Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
November-2018 Volume 16 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2018 Volume 16 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

How pH is regulated during amelogenesis in dental fluorosis (Review)

  • Authors:
    • Mei Ji
    • Lili Xiao
    • Le Xu
    • Shengyun Huang
    • Dongsheng Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
  • Pages: 3759-3765
    |
    Published online on: September 11, 2018
       https://doi.org/10.3892/etm.2018.6728
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Amelogenesis is a complicated process that concerns the interaction between growing hydroxyapatite crystals and extracellular proteins, which requires the tight regulation of pH. In dental fluorosis, the balance of pH regulation is broken, leading to abnormal mineralization. The current review focuses on the electrolyte transport processes associated with pH homeostasis, particularly regarding the changes in ion transporters that occur during amelogenesis, following exposure to excessive fluoride. Furthermore, the possible mechanism of fluorosis is discussed on the basis of acid hypothesis. There are two main methods by which F‑ accelerates crystal formation in ameloblasts. Firstly, it induces the release of protons, lowering the pH of the cell microenvironment. The decreased pH stimulates the upregulation of ion transporters, which attenuates further declines in the pH. Secondly, F‑ triggers an unknown signaling pathway, causing changes in the transcription of ion transporters and upregulating the expression of bicarbonate transporters. This results in the release of a large amount of bicarbonate from ameloblasts, which may neutralize the pH to form a microenvironment that favors crystal nucleation. The decreased pH stimulates the diffusion of F‑ into the cytoplasm of amelobalsts along the concentration gradient formed by the release of protons. The retention of F‑ causes a series of pathological changes, including oxidative and endoplasmic reticulum stress. If the buffering capacity of ameloblasts facing F‑ toxicity holds, normal mineralization occurs; however, if F‑ levels are high enough to overwhelm the buffering capacity of ameloblasts, abnormal mineralization occurs, leading to dental fluorosis.
View Figures

Figure 1

View References

1 

Aoba T and Fejerskov O: Dental fluorosis: Chemistry and biology. Crit Rev Oral Biol Med. 13:155–170. 2002. View Article : Google Scholar : PubMed/NCBI

2 

Beltrán-Aguilar ED, Barker L and Dye BA: Prevalence and severity of dental fluorosis in the United States, 1999–2004. NCHS Data Brief. 1–8. 2010.

3 

Denbesten P and Li W: Chronic fluoride toxicity: Dental fluorosis. Monogr Oral Sci. 22:81–96. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Sierant ML and Bartlett JD: Stress response pathways in ameloblasts: Implications for amelogenesis and dental fluorosis. Cells. 1:631–645. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Mohamed AR, Thomson WM and Mackay TD: An epidemiological comparison of Dean's index and the developmental defects of enamel (DDE) index. J Public Health Dent. 70:344–347. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Lyaruu DM, Medina JF, Sarvide S, Bervoets TJ, Everts V, Denbesten PK, Smith CE and Bronckers AL: Barrier formation: Potential molecular mechanism of enamel fluorosis. J Dent Res. 93:94–102. 2014. View Article : Google Scholar

7 

Smith CE: Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med. 9:128–161. 1998. View Article : Google Scholar : PubMed/NCBI

8 

Paine ML, Snead ML, Wang HJ, Abuladze N, Pushkin A, Liu W, Kao LY, Wall SM, Kim YH and Kurtz I: Role of NBCe1 and AE2 in secretory ameloblasts. J Dent Res. 87:391–395. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Lacruz RS, Nanci A, Kurtz I, Wright JT and Paine ML: Regulation of pH during amelogenesis. Calcif Tissue Int. 86:91–103. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Simmer JP and Fincham AG: Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med. 6:84–108. 1995. View Article : Google Scholar : PubMed/NCBI

11 

Sasaki S, Takagi T and Suzuki M: Cyclical changes in pH in bovine developing enamel as sequential bands. Arch Oral Biol. 36:227–231. 1991. View Article : Google Scholar : PubMed/NCBI

12 

Takagi T, Ogasawara T, Tagami J, Akao M, Kuboki Y, Nagai N and LeGeros RZ: pH and carbonate levels in developing enamel. Connect Tissue Res. 38:181–205. 1998. View Article : Google Scholar : PubMed/NCBI

13 

Bawden JW, Crenshaw MA, Wright JT and LeGeros RZ: Consideration of possible biologic mechanisms of fluorosis. J Dent Res. 74:1349–1352. 1995. View Article : Google Scholar : PubMed/NCBI

14 

Robinson C, Connell S and Kirkham J: Dental enamel-a biological ceramic: Regular substructures in enamel hydroxyapatite crystals revealed by atomic force microscopy. J Mater Chem. 14:2242–2248. 2004. View Article : Google Scholar

15 

Robinson C, Connell S, Kirkham J, Brookes SJ, Shore RC and Smith AM: The effect of fluoride on the developing tooth. Caries Res. 38:268–276. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Bronckers AL, Lyaruu DM and DenBesten PK: The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis. Crit Rev Oral Biol Med. 88:877–893. 2009.

17 

Yan Q, Zhang Y, Li W and Denbesten PK: Micromolar fluoride alters ameloblast lineage cells in vitro. J Dent Res. 86:336–340. 2007. View Article : Google Scholar : PubMed/NCBI

18 

Wei W, Gao Y, Wang C, Zhao L and Sun D: Excessive fluoride induces endoplasmic reticulum stress and interferes enamel proteinases secretion. Environ Toxicol. 28:332–341. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Zhang Y, Li W, Chi HS, Chen J and Denbesten PK: JNK/c-Jun signaling pathway mediates the fluoride-induced down-regulation of MMP-20 in vitro. Matrix Biol. 26:633–641. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Jacinto-Alemán LF, Hernández-Guerrero JC, Trejo-Solís C, Jiménez-Farfán MD and Fernández-Presas AM: In vitro effect of sodium fluoride on antioxidative enzymes and apoptosis during murine odontogenesis. J Oral Pathol Med. 39:709–714. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Yang T, Zhang Y, Li Y, Hao Y, Zhou M, Dong N and Duan X: High amounts of fluoride induce apoptosis/cell death in matured ameloblast-like LS8 cells by downregulating Bcl-2. Arch Oral Biol. 58:1165–1173. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Matsuo S, Inai T, Kurisu K, Kiyomiya K and Kurebe M: Influence of fluoride on secretory pathway of the secretory ameloblast in rat incisor tooth germs exposed to sodium fluoride. Arch Toxicol. 70:420–429. 1996. View Article : Google Scholar : PubMed/NCBI

23 

Hannas AR, Pereira JC, Granjeiro JM and Tjäderhane L: The role of matrix metalloproteinases in the oral environment. Acta Odontol Scand. 65:1–13. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Denbesten PK and Heffernan LM: Enamel proteases in secretory and maturation enamel of rats ingesting 0 and 100 PPM fluoride in drinking water. Adv Dent Res. 3:199–202. 1989. View Article : Google Scholar : PubMed/NCBI

25 

Zheng L, Zhang Y, He P, Kim J, Schneider R, Bronckers AL, Lyaruu DM and DenBesten PK: NBCe1 in mouse and human ameloblasts may be indirectly regulated by fluoride. J Dent Res. 90:782–787. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Duan X, Mao Y, Wen X, Yang T and Xue Y: Excess fluoride interferes with chloride-channel-dependent endocytosis in ameloblasts. J Dent Res. 90:175–180. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Nanci A: Ten Cate's oral histology: Development, structure, and function. Ebook, MosbyElsevier. 1–432. 2007.

28 

Hu JC, Chun YH, Al Hazzazzi T and Simmer JP: Enamel formation and amelogenesis imperfecta. Cells Tissues Organs. 186:78–85. 2007. View Article : Google Scholar : PubMed/NCBI

29 

Sharma R, Tsuchiya M, Skobe Z, Tannous BA and Bartlett JD: The acid test of fluoride: How pH modulates toxicity. PLoS One. 5:e108952010. View Article : Google Scholar : PubMed/NCBI

30 

Varga G, Kerémi B, Bori E and Földes A: Function and repair of dental enamel-potential role of epithelial transport processes of ameloblasts. Pancreatology. 15 Suppl 4:S55–S60. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Nanci A and Smith CE: Development and calcification of enamel. Calcification in biological systems. 313–343. 1992.

32 

Bartlett JD and Simmer JP: Proteinases in developing dental enamel. Crit Rev Oral Biol Med. 10:425–441. 1999. View Article : Google Scholar : PubMed/NCBI

33 

Smith CE, Issid M, Margolis HC and Moreno EC: Developmental changes in the pH of enamel fluid and its effects on matrix-resident proteinases. Adv Dent Res. 10:159–169. 1996. View Article : Google Scholar : PubMed/NCBI

34 

Simmer JP, Fukae M, Tanabe T, Yamakoshi Y, Uchida T, Xue J, Margolis HC, Shimizu M, DeHart BC, Hu CC and Bartlett JD: Purification, characterization, and cloning of enamel matrix serine proteinase 1. J Dent Res. 77:377–386. 1998. View Article : Google Scholar : PubMed/NCBI

35 

Smith CE, Chong DL, Bartlett JD and Margolis HC: Mineral acquisition rates in developing enamel on maxillary and mandibular incisors of rats and mice: Implications to extracellular acid loading as apatite crystals mature. J Bone Miner Res. 20:240–249. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Damkier HH, Josephsen K, Takano Y, Zahn D, Fejerskov O and Frische S: Fluctuations in surface pH of maturing rat incisor enamel are a result of cycles of H(+)-secretion by ameloblasts and variations in enamel buffer characteristics. Bone. 60:227–234. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Bronckers AL, Lyaruu DM, Guo J, Bijvelds MJ, Bervoets TJ, Zandieh-Doulabi B, Medina JF, Li Z, Zhang Y and DenBesten PK: Composition of mineralizing incisor enamel in CFTR-deficient mice. Eur J Oral Sci. 123:9–16. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Smith CE, Nanci A and Moffat P: Evidence by signal peptide trap technology for the expression of carbonic anhydrase 6 in rat incisor enamel organs. Eur J Oral Sci. 114 Suppl 1:(S147): S153 Discussion 164–165. 380–381. 2006.

39 

Hou J, Situ Z and Duan X: ClC chloride channels in tooth germ and odontoblast-like MDPC-23 cells. Arch Oral Biol. 53:874–878. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Su X, Yang F, Duan X, Yuan L, Li Y and Wu L: Expression of CLC-7 during mouse tooth development. J Pract Stomatol. 24:342–345. 2008.(In Chinese).

41 

Duan X, Mao Y, Yang T, Wen X, Wang H, Hou J, Xue Y and Zhang R: ClC-5 regulates dentin development through TGF-beta1 pathway. Arch Oral Biol. 54:1118–1124. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Josephsen K, Takano Y, Frische S, Praetorius J, Nielsen S, Aoba T and Fejerskov O: Ion transporters in secretory and cyclically modulating ameloblasts: A new hypothesis for cellular control of preeruptive enamel maturation. Am J Physiol Cell Physiol. 299:C1299–C1307. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Lacruz RS, Nanci A, White SN, Wen X, Wang H, Zalzal SF, Luong VQ, Schuetter VL, Conti PS, Kurtz I and Paine ML: The sodium bicarbonate cotransporter (NBCe1) is essential for normal development of mouse dentition. J Biol Chem. 285:24432–24438. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Okumura R, Shibukawa Y, Muramatsu T, Hashimoto S, Nakagawa K, Tazaki M and Shimono M: Sodium-calcium exchangers in rat ameloblasts. J Pharmacol Sci. 112:223–230. 2010. View Article : Google Scholar : PubMed/NCBI

45 

Bronckers AL, Guo J, Zandieh-Doulabi B, Bervoets TJ, Lyaruu DM, Li X, Wangemann P and DenBesten P: Developmental expression of SLC26A4 (Pendrin) during amelogenesis in developing rodent teeth. Eur J Oral Sci. 119 Suppl 1:S185–S192. 2011. View Article : Google Scholar

46 

Hu P, Lacruz RS, Smith CE, Smith SM, Kurtz I and Paine ML: Expression of the sodium/calcium/potassium exchanger, NCKX4, in ameloblasts. Cells Tissues Organs. 196:501–509. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Lacruz RS, Smith CE, Moffatt P, Chang EH, Bromage TG, Bringas P Jr, Nanci A, Baniwal SK, Zabner J, Welsh MJ, et al: Requirements for ion and solute transport, and pH regulation during enamel maturation. J Cell Physiol. 227:1776–1785. 2012. View Article : Google Scholar : PubMed/NCBI

48 

Lacruz RS, Brookes SJ, Wen X, Jimenez JM, Vikman S, Hu P, White SN, Lyngstadaas SP, Okamoto CT, Smith CE and Paine ML: Adaptor protein complex 2 (ap-2) mediated, clathrin dependent endocytosis, and related gene activities, are a prominent feature during maturation stage amelogenesis. J Bone Miner Res. 28:672–687. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Lacruz RS, Smith CE, Kurtz I, Hubbard MJ and Paine ML: New paradigms on the transport functions of maturation-stage ameloblasts. J Dent Res. 92:122–129. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Duan X: Ion channels, channelopathies, and tooth formation. J Dent Res. 93:117–125. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Bronckers AL, Lyaruu D, Jalali R, Medina JF, Zandieh-Doulabi B and DenBesten PK: Ameloblast modulation and transport of Cl-, Na+, and K+ during amelogenesis. J Dent Res. 94:1740–1747. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Wright JT, Kiefer CL, Hall KI and Grubb BR: Abnormal enamel development in a cystic fibrosis transgenic mouse model. J Dent Res. 75:966–973. 1996. View Article : Google Scholar : PubMed/NCBI

53 

Sui W, Boyd C and Wright JT: Altered pH regulation during enamel development in the cystic fibrosis mouse incisor. J Dent Res. 82:388–392. 2003. View Article : Google Scholar : PubMed/NCBI

54 

Bronckers AL, Kalogeraki L, Jorna HJ, Wilke M, Bervoets TJ, Lyaruu DM, Zandieh-Doulabi B, Denbesten PK and de Jonge H: The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in maturation stage ameloblasts, odontoblasts and bone cells. Bone. 46:1188–1196. 2010. View Article : Google Scholar : PubMed/NCBI

55 

Ko SB, Zeng W, Dorwart MR, Luo X, Kim KH, Millen L, Goto H, Naruse S, Soyombo A, Thomas PJ and Muallem S: Gating of CFTR by the STAS domain of SLC26 transporters. Nat Cell Biol. 6:343–350. 2004. View Article : Google Scholar : PubMed/NCBI

56 

Mount DB and Romero MF: The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch. 447:710–721. 2004. View Article : Google Scholar : PubMed/NCBI

57 

Ishiguro H, Steward MC, Naruse S, Ko SB, Goto H, Case RM, Kondo T and Yamamoto A: CFTR functions as a bicarbonate channel in pancreatic duct cells. J Gen Physiol. 133:315–326. 2009. View Article : Google Scholar : PubMed/NCBI

58 

Shcheynikov N, Kim KH, Kim KM, Dorwart MR, Ko SB, Goto H, Naruse S, Thomas PJ and Muallem S: Dynamic control of cystic fibrosis transmembrane conductance regulator Cl(−)/HCO3(−) selectivity by external Cl(−). J Biol Chem. 279:21857–21865. 2004. View Article : Google Scholar : PubMed/NCBI

59 

Pushkin A and Kurtz I: SLC4 base (HCO3−, CO32−) transporters: Classification function, structure, genetic diseases, and knockout models. Am J Physiol Renal Physiol. 290:F580–F599. 2006. View Article : Google Scholar : PubMed/NCBI

60 

Jalali R, Guo J, Zandieh-Doulabi B, Bervoets TJ, Paine ML, Boron WF, Parker MD, Bijvelds MJ, Medina JF, DenBesten PK and Bronckers AL: NBCe1 (SLC4A4) a potential pH regulator in enamel organ cells during enamel development in the mouse. Cell Tissue Res. 358:433–442. 2014. View Article : Google Scholar : PubMed/NCBI

61 

Bronckers AL, Lyaruu DM, Jansen ID, Medina JF, Kellokumpu S, Hoeben KA, Gawenis LR, Oude-Elferink RP and Everts V: Localization and function of the anion exchanger Ae2 in developing teeth and orofacial bone in rodents. J Exp Zool B Mol Dev Evol. 312B:1–387. 2009. View Article : Google Scholar

62 

Arquitt CK, Boyd C and Wright JT: Cystic fibrosis transmembrane regulator gene (CFTR) is associated with abnormal enamel formation. J Dent Res. 81:492–496. 1999. View Article : Google Scholar

63 

Gawenis LR, Ledoussal C, Judd LM, Prasad V, Alper SL, Stuart-Tilley A, Woo AL, Grisham C, Sanford LP, Doetschman T, et al: Mice with a targeted disruption of the AE2 Cl-/HCO3- exchanger are achlorhydric. J Biol Chem. 279:30531–30539. 2004. View Article : Google Scholar : PubMed/NCBI

64 

Dinour D, Chang MH, Satoh J, Smith BL, Angle N, Knecht A, Serban I, Holtzman EJ and Romero MF: A novel missense mutation in the sodium bicarbonate cotransporter (NBCe1/SLC4A4) causes proximal tubular acidosis and glaucoma through ion transport defects. J Biol Chem. 279:52238–52246. 2004. View Article : Google Scholar : PubMed/NCBI

65 

Inatomi J, Horita H, Braverman N, Sekine T, Yamada H, Suzuki Y, Kawahara K, Moriyama N, Kudo A, Kawakami H, et al: Mutational and functional analysis of SLC4A4 in a patient with proximal renal tubular acidosis. Pflugers Arch. 448:438–444. 2004. View Article : Google Scholar : PubMed/NCBI

66 

Royaux IE, Belyantseva IA, Wu T, Kachar B, Everett LA, Marcus DC and Green ED: Localization and functional studies of pendrin in the mouse inner ear provide insight about the etiology of deafness in pendred syndrome. J Assoc Res Otolaryngol. 4:394–404. 2003. View Article : Google Scholar : PubMed/NCBI

67 

Wall SM, Hassell KA, Royaux IE, Green ED, Chang JY, Shipley GL and Verlander JW: Localization of pendrin in mouse kidney. Am J Physiol Renal Physiol. 284:F229–F241. 2003. View Article : Google Scholar : PubMed/NCBI

68 

Wangemann P, Kim HM, Billings S, Nakaya K, Li X, Singh R, Sharlin DS, Forrest D, Marcus DC and Fong P: Developmental delays consistent with cochlear hypothyroidism contribute to failure to develop hearing in mice lacking Slc26a4/pendrin expression. Am J Physiol Renal Physiol. 297:F1435–F1447. 2009. View Article : Google Scholar : PubMed/NCBI

69 

Wang SS, Devuyst O, Courtoy PJ, Wang XT, Wang H, Wang Y, Thakker RV, Guggino S and Guggino WB: Mice lacking renal chloride channel, CLC-5, are a model for Dent's disease, a nephrolithiasis disorder associated with defective receptormediated endocytosis. Hum Mol Genet. 9:2937–2945. 2000. View Article : Google Scholar : PubMed/NCBI

70 

Duan X: Spatial-temporal distribution of CLC-5 in rat tooth germ development. J Dent Res. 83:27412004.

71 

Guo J, Bervoets TJ, Henriksen K, Everts V and Bronckers AL: Null mutation of chloride channel 7 (Clcn7) impairs dental root formation but does not affect enamel mineralization. Cell Tissue Res. 363:361–370. 2016. View Article : Google Scholar : PubMed/NCBI

72 

Leisle L, Ludwig CF, Wagner FA, Jentsch TJ and Stauber T: ClC-7 is a slowly voltage-gated 2Cl(−)/1H(+)-exchanger and requires Ostm1 for transport activity. EMBO J. 30:2140–2152. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Lange PF, Wartosch L, Jentsch TJ and Fuhrmann JC: ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature. 440:220–223. 2006. View Article : Google Scholar : PubMed/NCBI

74 

Kornak U, Kasper D, Bösl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G and Jentsch TJ: Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 104:205–215. 2001. View Article : Google Scholar : PubMed/NCBI

75 

Kasper D, Planells-Cases R, Fuhrmann JC, Scheel O, Zeitz O, Ruether K, Schmitt A, Poët M, Steinfeld R, Schweizer M, et al: Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J. 24:1079–1091. 2005. View Article : Google Scholar : PubMed/NCBI

76 

Steinberg BE, Huynh KK, Brodovitch A, Jabs S, Stauber T, Jentsch TJ and Grinstein S: A cation counterflux supports lysosomal acidification. J Cell Biol. 189:1171–1186. 2010. View Article : Google Scholar : PubMed/NCBI

77 

Wen X, Lacruz RS and Paine ML: Dental and cranial pathologies in mice lacking the Cl(−)/H(+)-exchanger ClC-7. Anat Rec (Hoboken). 298:1502–1508. 2015. View Article : Google Scholar : PubMed/NCBI

78 

Tripp BC, Smith K and Ferry JG: Carbonic anhydrae: New insights for an ancient enzyme. J Biol Chem. 276:48615–48618. 2001. View Article : Google Scholar : PubMed/NCBI

79 

Chegwidden WR and Carter ND: Introduction to the carbonic anhydrases. EXS. 90:14–28. 2000.

80 

Lin HM, Nakamura H, Noda T and Ozawa H: Localization of H(+)-ATPase and carbonic anhydrase II in ameloblasts at maturation. Calcif Tissue Int. 55:38–45. 1994. View Article : Google Scholar : PubMed/NCBI

81 

Fan Y, Zhou Y, Zhou X, Sun F, Gao B, Wan M, Zhou X, Sun J, Xu X, Cheng L, et al: MicroRNA 224 regulates ion transporter expression in ameloblasts to coordinate enamel mineralization. Mol Cell Biol. 35:2875–2890. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Brown WE, Edelman N and Tomzaic BB: Octacalcium phosphate as precursors in biomineral formation. Adv Dent Res. 1:306–313. 1987. View Article : Google Scholar : PubMed/NCBI

83 

Kawase T and Suzuki A: Studies on the transmembrane migration of fluoride and its effects on proliferation of L-929 fibroblasts (L cells) in vitro. Arch Oral Biol. 34:103–107. 1989. View Article : Google Scholar : PubMed/NCBI

84 

He H, Ganapathy V, Isales CM and Whitford GM: pH-dependent fluoride transport in intestinal brush border membrane vesicles. Biochim Biophys Acta. 1372:244–254. 1998. View Article : Google Scholar : PubMed/NCBI

85 

Mittal M and Flora SJ: Effects of individual and combined exposure to sodium arsenite and sodium fluoride on tissue oxidative stress, arsenic and fluoride levels in male mice. Chem Biol Interact. 162:128–139. 2006. View Article : Google Scholar : PubMed/NCBI

86 

Jin XQ, Xu H, Shi HY, Zhang JM and Zhang HQ: Fluoride-induced oxidative stress of osteoblasts and protective effects of baicalein against fluoride toxicity. Biol Trace Elem Res. 116:81–89. 2007. View Article : Google Scholar : PubMed/NCBI

87 

Varol E, Icli A, Aksoy F, Bas HA, Sutcu R, Ersoy IH, Varol S and Ozaydin M: Evaluation of total oxidative status and total antioxidant capacity in patients with endemic fluorosis. Toxicol Ind Health. 29:175–180. 2013. View Article : Google Scholar : PubMed/NCBI

88 

Sharma R, Tsuchiya M and Bartlett JD: Fluoride induces endoplasmic reticulum stress and inhibits protein synthesis and secretion. Environ Health Perspect. 116:1142–1146. 2008. View Article : Google Scholar : PubMed/NCBI

89 

Kubota K, Lee DH, Tsuchiya M, Young CS, Everett ET, Martinez-Mier EA, Snead ML, Nguyen L, Urano F and Bartlett JD: Fluoride induces endoplasmic reticulum stress in ameloblasts responsible for dental enamel formation. J Biol Chem. 280:23194–23202. 2005. View Article : Google Scholar : PubMed/NCBI

90 

Lyaruu DM, de Jong M, Bronckers AL and Wöltgens JH: Ultrastructure of in-vitro recovery of mineralization capacity of fluorotic enamel matrix in hamster tooth germs pre-exposed to fluoride in organ culture during the secretory phase of amelogenesis. Arch Oral Biol. 32:107–115. 1987. View Article : Google Scholar : PubMed/NCBI

91 

Smith CE, Nanci A and Denbesten PK: Effects of chronic fluoride exposure on morphometric parameters defining the stages of amelogenesis and ameloblast modulation in rat incisors. Anat Rec. 237:243–258. 1993. View Article : Google Scholar : PubMed/NCBI

92 

Zhou R, Zaki AE and Eisenmann DR: Morphometry and autoradiography of altered rat enamel protein processing due to chronic exposure to fluoride. Arch Oral Biol. 41:739–747. 1996. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ji M, Xiao L, Xu L, Huang S and Zhang D: How pH is regulated during amelogenesis in dental fluorosis (Review). Exp Ther Med 16: 3759-3765, 2018.
APA
Ji, M., Xiao, L., Xu, L., Huang, S., & Zhang, D. (2018). How pH is regulated during amelogenesis in dental fluorosis (Review). Experimental and Therapeutic Medicine, 16, 3759-3765. https://doi.org/10.3892/etm.2018.6728
MLA
Ji, M., Xiao, L., Xu, L., Huang, S., Zhang, D."How pH is regulated during amelogenesis in dental fluorosis (Review)". Experimental and Therapeutic Medicine 16.5 (2018): 3759-3765.
Chicago
Ji, M., Xiao, L., Xu, L., Huang, S., Zhang, D."How pH is regulated during amelogenesis in dental fluorosis (Review)". Experimental and Therapeutic Medicine 16, no. 5 (2018): 3759-3765. https://doi.org/10.3892/etm.2018.6728
Copy and paste a formatted citation
x
Spandidos Publications style
Ji M, Xiao L, Xu L, Huang S and Zhang D: How pH is regulated during amelogenesis in dental fluorosis (Review). Exp Ther Med 16: 3759-3765, 2018.
APA
Ji, M., Xiao, L., Xu, L., Huang, S., & Zhang, D. (2018). How pH is regulated during amelogenesis in dental fluorosis (Review). Experimental and Therapeutic Medicine, 16, 3759-3765. https://doi.org/10.3892/etm.2018.6728
MLA
Ji, M., Xiao, L., Xu, L., Huang, S., Zhang, D."How pH is regulated during amelogenesis in dental fluorosis (Review)". Experimental and Therapeutic Medicine 16.5 (2018): 3759-3765.
Chicago
Ji, M., Xiao, L., Xu, L., Huang, S., Zhang, D."How pH is regulated during amelogenesis in dental fluorosis (Review)". Experimental and Therapeutic Medicine 16, no. 5 (2018): 3759-3765. https://doi.org/10.3892/etm.2018.6728
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team