|
1
|
Aoba T and Fejerskov O: Dental fluorosis:
Chemistry and biology. Crit Rev Oral Biol Med. 13:155–170. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Beltrán-Aguilar ED, Barker L and Dye BA:
Prevalence and severity of dental fluorosis in the United States,
1999–2004. NCHS Data Brief. 1–8. 2010.
|
|
3
|
Denbesten P and Li W: Chronic fluoride
toxicity: Dental fluorosis. Monogr Oral Sci. 22:81–96. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Sierant ML and Bartlett JD: Stress
response pathways in ameloblasts: Implications for amelogenesis and
dental fluorosis. Cells. 1:631–645. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Mohamed AR, Thomson WM and Mackay TD: An
epidemiological comparison of Dean's index and the developmental
defects of enamel (DDE) index. J Public Health Dent. 70:344–347.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lyaruu DM, Medina JF, Sarvide S, Bervoets
TJ, Everts V, Denbesten PK, Smith CE and Bronckers AL: Barrier
formation: Potential molecular mechanism of enamel fluorosis. J
Dent Res. 93:94–102. 2014. View Article : Google Scholar
|
|
7
|
Smith CE: Cellular and chemical events
during enamel maturation. Crit Rev Oral Biol Med. 9:128–161. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Paine ML, Snead ML, Wang HJ, Abuladze N,
Pushkin A, Liu W, Kao LY, Wall SM, Kim YH and Kurtz I: Role of
NBCe1 and AE2 in secretory ameloblasts. J Dent Res. 87:391–395.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lacruz RS, Nanci A, Kurtz I, Wright JT and
Paine ML: Regulation of pH during amelogenesis. Calcif Tissue Int.
86:91–103. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Simmer JP and Fincham AG: Molecular
mechanisms of dental enamel formation. Crit Rev Oral Biol Med.
6:84–108. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Sasaki S, Takagi T and Suzuki M: Cyclical
changes in pH in bovine developing enamel as sequential bands. Arch
Oral Biol. 36:227–231. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Takagi T, Ogasawara T, Tagami J, Akao M,
Kuboki Y, Nagai N and LeGeros RZ: pH and carbonate levels in
developing enamel. Connect Tissue Res. 38:181–205. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Bawden JW, Crenshaw MA, Wright JT and
LeGeros RZ: Consideration of possible biologic mechanisms of
fluorosis. J Dent Res. 74:1349–1352. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Robinson C, Connell S and Kirkham J:
Dental enamel-a biological ceramic: Regular substructures in enamel
hydroxyapatite crystals revealed by atomic force microscopy. J
Mater Chem. 14:2242–2248. 2004. View Article : Google Scholar
|
|
15
|
Robinson C, Connell S, Kirkham J, Brookes
SJ, Shore RC and Smith AM: The effect of fluoride on the developing
tooth. Caries Res. 38:268–276. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bronckers AL, Lyaruu DM and DenBesten PK:
The impact of fluoride on ameloblasts and the mechanisms of enamel
fluorosis. Crit Rev Oral Biol Med. 88:877–893. 2009.
|
|
17
|
Yan Q, Zhang Y, Li W and Denbesten PK:
Micromolar fluoride alters ameloblast lineage cells in vitro. J
Dent Res. 86:336–340. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wei W, Gao Y, Wang C, Zhao L and Sun D:
Excessive fluoride induces endoplasmic reticulum stress and
interferes enamel proteinases secretion. Environ Toxicol.
28:332–341. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhang Y, Li W, Chi HS, Chen J and
Denbesten PK: JNK/c-Jun signaling pathway mediates the
fluoride-induced down-regulation of MMP-20 in vitro. Matrix Biol.
26:633–641. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Jacinto-Alemán LF, Hernández-Guerrero JC,
Trejo-Solís C, Jiménez-Farfán MD and Fernández-Presas AM: In vitro
effect of sodium fluoride on antioxidative enzymes and apoptosis
during murine odontogenesis. J Oral Pathol Med. 39:709–714. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Yang T, Zhang Y, Li Y, Hao Y, Zhou M, Dong
N and Duan X: High amounts of fluoride induce apoptosis/cell death
in matured ameloblast-like LS8 cells by downregulating Bcl-2. Arch
Oral Biol. 58:1165–1173. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Matsuo S, Inai T, Kurisu K, Kiyomiya K and
Kurebe M: Influence of fluoride on secretory pathway of the
secretory ameloblast in rat incisor tooth germs exposed to sodium
fluoride. Arch Toxicol. 70:420–429. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hannas AR, Pereira JC, Granjeiro JM and
Tjäderhane L: The role of matrix metalloproteinases in the oral
environment. Acta Odontol Scand. 65:1–13. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Denbesten PK and Heffernan LM: Enamel
proteases in secretory and maturation enamel of rats ingesting 0
and 100 PPM fluoride in drinking water. Adv Dent Res. 3:199–202.
1989. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zheng L, Zhang Y, He P, Kim J, Schneider
R, Bronckers AL, Lyaruu DM and DenBesten PK: NBCe1 in mouse and
human ameloblasts may be indirectly regulated by fluoride. J Dent
Res. 90:782–787. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Duan X, Mao Y, Wen X, Yang T and Xue Y:
Excess fluoride interferes with chloride-channel-dependent
endocytosis in ameloblasts. J Dent Res. 90:175–180. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Nanci A: Ten Cate's oral histology:
Development, structure, and function. Ebook, MosbyElsevier. 1–432.
2007.
|
|
28
|
Hu JC, Chun YH, Al Hazzazzi T and Simmer
JP: Enamel formation and amelogenesis imperfecta. Cells Tissues
Organs. 186:78–85. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Sharma R, Tsuchiya M, Skobe Z, Tannous BA
and Bartlett JD: The acid test of fluoride: How pH modulates
toxicity. PLoS One. 5:e108952010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Varga G, Kerémi B, Bori E and Földes A:
Function and repair of dental enamel-potential role of epithelial
transport processes of ameloblasts. Pancreatology. 15 Suppl
4:S55–S60. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Nanci A and Smith CE: Development and
calcification of enamel. Calcification in biological systems.
313–343. 1992.
|
|
32
|
Bartlett JD and Simmer JP: Proteinases in
developing dental enamel. Crit Rev Oral Biol Med. 10:425–441. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Smith CE, Issid M, Margolis HC and Moreno
EC: Developmental changes in the pH of enamel fluid and its effects
on matrix-resident proteinases. Adv Dent Res. 10:159–169. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Simmer JP, Fukae M, Tanabe T, Yamakoshi Y,
Uchida T, Xue J, Margolis HC, Shimizu M, DeHart BC, Hu CC and
Bartlett JD: Purification, characterization, and cloning of enamel
matrix serine proteinase 1. J Dent Res. 77:377–386. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Smith CE, Chong DL, Bartlett JD and
Margolis HC: Mineral acquisition rates in developing enamel on
maxillary and mandibular incisors of rats and mice: Implications to
extracellular acid loading as apatite crystals mature. J Bone Miner
Res. 20:240–249. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Damkier HH, Josephsen K, Takano Y, Zahn D,
Fejerskov O and Frische S: Fluctuations in surface pH of maturing
rat incisor enamel are a result of cycles of H(+)-secretion by
ameloblasts and variations in enamel buffer characteristics. Bone.
60:227–234. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Bronckers AL, Lyaruu DM, Guo J, Bijvelds
MJ, Bervoets TJ, Zandieh-Doulabi B, Medina JF, Li Z, Zhang Y and
DenBesten PK: Composition of mineralizing incisor enamel in
CFTR-deficient mice. Eur J Oral Sci. 123:9–16. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Smith CE, Nanci A and Moffat P: Evidence
by signal peptide trap technology for the expression of carbonic
anhydrase 6 in rat incisor enamel organs. Eur J Oral Sci. 114 Suppl
1:(S147): S153 Discussion 164–165. 380–381. 2006.
|
|
39
|
Hou J, Situ Z and Duan X: ClC chloride
channels in tooth germ and odontoblast-like MDPC-23 cells. Arch
Oral Biol. 53:874–878. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Su X, Yang F, Duan X, Yuan L, Li Y and Wu
L: Expression of CLC-7 during mouse tooth development. J Pract
Stomatol. 24:342–345. 2008.(In Chinese).
|
|
41
|
Duan X, Mao Y, Yang T, Wen X, Wang H, Hou
J, Xue Y and Zhang R: ClC-5 regulates dentin development through
TGF-beta1 pathway. Arch Oral Biol. 54:1118–1124. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Josephsen K, Takano Y, Frische S,
Praetorius J, Nielsen S, Aoba T and Fejerskov O: Ion transporters
in secretory and cyclically modulating ameloblasts: A new
hypothesis for cellular control of preeruptive enamel maturation.
Am J Physiol Cell Physiol. 299:C1299–C1307. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lacruz RS, Nanci A, White SN, Wen X, Wang
H, Zalzal SF, Luong VQ, Schuetter VL, Conti PS, Kurtz I and Paine
ML: The sodium bicarbonate cotransporter (NBCe1) is essential for
normal development of mouse dentition. J Biol Chem.
285:24432–24438. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Okumura R, Shibukawa Y, Muramatsu T,
Hashimoto S, Nakagawa K, Tazaki M and Shimono M: Sodium-calcium
exchangers in rat ameloblasts. J Pharmacol Sci. 112:223–230. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Bronckers AL, Guo J, Zandieh-Doulabi B,
Bervoets TJ, Lyaruu DM, Li X, Wangemann P and DenBesten P:
Developmental expression of SLC26A4 (Pendrin) during amelogenesis
in developing rodent teeth. Eur J Oral Sci. 119 Suppl 1:S185–S192.
2011. View Article : Google Scholar
|
|
46
|
Hu P, Lacruz RS, Smith CE, Smith SM, Kurtz
I and Paine ML: Expression of the sodium/calcium/potassium
exchanger, NCKX4, in ameloblasts. Cells Tissues Organs.
196:501–509. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lacruz RS, Smith CE, Moffatt P, Chang EH,
Bromage TG, Bringas P Jr, Nanci A, Baniwal SK, Zabner J, Welsh MJ,
et al: Requirements for ion and solute transport, and pH regulation
during enamel maturation. J Cell Physiol. 227:1776–1785. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lacruz RS, Brookes SJ, Wen X, Jimenez JM,
Vikman S, Hu P, White SN, Lyngstadaas SP, Okamoto CT, Smith CE and
Paine ML: Adaptor protein complex 2 (ap-2) mediated, clathrin
dependent endocytosis, and related gene activities, are a prominent
feature during maturation stage amelogenesis. J Bone Miner Res.
28:672–687. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lacruz RS, Smith CE, Kurtz I, Hubbard MJ
and Paine ML: New paradigms on the transport functions of
maturation-stage ameloblasts. J Dent Res. 92:122–129. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Duan X: Ion channels, channelopathies, and
tooth formation. J Dent Res. 93:117–125. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Bronckers AL, Lyaruu D, Jalali R, Medina
JF, Zandieh-Doulabi B and DenBesten PK: Ameloblast modulation and
transport of Cl-, Na+, and K+ during amelogenesis. J Dent Res.
94:1740–1747. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wright JT, Kiefer CL, Hall KI and Grubb
BR: Abnormal enamel development in a cystic fibrosis transgenic
mouse model. J Dent Res. 75:966–973. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Sui W, Boyd C and Wright JT: Altered pH
regulation during enamel development in the cystic fibrosis mouse
incisor. J Dent Res. 82:388–392. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Bronckers AL, Kalogeraki L, Jorna HJ,
Wilke M, Bervoets TJ, Lyaruu DM, Zandieh-Doulabi B, Denbesten PK
and de Jonge H: The cystic fibrosis transmembrane conductance
regulator (CFTR) is expressed in maturation stage ameloblasts,
odontoblasts and bone cells. Bone. 46:1188–1196. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ko SB, Zeng W, Dorwart MR, Luo X, Kim KH,
Millen L, Goto H, Naruse S, Soyombo A, Thomas PJ and Muallem S:
Gating of CFTR by the STAS domain of SLC26 transporters. Nat Cell
Biol. 6:343–350. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Mount DB and Romero MF: The SLC26 gene
family of multifunctional anion exchangers. Pflugers Arch.
447:710–721. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ishiguro H, Steward MC, Naruse S, Ko SB,
Goto H, Case RM, Kondo T and Yamamoto A: CFTR functions as a
bicarbonate channel in pancreatic duct cells. J Gen Physiol.
133:315–326. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Shcheynikov N, Kim KH, Kim KM, Dorwart MR,
Ko SB, Goto H, Naruse S, Thomas PJ and Muallem S: Dynamic control
of cystic fibrosis transmembrane conductance regulator
Cl(−)/HCO3(−) selectivity by external Cl(−). J Biol Chem.
279:21857–21865. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Pushkin A and Kurtz I: SLC4 base
(HCO3−, CO32−)
transporters: Classification function, structure, genetic diseases,
and knockout models. Am J Physiol Renal Physiol. 290:F580–F599.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Jalali R, Guo J, Zandieh-Doulabi B,
Bervoets TJ, Paine ML, Boron WF, Parker MD, Bijvelds MJ, Medina JF,
DenBesten PK and Bronckers AL: NBCe1 (SLC4A4) a potential pH
regulator in enamel organ cells during enamel development in the
mouse. Cell Tissue Res. 358:433–442. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Bronckers AL, Lyaruu DM, Jansen ID, Medina
JF, Kellokumpu S, Hoeben KA, Gawenis LR, Oude-Elferink RP and
Everts V: Localization and function of the anion exchanger Ae2 in
developing teeth and orofacial bone in rodents. J Exp Zool B Mol
Dev Evol. 312B:1–387. 2009. View Article : Google Scholar
|
|
62
|
Arquitt CK, Boyd C and Wright JT: Cystic
fibrosis transmembrane regulator gene (CFTR) is associated with
abnormal enamel formation. J Dent Res. 81:492–496. 1999. View Article : Google Scholar
|
|
63
|
Gawenis LR, Ledoussal C, Judd LM, Prasad
V, Alper SL, Stuart-Tilley A, Woo AL, Grisham C, Sanford LP,
Doetschman T, et al: Mice with a targeted disruption of the AE2
Cl-/HCO3- exchanger are achlorhydric. J Biol Chem. 279:30531–30539.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Dinour D, Chang MH, Satoh J, Smith BL,
Angle N, Knecht A, Serban I, Holtzman EJ and Romero MF: A novel
missense mutation in the sodium bicarbonate cotransporter
(NBCe1/SLC4A4) causes proximal tubular acidosis and glaucoma
through ion transport defects. J Biol Chem. 279:52238–52246. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Inatomi J, Horita H, Braverman N, Sekine
T, Yamada H, Suzuki Y, Kawahara K, Moriyama N, Kudo A, Kawakami H,
et al: Mutational and functional analysis of SLC4A4 in a patient
with proximal renal tubular acidosis. Pflugers Arch. 448:438–444.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Royaux IE, Belyantseva IA, Wu T, Kachar B,
Everett LA, Marcus DC and Green ED: Localization and functional
studies of pendrin in the mouse inner ear provide insight about the
etiology of deafness in pendred syndrome. J Assoc Res Otolaryngol.
4:394–404. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wall SM, Hassell KA, Royaux IE, Green ED,
Chang JY, Shipley GL and Verlander JW: Localization of pendrin in
mouse kidney. Am J Physiol Renal Physiol. 284:F229–F241. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wangemann P, Kim HM, Billings S, Nakaya K,
Li X, Singh R, Sharlin DS, Forrest D, Marcus DC and Fong P:
Developmental delays consistent with cochlear hypothyroidism
contribute to failure to develop hearing in mice lacking
Slc26a4/pendrin expression. Am J Physiol Renal Physiol.
297:F1435–F1447. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wang SS, Devuyst O, Courtoy PJ, Wang XT,
Wang H, Wang Y, Thakker RV, Guggino S and Guggino WB: Mice lacking
renal chloride channel, CLC-5, are a model for Dent's disease, a
nephrolithiasis disorder associated with defective receptormediated
endocytosis. Hum Mol Genet. 9:2937–2945. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Duan X: Spatial-temporal distribution of
CLC-5 in rat tooth germ development. J Dent Res. 83:27412004.
|
|
71
|
Guo J, Bervoets TJ, Henriksen K, Everts V
and Bronckers AL: Null mutation of chloride channel 7 (Clcn7)
impairs dental root formation but does not affect enamel
mineralization. Cell Tissue Res. 363:361–370. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Leisle L, Ludwig CF, Wagner FA, Jentsch TJ
and Stauber T: ClC-7 is a slowly voltage-gated
2Cl(−)/1H(+)-exchanger and requires Ostm1 for transport activity.
EMBO J. 30:2140–2152. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Lange PF, Wartosch L, Jentsch TJ and
Fuhrmann JC: ClC-7 requires Ostm1 as a beta-subunit to support bone
resorption and lysosomal function. Nature. 440:220–223. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kornak U, Kasper D, Bösl MR, Kaiser E,
Schweizer M, Schulz A, Friedrich W, Delling G and Jentsch TJ: Loss
of the ClC-7 chloride channel leads to osteopetrosis in mice and
man. Cell. 104:205–215. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kasper D, Planells-Cases R, Fuhrmann JC,
Scheel O, Zeitz O, Ruether K, Schmitt A, Poët M, Steinfeld R,
Schweizer M, et al: Loss of the chloride channel ClC-7 leads to
lysosomal storage disease and neurodegeneration. EMBO J.
24:1079–1091. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Steinberg BE, Huynh KK, Brodovitch A, Jabs
S, Stauber T, Jentsch TJ and Grinstein S: A cation counterflux
supports lysosomal acidification. J Cell Biol. 189:1171–1186. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wen X, Lacruz RS and Paine ML: Dental and
cranial pathologies in mice lacking the Cl(−)/H(+)-exchanger ClC-7.
Anat Rec (Hoboken). 298:1502–1508. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Tripp BC, Smith K and Ferry JG: Carbonic
anhydrae: New insights for an ancient enzyme. J Biol Chem.
276:48615–48618. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Chegwidden WR and Carter ND: Introduction
to the carbonic anhydrases. EXS. 90:14–28. 2000.
|
|
80
|
Lin HM, Nakamura H, Noda T and Ozawa H:
Localization of H(+)-ATPase and carbonic anhydrase II in
ameloblasts at maturation. Calcif Tissue Int. 55:38–45. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Fan Y, Zhou Y, Zhou X, Sun F, Gao B, Wan
M, Zhou X, Sun J, Xu X, Cheng L, et al: MicroRNA 224 regulates ion
transporter expression in ameloblasts to coordinate enamel
mineralization. Mol Cell Biol. 35:2875–2890. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Brown WE, Edelman N and Tomzaic BB:
Octacalcium phosphate as precursors in biomineral formation. Adv
Dent Res. 1:306–313. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Kawase T and Suzuki A: Studies on the
transmembrane migration of fluoride and its effects on
proliferation of L-929 fibroblasts (L cells) in vitro. Arch Oral
Biol. 34:103–107. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
He H, Ganapathy V, Isales CM and Whitford
GM: pH-dependent fluoride transport in intestinal brush border
membrane vesicles. Biochim Biophys Acta. 1372:244–254. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Mittal M and Flora SJ: Effects of
individual and combined exposure to sodium arsenite and sodium
fluoride on tissue oxidative stress, arsenic and fluoride levels in
male mice. Chem Biol Interact. 162:128–139. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Jin XQ, Xu H, Shi HY, Zhang JM and Zhang
HQ: Fluoride-induced oxidative stress of osteoblasts and protective
effects of baicalein against fluoride toxicity. Biol Trace Elem
Res. 116:81–89. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Varol E, Icli A, Aksoy F, Bas HA, Sutcu R,
Ersoy IH, Varol S and Ozaydin M: Evaluation of total oxidative
status and total antioxidant capacity in patients with endemic
fluorosis. Toxicol Ind Health. 29:175–180. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Sharma R, Tsuchiya M and Bartlett JD:
Fluoride induces endoplasmic reticulum stress and inhibits protein
synthesis and secretion. Environ Health Perspect. 116:1142–1146.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Kubota K, Lee DH, Tsuchiya M, Young CS,
Everett ET, Martinez-Mier EA, Snead ML, Nguyen L, Urano F and
Bartlett JD: Fluoride induces endoplasmic reticulum stress in
ameloblasts responsible for dental enamel formation. J Biol Chem.
280:23194–23202. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Lyaruu DM, de Jong M, Bronckers AL and
Wöltgens JH: Ultrastructure of in-vitro recovery of mineralization
capacity of fluorotic enamel matrix in hamster tooth germs
pre-exposed to fluoride in organ culture during the secretory phase
of amelogenesis. Arch Oral Biol. 32:107–115. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Smith CE, Nanci A and Denbesten PK:
Effects of chronic fluoride exposure on morphometric parameters
defining the stages of amelogenesis and ameloblast modulation in
rat incisors. Anat Rec. 237:243–258. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhou R, Zaki AE and Eisenmann DR:
Morphometry and autoradiography of altered rat enamel protein
processing due to chronic exposure to fluoride. Arch Oral Biol.
41:739–747. 1996. View Article : Google Scholar : PubMed/NCBI
|