schiffelers RM, Gucek M and van Balkom BW:
Cellular stress conditions are reflected in the protein and RNA
content of endothelial cell-derived exosomes. J Extracell Vesicles.
1:183962012. View Article : Google Scholar
|
|
83
|
Mitra S, Wewers MD and Sarkar A:
Mononuclear phagocyte-derived microparticulate caspase-1 induces
pulmonary vascular endothelial cell injury. PLoS One.
10:e01456072015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Katsman D, Stackpole EJ, Domin DR and
Farber DB: Embryonic stem cell-derived microvesicles induce gene
expression changes in Muller cells of the retina. PLoS One.
7:e504172012. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ratajczak J, Miekus K, Kucia M, Zhang J,
Reca R, Dvorak P and Ratajczak MZ: Embryonic stem cell-derived
microvesicles reprogram hematopoietic progenitors: Evidence for
horizontal transfer of mRNA and protein delivery. Leukemia.
20:847–856. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Yeo RW, Lai RC, Zhang B, Tan SS, Yin Y,
Teh BJ and Lim SK: Mesenchymal stem cell: An efficient mass
producer of exosomes for drug delivery. Adv Drug Deliv Rev.
65:336–341. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Lai RC, Tan SS, Teh BJ, Sze SK, Arslan F,
de Kleijn DP, Choo A and Lim SK: Proteolytic potential of the MSC
exosome proteome: Implications for an exosome-mediated delivery of
therapeutic proteasome. Int J Proteomics. 2012:9719072012.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Collino F, Bruno S, Incarnato D, Dettori
D, Neri F, Provero P, Pomatto M, Oliviero S, Tetta C, Quesenberry
PJ and Camussi G: AKI recovery induced by mesenchymal stromal
cell-derived extracellular vesicles carrying MicroRNAs. J Am Soc
Nephrol. 26:2349–2360. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Koniusz S, Andrzejewska A, Muraca M,
Srivastava AK, Janowski M and Lukomska B: Extracellular vesicles in
physiology, pathology, and therapy of the immune and central
nervous system, with focus on extracellular vesicles derived from
mesenchymal stem cells as therapeutic tools. Front Cell Neurosci.
10:1092016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Tomasoni S, Longaretti L, Rota C, Morigi
M, Conti S, Gotti E, Capelli C, Introna M, Remuzzi G and Benigni A:
Transfer of growth factor receptor mRNA via exosomes unravels the
regenerative effect of mesenchymal stem cells. Stem Cells Dev.
22:772–780. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Dooner MS, Aliotta JM, Pimentel J, Dooner
GJ, Abedi M, Colvin G, Liu Q, Weier HU, Johnson KW and Quesenberry
PJ: Conversion potential of marrow cells into lung cells fluctuates
with cytokine-induced cell cycle. Stem Cells Dev. 17:207–219. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Pegtel DM, Peferoen L and Amor S:
Extracellular vesicles as modulators of cell-to-cell communication
in the healthy and diseased brain. Philos Trans R Soc Lond B Biol
Sci. 369:pii: 20130516. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Lozito TP and Tuan RS: Endothelial and
cancer cells interact with mesenchymal stem cells via both
microparticles and secreted factors. J Cell Mol Med. 18:2372–2384.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Xin H, Li Y, Liu Z, Wang X, Shang X, Cui
Y, Zhang ZG and Chopp M: MiR-133b promotes neural plasticity and
functional recovery after treatment of stroke with multipotent
mesenchymal stromal cells in rats via transfer of exosome-enriched
extracellular particles. Stem Cells. 31:2737–2746. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Hao P, Liang Z, Piao H, Ji X, Wang Y, Liu
Y, Liu R and Liu J: Conditioned medium of human adipose-derived
mesenchymal stem cells mediates protection in neurons following
glutamate excitotoxicity by regulating energy metabolism and GAP-43
expression. Metab Brain Dis. 29:193–205. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Lin SS, Zhu B, Guo ZK, Huang GZ, Wang Z,
Chen J, Wei XJ and Li Q: Bone marrow mesenchymal stem cell-derived
microvesicles protect rat pheochromocytoma PC12 cells from
glutamate-induced injury via a PI3K/Akt dependent pathway.
Neurochem Res. 39:922–931. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Xin H, Li Y, Buller B, Katakowski M, Zhang
Y, Wang X, Shang X, Zhang ZG and Chopp M: Exosome-mediated transfer
of miR-133b from multipotent mesenchymal stromal cells to neural
cells contributes to neurite outgrowth. Stem Cells. 30:1556–1564.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG and
Chopp M: Systemic administration of exosomes released from
mesenchymal stromal cells promote functional recovery and
neurovascular plasticity after stroke in rats. J Cereb Blood Flow
Metab. 33:1711–1715. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Mousavinejad M, Andrews PW and Shoraki EK:
Current biosafety considerations in stem cell therapy. Cell J.
18:281–287. 2016.PubMed/NCBI
|
|
100
|
Wong RS: Mesenchymal stem cells: Angels or
demons? J Biomed Biotechnol. 2011:4595102011. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Jeong JO, Han JW, Kim JM, Cho HJ, Park C,
Lee N, Kim DW and Yoon YS: Malignant tumor formation after
transplantation of short-term cultured bone marrow mesenchymal stem
cells in experimental myocardial infarction and diabetic
neuropathy. Circ Res. 108:1340–1347. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Shao H, Chung J, Balaj L, Charest A,
Bigner DD, Carter BS, Hochberg FH, Breakefield XO, Weissleder R and
Lee H: Protein typing of circulating microvesicles allows real-time
monitoring of glioblastoma therapy. Nat Med. 18:1835–1840. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Alvarez-Erviti L, Seow Y, Yin H, Betts C,
Lakhal S and Wood MJ: Delivery of siRNA to the mouse brain by
systemic injection of targeted exosomes. Nat Biotechnol.
29:341–345. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Lener T, Gimona M, Aigner L, Börger V,
Buzas E, Camussi G, Chaput N, Chatterjee D, Court FA, Del Portillo
HA, et al: Applying extracellular vesicles based therapeutics in
clinical trials-an ISEV position paper. J Extracell Vesicles.
4:300872015. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Chen TS, Arslan F, Yin Y, Tan SS, Lai RC,
Choo AB, Padmanabhan J, Lee CN, de Kleijn DP and Lim SK: Enabling a
robust scalable manufacturing process for therapeutic exosomes
through oncogenic immortalization of human ESC-derived MSCs. J
Transl Med. 9:472011. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Salido-Guadarrama I, Romero-Cordoba S,
Peralta-Zaragoza O, Hidalgo-Miranda A and Rodríguez-Dorantes M:
MicroRNAs transported by exosomes in body fluids as mediators of
intercellular communication in cancer. Onco Targets Ther.
7:1327–1338. 2014.PubMed/NCBI
|
|
107
|
Zitvogel L, Regnault A, Lozier A, Wolfers
J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G and
Amigorena S: Eradication of established murine tumors using a novel
cell-free vaccine: Dendritic cell-derived exosomes. Nat Med.
4:594–600. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Escudier B, Dorval T, Chaput N, André F,
Caby MP, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S,
et al: Vaccination of metastatic melanoma patients with autologous
dendritic cell (DC) derived-exosomes: Results of thefirst phase I
clinical trial. J Transl Med. 3:102005. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Otero-Ortega L, Laso-García F, Gómez-de
Frutos MD, Rodríguez-Frutos B, Pascual-Guerra J, Fuentes B,
Díez-Tejedor E and Gutiérrez-Fernández M: White matter repair after
extracellular vesicles administration in an experimental animal
model of subcortical stroke. Sci Rep. 7:444332017. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Xin H, Wang F, Li Y, Lu QE, Cheung WL,
Zhang Y, Zhang ZG and Chopp M: Secondary release of exosomes from
astrocytes contributes to the increase in neural plasticity and
improvement of functional recovery after stroke in rats treated
with exosomes harvested from MicroRNA 133b-overexpressing
multipotent mesenchymal stromal cells. Cell Transplant. 26:243–257.
2017. View Article : Google Scholar : PubMed/NCBI
|