Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
May-2019 Volume 17 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2019 Volume 17 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Comparison between curcumin and all‑trans retinoic acid in the osteogenic differentiation of mouse bone marrow mesenchymal stem cells

  • Authors:
    • Mahmoud F. Ahmed
    • Ahmed Kamel El‑Sayed
    • Hao Chen
    • Ruifeng Zhao
    • Mohamed S. Yusuf
    • Qisheng Zuo
    • Yani Zhang
    • Bichun Li
  • View Affiliations / Copyright

    Affiliations: Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China, College of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt, Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
    Copyright: © Ahmed et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 4154-4166
    |
    Published online on: March 20, 2019
       https://doi.org/10.3892/etm.2019.7414
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The use of bone marrow mesenchymal stem cells (BMSCs) has great potential in cell therapy, particularly in the orthopedic field. BMSCs represent a valuable renewable cell source that have been successfully utilized to treat damaged skeletal tissue and bone defects. BMSCs can be induced to differentiate into osteogenic lineages via the addition of inducers to the growth medium. The present study examined the effects of all‑trans retinoic acid (ATRA) and curcumin on the osteogenic differentiation of mouse BMSCs. Morphological changes, the expression levels of the bone‑associated gene markers bone morphogenetic protein 2, runt‑related transcription factor and osterix during differentiation, an in vitro mineralization assay, and changes in osteocalcin expression revealed that curcumin supplementation promoted the osteogenic differentiation of BMSCs. By contrast, the application of ATRA increased osteogenic differentiation during the early stages, but during the later stages, it decreased the mineralization of differentiated cells. In addition, to the best of our knowledge, the present study is the first to examine the effect of curcumin on the osteogenic potency of mouse embryonic fibroblasts (MEFs) after reprogramming with human lim mineralization protein (hLMP‑3), which is a positive osteogenic regulator. The results revealed that curcumin‑supplemented culture medium increased hLMP‑3 osteogenic potency compared with that of MEFs cultured in the non‑supplemented medium. The present results demonstrate that enrichment of the osteogenic culture medium with curcumin, a natural osteogenic inducer, increased the osteogenic differentiation capacity of BMSCs as well as that of MEFs reprogrammed with hLMP‑3.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Wrobel E, Leszczynska J and Brzoska E: The characteristics of human bone-derived cells (HBDCS) during osteogenesis in vitro. Cell Mol Biol Lett. 21:262016. View Article : Google Scholar : PubMed/NCBI

2 

Bianco P, Riminucci M, Gronthos S and Robey PG: Bone marrow stromal stem cells: Nature, biology, and potential applications. Stem Cells. 19:180–192. 2001. View Article : Google Scholar : PubMed/NCBI

3 

Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, et al: Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res. 49:328–337. 2000. View Article : Google Scholar : PubMed/NCBI

4 

Petite H, Viateau V, Bensaïd W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L and Guillemin G: Tissue-engineered bone regeneration. Nat Biotechnol. 18:959–963. 2000. View Article : Google Scholar : PubMed/NCBI

5 

Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E and Marcacci M: Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med. 344:385–386. 2001. View Article : Google Scholar : PubMed/NCBI

6 

Beresford JN, Bennett JH, Devlin C, Leboy PS and Owen ME: Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci. 102:341–351. 1992.PubMed/NCBI

7 

Caplan AI: Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 213:341–347. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Jaiswal N, Haynesworth SE, Caplan AI and Bruder SP: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem. 64:295–312. 1997. View Article : Google Scholar : PubMed/NCBI

9 

Wu L, Chaudhary SC, Atigadda VR, Belyaeva OV, Harville SR, Elmets CA, Muccio DD, Athar M and Kedishvili NY: Retinoid X receptor agonists upregulate genes responsible for the biosynthesis of all-trans-retinoic acid in human epidermis. PLoS One. 11:e01535562016. View Article : Google Scholar : PubMed/NCBI

10 

Jacobson A, Johansson S, Branting M and Melhus H: Vitamin A differentially regulates RANKL and OPG expression in human osteoblasts. Biochem Biophys Res Commun. 322:162–167. 2004. View Article : Google Scholar : PubMed/NCBI

11 

Michaëlsson K, Lithell H, Vessby B and Melhus H: Serum retinol levels and the risk of fracture. N Engl J Med. 348:287–294. 2003. View Article : Google Scholar : PubMed/NCBI

12 

Skillington J, Choy L and Derynck R: Bone morphogenetic protein and retinoic acid signaling cooperate to induce osteoblast differentiation of preadipocytes. J Cell Biol. 159:135–146. 2002. View Article : Google Scholar : PubMed/NCBI

13 

Hisada K, Hata K, Ichida F, Matsubara T, Orimo H, Nakano T, Yatani H, Nishimura R and Yoneda T: Retinoic acid regulates commitment of undifferentiated mesenchymal stem cells into osteoblasts and adipocytes. J Bone Miner Metab. 31:53–63. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Malladi P, Xu Y, Yang GP and Longaker MT: Functions of vitamin D, retinoic acid, and dexamethasone in mouse adipose-derived mesenchymal cells. Tissue Eng. 12:2031–2040. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Mirsaidi A, Kleinhans KN, Rimann M, Tiaden AN, Stauber M, Rudolph KL and Richards PJ: Telomere length, telomerase activity and osteogenic differentiation are maintained in adipose-derived stromal cells from senile osteoporotic SAMP6 mice. J Tissue Eng Regen Med. 6:378–390. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Song HM, Nacamuli RP, Xia W, Bari AS, Shi YY, Fang TD and Longaker MT: High-dose retinoic acid modulates rat calvarial osteoblast biology. J Cell Physiol. 202:255–262. 2005. View Article : Google Scholar : PubMed/NCBI

17 

Tiaden AN, Breiden M, Mirsaidi A, Weber FA, Bahrenberg G, Glanz S, Cinelli P, Ehrmann M and Richards PJ: Human serine protease HTRA1 positively regulates osteogenesis of human bone marrow-derived mesenchymal stem cells and mineralization of differentiating bone-forming cells through the modulation of extracellular matrix protein. Stem Cells. 30:2271–2282. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Wan DC, Shi YY, Nacamuli RP, Quarto N, Lyons KM and Longaker MT: Osteogenic differentiation of mouse adipose-derived adult stromal cells requires retinoic acid and bone morphogenetic protein receptor type IB signaling. Proc Natl Acad Sci USA. 103:12335–12340. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Wan DC, Siedhoff MT, Kwan MD, Nacamuli RP, Wu BM and Longaker MT: Refining retinoic acid stimulation for osteogenic differentiation of murine adipose-derived adult stromal cells. Tissue Eng. 13:1623–1631. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Choong PF, Martin TJ and Ng KW: Effects of ascorbic acid, calcitriol, and retinoic acid on the differentiation of preosteoblasts. J Orthop Res. 11:638–647. 1993. View Article : Google Scholar : PubMed/NCBI

21 

Descalzi Cancedda F, Gentili C, Manduca P and Cancedda R: Hypertrophic chondrocytes undergo further differentiation in culture. J Cell Biol. 117:427–435. 1992. View Article : Google Scholar : PubMed/NCBI

22 

Leboy PS, Beresford JN, Devlin C and Owen ME: Dexamethasone induction of osteoblast mRNAs in rat marrow stromal cell cultures. J Cell Physiol. 146:370–378. 1991. View Article : Google Scholar : PubMed/NCBI

23 

Iba K, Chiba H, Yamashita T, Ishii S and Sawada N: Phase-independent inhibition by retinoic acid of mineralization correlated with loss of tetranectin expression in a human osteoblastic cell line. Cell Struct Funct. 26:227–233. 2001. View Article : Google Scholar : PubMed/NCBI

24 

Lind T, Sundqvist A, Hu L, Pejler G, Andersson G, Jacobson A and Melhus H: Vitamin a is a negative regulator of osteoblast mineralization. PLoS One. 8:e823882013. View Article : Google Scholar : PubMed/NCBI

25 

Ohishi K, Nishikawa S, Nagata T, Yamauchi N, Shinohara H, Kido J and Ishida H: Physiological concentrations of retinoic acid suppress the osteoblastic differentiation of fetal rat calvaria cells in vitro. Eur J Endocrinol. 133:335–341. 1995. View Article : Google Scholar : PubMed/NCBI

26 

Nallamshetty S, Wang H, Rhee EJ, Kiefer FW, Brown JD, Lotinun S, Le P, Baron R, Rosen CJ and Plutzky J: Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo. PLoS One. 8:e713072013. View Article : Google Scholar : PubMed/NCBI

27 

Chen M, Huang HZ, Wang M and Wang AX: Retinoic acid inhibits osteogenic differentiation of mouse embryonic palate mesenchymal cells. Birth Defects Res A Clin Mol Teratol. 88:965–970. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Xin M, Yang Y, Zhang D, Wang J, Chen S and Zhou D: Attenuation of hind-limb suspension-induced bone loss by curcumin is associated with reduced oxidative stress and increased vitamin D receptor expression. Osteoporos Int. 26:2665–2676. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Aggarwal BB, Sundaram C, Malani N and Ichikawa H: Curcumin: The Indian solid gold. Adv Exp Med Biol. 595:1–75. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Shishodia S, Sethi G and Aggarwal BB: Curcumin: Getting back to the roots. Ann N Y Acad Sci. 1056:206–217. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Riva A, Togni S, Giacomelli L, Franceschi F, Eggenhoffner R, Feragalli B, Belcaro G, Cacchio M, Shu H and Dugall M: Effects of a curcumin-based supplementation in asymptomatic subjects with low bone density: A preliminary 24-week supplement study. Eur Rev Med Pharmacol Sci. 21:1684–1689. 2017.PubMed/NCBI

32 

Lone J, Choi JH, Kim SW and Yun JW: Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes. J Nutr Biochem. 27:193–202. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Rohanizadeh R, Deng Y and Verron E: Therapeutic actions of curcumin in bone disorders. Bonekey Rep. 5:7932016. View Article : Google Scholar : PubMed/NCBI

34 

Yun JW: Possible anti-obesity therapeutics from nature-a review. Phytochemistry. 71:1625–1641. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Cho DC, Jung HS, Kim KT, Jeon Y, Sung JK and Hwang JH: Therapeutic advantages of treatment of high-dose curcumin in the ovariectomized rat. J Korean Neurosurg Soc. 54:461–466. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Folwarczna J, Zych M and Trzeciak HI: Effects of curcumin on the skeletal system in rats. Pharmacol Rep. 62:900–909. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Hussan F, Ibraheem NG, Kamarudin TA, Shuid AN, Soelaiman IN and Othman F: Curcumin protects against ovariectomy-induced bone changes in rat model. Evid Based Complement Alternat Med. 2012:1749162012. View Article : Google Scholar : PubMed/NCBI

38 

Kim WK, Ke K, Sul OJ, Kim HJ, Kim SH, Lee MH, Kim HJ, Kim SY, Chung HT and Choi HS: Curcumin protects against ovariectomy-induced bone loss and decreases osteoclastogenesis. J Cell Biochem. 112:3159–3166. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Yang MW, Wang TH, Yan PP, Chu LW, Yu J, Gao ZD, Li YZ and Guo BL: Curcumin improves bone microarchitecture and enhances mineral density in APP/PS1 transgenic mice. Phytomedicine. 18:205–213. 2011. View Article : Google Scholar : PubMed/NCBI

40 

French DL, Muir JM and Webber CE: The ovariectomized, mature rat model of postmenopausal osteoporosis: An assessment of the bone sparing effects of curcumin. Phytomedicine. 15:1069–1078. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Kuncha M, Naidu VG, Sahu BD, Gadepalli SG and Sistla R: Curcumin potentiates the anti-arthritic effect of prednisolone in Freund's complete adjuvant-induced arthritic rats. J Pharm Pharmacol. 66:133–144. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Jain S, Meka SRK and Chatterjee K: Curcumin eluting nanofibers augment osteogenesis toward phytochemical based bone tissue engineering. Biomed Mater. 11:0550072016. View Article : Google Scholar : PubMed/NCBI

43 

Aggarwal BB, Kumar A and Bharti AC: Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res. 23:363–398. 2003.PubMed/NCBI

44 

Biswas S and Rahman I: Modulation of steroid activity in chronic inflammation: A novel anti-inflammatory role for curcumin. Mol Nutr Food Res. 52:987–994. 2008. View Article : Google Scholar : PubMed/NCBI

45 

Goel A, Jhurani S and Aggarwal BB: Multi-targeted therapy by curcumin: how spicy is it? Mol Nutr Food Res. 52:1010–1030. 2008. View Article : Google Scholar : PubMed/NCBI

46 

López-Lázaro M: Anticancer and carcinogenic properties of curcumin: Considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res. 52 Suppl 1:S103–S127. 2008.PubMed/NCBI

47 

Bharti AC, Takada Y and Aggarwal BB: Curcumin (diferuloylmethane) inhibits receptor activator of NF-kappa B ligand-induced NF-kappa B activation in osteoclast precursors and suppresses osteoclastogenesis. J Immunol. 172:5940–5947. 2004. View Article : Google Scholar : PubMed/NCBI

48 

Chan WH, Wu HY and Chang WH: Dosage effects of curcumin on cell death types in a human osteoblast cell line. Food Chem Toxicol. 44:1362–1371. 2006. View Article : Google Scholar : PubMed/NCBI

49 

Notoya M, Nishimura H, Woo JT, Nagai K, Ishihara Y and Hagiwara H: Curcumin inhibits the proliferation and mineralization of cultured osteoblasts. Eur J Pharmacol. 534:55–62. 2006. View Article : Google Scholar : PubMed/NCBI

50 

Ozaki K, Kawata Y, Amano S and Hanazawa S: Stimulatory effect of curcumin on osteoclast apoptosis. Biochem Pharmacol. 59:1577–1581. 2000. View Article : Google Scholar : PubMed/NCBI

51 

Von Metzler I, Krebbel H, Kuckelkorn U, Heider U, Jakob C, Kaiser M, Fleissner C, Terpos E and Sezer O: Curcumin diminishes human osteoclastogenesis by inhibition of the signalosome-associated I kappaB kinase. J Cancer Res Clin Oncol. 135:173–179. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Yamaguchi M, Hamamoto R, Uchiyama S and Ishiyama K: Effects of flavonoid on calcium content in femoral tissue culture and parathyroid hormone-stimulated osteoclastogenesis in bone marrow culture in vitro. Mol Cell Biochem. 303:83–88. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Gu Q, Cai Y, Huang C, Shi Q and Yang H: Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation. Pharmacogn Mag. 8:202–208. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Hou M, Song Y, Li Z, Luo C, Ou JS, Yu H, Yan J and Lu L: Curcumin attenuates osteogenic differentiation and calcification of rat vascular smooth muscle cells. Mol Cell Biochem. 420:151–160. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Chen F, Wang H, Xiang X, Yuan J, Chu W, Xue X, Zhu H, Ge H, Zou M, Feng H and Lin J: Curcumin increased the differentiation rate of neurons in neural stem cells via wnt signaling in vitro study. J Surg Res. 192:298–304. 2014. View Article : Google Scholar : PubMed/NCBI

56 

Tiwari SK, Agarwal S, Seth B, Yadav A, Nair S, Bhatnagar P, Karmakar M, Kumari M, Chauhan LK, Patel DK, et al: Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer's disease model via canonical Wnt/β-catenin pathway. ACS Nano. 8:76–103. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Tiwari SK, Agarwal S, Tripathi A and Chaturvedi RK: Bisphenol-A mediated inhibition of hippocampal neurogenesis attenuated by curcumin via canonical Wnt pathway. Mol Neurobiol. 53:3010–3029. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Cui L, Jia X, Zhou Q, Zhai X, Zhou Y and Zhu H: Curcumin affects β-catenin pathway in hepatic stellate cell in vitro and in vivo. J Pharm Pharmacol. 66:1615–1622. 2014. View Article : Google Scholar : PubMed/NCBI

59 

He M, Li Y, Zhang L, Li L, Shen Y, Lin L, Zheng W, Chen L, Bian X, Ng HK and Tang L: Curcumin suppresses cell proliferation through inhibition of the Wnt/β-catenin signaling pathway in medulloblastoma. Oncol Rep. 32:173–180. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Moran JM, Roncero-Martin R, Rodriguez-Velasco FJ, Calderon-Garcia JF, Rey-Sanchez P, Vera V, Canal-Macias ML and Pedrera-Zamorano JD: Effects of curcumin on the proliferation and mineralization of human osteoblast-like cells: Implications of nitric oxide. Int J Mol Sci. 13:16104–16118. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Oh S, Kyung TW and Choi HS: Curcumin inhibits osteoclastogenesis by decreasing receptor activator of nuclear factor-kappaB ligand (RANKL) in bone marrow stromal cells. Mol Cells. 26:486–489. 2008.PubMed/NCBI

62 

Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC and Wernig M: Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 463:1035–1041. 2010. View Article : Google Scholar : PubMed/NCBI

63 

Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG and Srivastava D: Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 142:375–386. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Sekiya S and Suzuki A: Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature. 475:390–393. 2011. View Article : Google Scholar : PubMed/NCBI

65 

Li Y, Wang Y, Yu J, Ma Z, Bai Q, Wu X, Bao P, Li L, Ma D..Liu J, et al: Direct conversion of human fibroblasts into osteoblasts and osteocytes with small molecules and a single factor, Runx2. bioRxiv. 1274802017.

66 

Wang Y, Wu MH, Cheung MPL, Sham MH, Akiyama H, Chan D, Cheah KSE and Cheung M: Reprogramming of dermal fibroblasts into osteo-chondrogenic cells with elevated osteogenic potency by defined transcription factors. Stem Cell Reports. 8:1587–1599. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Nam YJ, Song K, Luo X, Daniel E, Lambeth K, West K, Hill JA, DiMaio JM, Baker LA, Bassel-Duby R and Olson EN: Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci USA. 110:5588–5593. 2013. View Article : Google Scholar : PubMed/NCBI

68 

Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD and Srivastava D: In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 485:593–598. 2012. View Article : Google Scholar : PubMed/NCBI

69 

Minamide A, Boden SD, Viggeswarapu M, Hair GA, Oliver C and Titus L: Mechanism of bone formation with gene transfer of the cDNA encoding for the intracellular protein LMP-1. J Bone Joint Surg Am. 85-A:1030–1039. 2003. View Article : Google Scholar : PubMed/NCBI

70 

Salgia R, Li JL, Lo SH, Brunkhorst B, Kansas GS, Sobhany ES, Sun Y, Pisick E, Hallek M, Ernst T, et al: Molecular cloning of human paxillin, a focal adhesion protein phosphorylated by P210BCR/ABL. J Biol Chem. 270:5039–5047. 1995. View Article : Google Scholar : PubMed/NCBI

71 

Lattanzi W, Barba M, Novegno F, Massimi L, Tesori V, Tamburrini G, Galgano S, Bernardini C, Caldarelli M, Michetti F and Di Rocco C: Lim mineralization protein is involved in the premature calvarial ossification in sporadic craniosynostoses. Bone. 52:474–484. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Lattanzi W, Parrilla C, Fetoni A, Logroscino G, Straface G, Pecorini G, Stigliano E, Tampieri A, Bedini R, Pecci R, et al: Ex vivo-transduced autologous skin fibroblasts expressing human Lim mineralization protein-3 efficiently form new bone in animal models. Gene Ther. 15:1330–1343. 2008. View Article : Google Scholar : PubMed/NCBI

73 

Yoon ST and Boden SD: Spine fusion by gene therapy. Gene Ther. 11:360–367. 2004. View Article : Google Scholar : PubMed/NCBI

74 

Soleimani M and Nadri S: A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc. 4:102–106. 2009. View Article : Google Scholar : PubMed/NCBI

75 

Pola E, Gao W, Zhou Y, Pola R, Lattanzi W, Sfeir C, Gambotto A and Robbins PD: Efficient bone formation by gene transfer of human LIM mineralization protein-3. Gene Ther. 11:683–693. 2004. View Article : Google Scholar : PubMed/NCBI

76 

Huang S, Xu L, Sun Y, Wu T, Wang K and Li G: An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. J Orthop Translat. 3:26–33. 2014. View Article : Google Scholar : PubMed/NCBI

77 

Zhang T, Lee YW, Rui YF, Cheng TY, Jiang XH and Li G: Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res Ther. 4:702013. View Article : Google Scholar : PubMed/NCBI

78 

Chang R, Sun L and Webster TJ: Short communication: Selective cytotoxicity of curcumin on osteosarcoma cells compared to healthy osteoblasts. Int J Nanomedicine. 9:461–465. 2014.PubMed/NCBI

79 

Wang N, Wang F, Gao Y, Yin P, Pan C, Liu W, Zhou Z and Wang J: Curcumin protects human adipose-derived mesenchymal stem cells against oxidative stress-induced inhibition of osteogenesis. J Pharmacol Sci. 132:192–200. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Bi W, Gu Z, Zheng Y, Wang L, Guo J and Wu G: Antagonistic and synergistic effects of bone morphogenetic protein 2/7 and all-trans retinoic acid on the osteogenic differentiation of rat bone marrow stromal cells. Dev Growth Differ. 55:744–754. 2013. View Article : Google Scholar : PubMed/NCBI

81 

Sheng N, Xie Z, Wang C, Bai G, Zhang K, Zhu Q, Song J, Guillemot F, Chen YG, Lin A and Jing N: Retinoic acid regulates bone morphogenic protein signal duration by promoting the degradation of phosphorylated Smad1. Proc Natl Acad Sci USA. 107:18886–18891. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Wang A, Ding X, Sheng S and Yao Z: Retinoic acid inhibits osteogenic differentiation of rat bone marrow stromal cells. Biochem Biophys Res Commun. 375:435–439. 2008. View Article : Google Scholar : PubMed/NCBI

83 

Yamamoto K, Kishida T, Sato Y, Nishioka K, Ejima A, Fujiwara H, Kubo T, Yamamoto T, Kanamura N and Mazda O: Direct conversion of human fibroblasts into functional osteoblasts by defined factors. Proc Natl Acad Sci USA. 112:6152–6157. 2015. View Article : Google Scholar : PubMed/NCBI

84 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

85 

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al: Fiji: An open-source platform for biological-image analysis. Nat Methods. 9:676–682. 2012. View Article : Google Scholar : PubMed/NCBI

86 

Ahmed MF, El-Sayed AK, Chen H, Zhao R, Jin K, Zuo Q, Zhang Y and Li B: Direct conversion of mouse embryonic fibroblast to osteoblast cells using hLMP-3 with Yamanaka factors. Int J Biochem Cell Biol. 106:84–95. 2019. View Article : Google Scholar : PubMed/NCBI

87 

James AW, Levi B, Xu Y, Carre AL and Longaker MT: Retinoic acid enhances osteogenesis in cranial suture-derived mesenchymal cells: Potential mechanisms of retinoid-induced craniosynostosis. Plast Reconstr Surg. 125:1352–1361. 2010. View Article : Google Scholar : PubMed/NCBI

88 

Green AC, Kocovski P, Jovic T, Walia MK, Chandraratna RAS, Martin TJ, Baker EK and Purton LE: Retinoic acid receptor signalling directly regulates osteoblast and adipocyte differentiation from mesenchymal progenitor cells. Exp Cell Res. 350:284–297. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Zhang S, Chen X, Hu Y, Wu J, Cao Q, Chen S and Gao Y: All-trans retinoic acid modulates Wnt3A-induced osteogenic differentiation of mesenchymal stem cells via activating the PI3K/AKT/GSK3β signalling pathway. Mol Cell Endocrinol. 422:243–253. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Ding J, Woo JT and Nagai K: The effects of retinoic acid on reversing the adipocyte differentiation into an osteoblastic tendency in ST2 cells, a murine bone marrow-derived stromal cell line. Cytotechnology. 36:125–136. 2001. View Article : Google Scholar : PubMed/NCBI

91 

Cohen-Tanugi A and Forest N: Retinoic acid suppresses the osteogenic differentiation capacity of murine osteoblast-like 3/A/1D-1M cell cultures. Differentiation. 63:115–123. 1998. View Article : Google Scholar : PubMed/NCBI

92 

Son HE, Kim EJ and Jang WG: Curcumin induces osteoblast differentiation through mild-endoplasmic reticulum stress-mediated such as BMP2 on osteoblast cells. Life Sci. 193:34–39. 2018. View Article : Google Scholar : PubMed/NCBI

93 

Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL and Riggs BL: Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest. 111:1221–1230. 2003. View Article : Google Scholar : PubMed/NCBI

94 

Li Y, Li A, Strait K, Zhang H, Nanes MS and Weitzmann MN: Endogenous TNFalpha lowers maximum peak bone mass and inhibits osteoblastic Smad activation through NF-kappaB. J Bone Miner Res. 22:646–655. 2007. View Article : Google Scholar : PubMed/NCBI

95 

Chang J, Wang Z, Tang E, Fan Z, McCauley L, Franceschi R, Gaun K, Krebsbach PH and Wang CY: Inhibition of osteoblast functions by IKK/NF-κB in osteoporosis. Nat Med. 15:682–689. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Zhang X, Yin WK, Shi XD and Li Y: Curcumin activates Wnt/β-catenin signaling pathway through inhibiting the activity of GSK-3β in APPswe transfected SY5Y cells. Eur J Pharm Sci. 42:540–546. 2011. View Article : Google Scholar : PubMed/NCBI

97 

Thacker PC and Karunagaran D: Curcumin and emodin down-regulate TGF-β signaling pathway in human cervical cancer cells. PLoS One. 10:e01200452015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ahmed MF, El‑Sayed AK, Chen H, Zhao R, Yusuf MS, Zuo Q, Zhang Y and Li B: Comparison between curcumin and all‑trans retinoic acid in the osteogenic differentiation of mouse bone marrow mesenchymal stem cells. Exp Ther Med 17: 4154-4166, 2019.
APA
Ahmed, M.F., El‑Sayed, A.K., Chen, H., Zhao, R., Yusuf, M.S., Zuo, Q. ... Li, B. (2019). Comparison between curcumin and all‑trans retinoic acid in the osteogenic differentiation of mouse bone marrow mesenchymal stem cells. Experimental and Therapeutic Medicine, 17, 4154-4166. https://doi.org/10.3892/etm.2019.7414
MLA
Ahmed, M. F., El‑Sayed, A. K., Chen, H., Zhao, R., Yusuf, M. S., Zuo, Q., Zhang, Y., Li, B."Comparison between curcumin and all‑trans retinoic acid in the osteogenic differentiation of mouse bone marrow mesenchymal stem cells". Experimental and Therapeutic Medicine 17.5 (2019): 4154-4166.
Chicago
Ahmed, M. F., El‑Sayed, A. K., Chen, H., Zhao, R., Yusuf, M. S., Zuo, Q., Zhang, Y., Li, B."Comparison between curcumin and all‑trans retinoic acid in the osteogenic differentiation of mouse bone marrow mesenchymal stem cells". Experimental and Therapeutic Medicine 17, no. 5 (2019): 4154-4166. https://doi.org/10.3892/etm.2019.7414
Copy and paste a formatted citation
x
Spandidos Publications style
Ahmed MF, El‑Sayed AK, Chen H, Zhao R, Yusuf MS, Zuo Q, Zhang Y and Li B: Comparison between curcumin and all‑trans retinoic acid in the osteogenic differentiation of mouse bone marrow mesenchymal stem cells. Exp Ther Med 17: 4154-4166, 2019.
APA
Ahmed, M.F., El‑Sayed, A.K., Chen, H., Zhao, R., Yusuf, M.S., Zuo, Q. ... Li, B. (2019). Comparison between curcumin and all‑trans retinoic acid in the osteogenic differentiation of mouse bone marrow mesenchymal stem cells. Experimental and Therapeutic Medicine, 17, 4154-4166. https://doi.org/10.3892/etm.2019.7414
MLA
Ahmed, M. F., El‑Sayed, A. K., Chen, H., Zhao, R., Yusuf, M. S., Zuo, Q., Zhang, Y., Li, B."Comparison between curcumin and all‑trans retinoic acid in the osteogenic differentiation of mouse bone marrow mesenchymal stem cells". Experimental and Therapeutic Medicine 17.5 (2019): 4154-4166.
Chicago
Ahmed, M. F., El‑Sayed, A. K., Chen, H., Zhao, R., Yusuf, M. S., Zuo, Q., Zhang, Y., Li, B."Comparison between curcumin and all‑trans retinoic acid in the osteogenic differentiation of mouse bone marrow mesenchymal stem cells". Experimental and Therapeutic Medicine 17, no. 5 (2019): 4154-4166. https://doi.org/10.3892/etm.2019.7414
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team