|
1
|
Borrelli A, Bonelli P, Tuccillo FM,
Goldfine ID, Evans JL, Buonaguro FM and Mancini A: Role of gut
microbiota and oxidative stress in the progression of non-alcoholic
fatty liver disease to hepatocarcinoma: Current and innovative
therapeutic approaches. Redox Biol. 15:467–479. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Rinella ME: Nonalcoholic fatty liver
disease: A systematic review. JAMA. 313:2263–2273. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Sharma M, Mitnala S, Vishnubhotla RK,
Mukherjee R, Reddy DN and Rao PN: The riddle of nonalcoholic fatty
liver disease: Progression from nonalcoholic fatty liver to
nonalcoholic steatohepatitis. J Clin Exp Hepatol. 5:147–158. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Farrell GC, Wong VW and Chitturi S: NAFLD
in Asia-as common and important as in the West. Nat Rev
Gastroenterol Hepatol. 10:307–318. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wong VW: Nonalcoholic fatty liver disease
in Asia: A story of growth. J Gastroenterol Hepatol. 28:18–23.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Chitturi S, Wong VW and Farrell G:
Nonalcoholic fatty liver in Asia: Firmly entrenched and rapidly
gaining ground. J Gastroenterol Hepatol. 26 (Suppl 1):S163–S172.
2011. View Article : Google Scholar
|
|
7
|
Simeone JC, Bae JP, Hoogwerf BJ, Li Q,
Haupt A, Ali AK, Boardman MK and Nordstrom BL: Clinical course of
nonalcoholic fatty liver disease: An assessment of severity,
progression, and outcomes. Clin Epidemiol. 9:679–688. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Neuschwander-Tetri BA and Caldwell SH:
Nonalcoholic steatohepatitis: Summary of an AASLD single topic
conference. Hepatology. 37:1202–1219. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kleiner DE, Brunt EM, Van Natta M, Behling
C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS,
Unalp-Arida A, et al: Design and validation of a histological
scoring system for nonalcoholic fatty liver disease. Hepatology.
41:1313–1321. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lonardo A, Byrne CD, Caldwell SH,
Cortez-Pinto H and Targher G: Global epidemiology of nonalcoholic
fatty liver disease: Meta-analytic assessment of prevalence,
incidence, and outcomes. Hepatology. 64:1388–1389. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kim D, Kim WR, Talwalkar JA, Kim HJ and
Ehman RL: Advanced fibrosis in nonalcoholic fatty liver disease:
Noninvasive assessment with MR elastography. Radiology.
268:411–419. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kim D, Touros A and Kim WR: Nonalcoholic
fatty liver disease and metabolic syndrome. Clin Liver Dis.
22:133–140. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wong VW, Vergniol J, Wong GL, Foucher J,
Chan HL, Le Bail B, Choi PC, Kowo M, Chan AW, Merrouche W, et al:
Diagnosis of fibrosis and cirrhosis using liver stiffness
measurement in nonalcoholic fatty liver disease. Hepatology.
51:454–462. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
European Association for the Study of the
Liver (EASL)1; European Association for the Study of Diabetes
(EASD); European Association for the Study of Obesity (EASO), .
EASL-EASD-EASO Clinical Practice Guidelines for the management of
non-alcoholic fatty liver disease. J Hepatol. 64:1388–1402. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Leung C, Rivera L, Furness JB and Angus
PW: The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol
Hepatol. 13:412–425. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Meex RCR and Watt MJ: Hepatokines: Linking
nonalcoholic fatty liver disease and insulin resistance. Nat Rev
Endocrinol. 13:509–520. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ricketts ML and Ferguson BS: Polyphenols:
Novel signaling pathways. Curr Pharm Des. 24:158–170. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhu J, Wan X, Wang Y, Zhu K, Li C, Yu C
and Li Y: Serum fetuin B level increased in subjects of
nonalcoholic fatty liver disease: A case-control study. Endocrine.
56:208–211. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Day CP and James OF: Steatohepatitis: A
tale of two ‘hits’? Gastroenterology. 114:842–845. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Tilg H and Moschen AR: Evolution of
inflammation in nonalcoholic fatty liver disease: The multiple
parallel hits hypothesis. Hepatology. 52:1836–1846. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Tiniakos DG, Vos MB and Brunt EM:
Nonalcoholic fatty liver disease: Pathology and pathogenesis. Annu
Rev Pathol. 5:145–171. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Birerdinc A and Younossi ZM:
Epigenome-wide association studies provide insight into the
pathogenesis of non-alcoholic fatty liver disease and non-alcoholic
steatohepatitis. Ann Hepatol. 17:11–13. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Benedict M and Zhang X: Non-alcoholic
fatty liver disease: An expanded review. World J Hepatol.
9:715–732. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Li TT, Li TH, Peng J, He B, Liu LS, Wei
DH, Jiang ZS, Zheng XL and Tang ZH: TM6SF2: A novel target for
plasma lipid regulation. Atherosclerosis. 268:170–176. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Del Campo JA, Gallego-Durán R, Gallego P
and Grande L: Genetic and epigenetic regulation in nonalcoholic
fatty liver disease (NAFLD). Int J Mol Sci. 19:E9112018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Park JS, Seo JH and Youn HS: Gut
microbiota and clinical disease: Obesity and nonalcoholic Fatty
liver disease. Pediatr Gastroenterol Hepatol Nutr. 16:22–27. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Qin J, Li R, Raes J, Arumugam M, Burgdorf
KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al: A
human gut microbial gene catalogue established by metagenomic
sequencing. Nature. 464:59–65. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Santacruz A, Collado MC, García-Valdés L,
Segura MT, Martín-Lagos JA, Anjos T, Martí-Romero M, Lopez RM,
Florido J and Sanz Y: Gut microbiota composition is associated with
body weight, weight gain and biochemical parameters in pregnant
women. Br J Nutr. 104:83–92. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ursell LK, Clemente JC, Rideout JR, Gevers
D, Caporaso JG and Knight R: The interpersonal and intrapersonal
diversity of human-associated microbiota in key body sites. J
Allergy Clin Immunol. 129:1204–1208. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Neish AS: Microbes in gastrointestinal
health and disease. Gastroenterology. 136:65–80. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Mokhtari Z, Gibson DL and Hekmatdoost A:
Nonalcoholic fatty liver disease, the gut microbiome, and diet. Adv
Nutr. 8:240–252. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Clemente JC, Ursell LK, Parfrey LW and
Knight R: The impact of the gut microbiota on human health: An
integrative view. Cell. 148:1258–1270. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ley RE, Turnbaugh PJ, Klein S and Gordon
JI: Microbial ecology: Human gut microbes associated with obesity.
Nature. 444:1022–1023. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhang X, Chen Y, Zhu J, Zhang M, Ho CT,
Huang Q and Cao J: Metagenomics analysis of gut microbiota in a
high fat diet-induced obesity mouse model fed with
(−)-epigallocatechin 3-O-(3-O-Methyl) gallate (EGCG3′'Me). Mol Nutr
Food Res. 62:e18002742018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Devillard E, McIntosh FM, Duncan SH and
Wallace RJ: Metabolism of linoleic acid by human gut bacteria:
Different routes for biosynthesis of conjugated linoleic acid. J
Bacteriol. 189:2566–2570. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Li X and Li C: Analysis of changes in
intestinal flora and intravascular inflammation and coronary heart
disease in obese patients. Exp Ther Med. 15:4538–4542.
2018.PubMed/NCBI
|
|
37
|
Li CY, Dempsey JL, Wang D, Lee S, Weigel
KM, Fei Q, Bhatt DK, Prasad B, Raftery D, Gu H and Cui JY: PBDEs
altered gut microbiome and bile acid homeostasis in Male C57BL/6
mice. Drug Metab Dispos. 46:1226–1240. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zununi Vahed S, Moghaddas Sani H, Rahbar
Saadat Y, Barzegari A and Omidi Y: Type 1 diabetes: Through the
lens of human genome and metagenome interplay. Biomed Pharmacother.
104:332–342. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Baddini Feitoza A, Fernandes Pereira A,
Ferreira da Costa N and Gonçalves Ribeiro B: Conjugated linoleic
acid (CLA): Effect modulation of body composition and lipid
profile. Nutr Hosp. 24:422–428. 2009.PubMed/NCBI
|
|
40
|
Zhang C, Björkman A, Cai K, Liu G, Wang C,
Li Y, Xia H, Sun L, Kristiansen K, Wang J, et al: Impact of a
3-months vegetarian diet on the gut microbiota and immune
repertoire. Front Immunol. 9:9082018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Shin NR, Whon TW and Bae JW:
Proteobacteria: Microbial signature of dysbiosis in gut microbiota.
Trends Biotechnol. 33:496–503. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini
V, Mardis ER and Gordon JI: An obesity-associated gut microbiome
with increased capacity for energy harvest. Nature. 444:1027–1031.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Membrez M, Blancher F, Jaquet M, Bibiloni
R, Cani PD, Burcelin RG, Corthesy I, Corthesy I, Macé K and Chou
CJ: Gut microbiota modulation with norfloxacin and ampicillin
enhances glucose tolerance in mice. FASEB J. 22:2416–2426. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Azad MB, Bridgman SL, Becker AB and
Kozyrskyj AL: Infant antibiotic exposure and the development of
childhood overweight and central adiposity. Int J Obes (Lond).
38:1290–1298. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Cho I, Yamanishi S, Cox L, Methé BA,
Zavadil J, Li K, Gao Z, Mahana D, Raju K, Teitler I, et al:
Antibiotics in early life alter the murine colonic microbiome and
adiposity. Nature. 488:621–626. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Vrieze A, Van Nood E, Holleman F,
Salojärvi J, Kootte RS, Bartelsman JF, Dallinga-Thie GM, Ackermans
MT, Serlie MJ, Oozeer R, et al: Transfer of intestinal microbiota
from lean donors increases insulin sensitivity in individuals with
metabolic syndrome. Gastroenterology. 143:913–916.e7. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Poeta M, Pierri L and Vajro P: Gut-liver
axis derangement in non-alcoholic fatty liver disease. Children
(Basel). 4:E662017.PubMed/NCBI
|
|
48
|
Zorn AM and Wells JM: Vertebrate endoderm
development and organ formation. Annu Rev Cell Dev Biol.
25:221–251. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Baffy G: Potential mechanisms linking gut
microbiota and portal hypertension. Liver Int. 39:598–609. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Clemente MG, Mandato C, Poeta M and Vajro
P: Pediatric non-alcoholic fatty liver disease: Recent solutions,
unresolved issues, and future research directions. World J
Gastroenterol. 22:8078–8093. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Compare D, Coccoli P, Rocco A, Nardone OM,
De Maria S, Carteni M and Nardone G: Gut-liver axis: The impact of
gut microbiota on non alcoholic fatty liver disease. Nutr Metab
Cardiovasc Dis. 22:471–476. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Rafiei R, Bemanian M, Rafiei F, Bahrami M,
Fooladi L, Ebrahimi G, Hemmat A and Torabi Z: Liver disease
symptoms in non-alcoholic fatty liver disease and small intestinal
bacterial overgrowth. Rom J Intern Med. 56:85–89. 2018.PubMed/NCBI
|
|
53
|
Sabaté JM, Jouët P, Harnois F, Mechler C,
Msika S, Grossin M and Coffin B: High prevalence of small
intestinal bacterial overgrowth in patients with morbid obesity: A
contributor to severe hepatic steatosis. Obes Surg. 18:371–377.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
King T: Small intestinal bacterial
overgrowth and irritable bowel syndrome. JAMA. 292:2213; author
reply. 2213–2214. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wigg AJ, Roberts-Thomson IC, Dymock RB,
McCarthy PJ, Grose RH and Cummins AG: The role of small intestinal
bacterial overgrowth, intestinal permeability, endotoxaemia, and
tumour necrosis factor alpha in the pathogenesis of non-alcoholic
steatohepatitis. Gut. 48:206–211. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ghoshal UC, Baba CS, Ghoshal U, Alexander
G, Misra A, Saraswat VA and Choudhuri G: Low-grade small intestinal
bacterial overgrowth is common in patients with non-alcoholic
steatohepatitis on quantitative jejunal aspirate culture. Indian J
Gastroenterol. 36:390–399. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Boulangé CL, Neves AL, Chilloux J,
Nicholson JK and Dumas ME: Impact of the gut microbiota on
inflammation, obesity, and metabolic disease. Genome Med. 8:422016.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Shanab AA, Scully P, Crosbie O, Buckley M,
O'Mahony L, Shanahan F, Gazareen S, Murphy E and Quigley EM: Small
intestinal bacterial overgrowth in nonalcoholic steatohepatitis:
Association with toll-like receptor 4 expression and plasma levels
of interleukin 8. Dig Dis Sci. 56:1524–1534. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Fukunishi S, Sujishi T, Takeshita A, Ohama
H, Tsuchimoto Y, Asai A, Tsuda Y and Higuchi K: Lipopolysaccharides
accelerate hepatic steatosis in the development of nonalcoholic
fatty liver disease in Zucker rats. J Clin Biochem Nutr. 54:39–44.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ferolla SM, Armiliato GN, Couto CA and
Ferrari TC: The role of intestinal bacteria overgrowth in
obesity-related nonalcoholic fatty liver disease. Nutrients.
6:5583–5599. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
D'Mello C, Ronaghan N, Zaheer R, Dicay M,
Le T, MacNaughton WK, Surrette MG and Swain MG: Probiotics improve
inflammation-associated sickness behavior by altering communication
between the peripheral immune system and the brain. J Neurosci.
35:10821–10830. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Mutlu E, Keshavarzian A, Engen P, Forsyth
CB, Sikaroodi M and Gillevet P: Intestinal dysbiosis: A possible
mechanism of alcohol-induced endotoxemia and alcoholic
steatohepatitis in rats. Alcohol Clin Exp Res. 33:1836–1846. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Li F, Duan K, Wang C, McClain C and Feng
W: Probiotics and alcoholic liver disease: Treatment and potential
mechanisms. Gastroenterol Res Pract. 2016:54914652016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Leavy O: Innate immunity: New PAMP
discovered. Nat Rev Immunol. 15:402–403. 2015. View Article : Google Scholar
|
|
65
|
Ruiz AG, Casafont F, Crespo J, Cayón A,
Mayorga M, Estebanez A, Fernadez-Escalante JC and Pons-Romero F:
Lipopolysaccharide-binding protein plasma levels and liver
TNF-alpha gene expression in obese patients: Evidence for the
potential role of endotoxin in the pathogenesis of non-alcoholic
steatohepatitis. Obes Surg. 17:1374–1380. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Liu J, Zhuang ZJ, Bian DX, Ma XJ, Xun YH,
Yang WJ, Luo Y, Liu YL, Jia L, Wang Y, et al: Toll-like receptor-4
signalling in the progression of non-alcoholic fatty liver disease
induced by high-fat and high-fructose diet in mice. Clin Exp
Pharmacol Physiol. 41:482–488. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Leoni S, Tovoli F, Napoli L, Serio I,
Ferri S and Bolondi L: Current guidelines for the management of
non-alcoholic fatty liver disease: A systematic review with
comparative analysis. World J Gastroenterol. 24:3361–3373. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Nobili V, Carpino G, Alisi A, Franchitto
A, Alpini G, De Vito R, Onori P, Alvaro D and Gaudio E: Hepatic
progenitor cells activation, fibrosis, and adipokines production in
pediatric nonalcoholic fatty liver disease. Hepatology.
56:2142–2153. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yoon HJ and Cha BS: Pathogenesis and
therapeutic approaches for non-alcoholic fatty liver disease. World
J Hepatol. 6:800–811. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Temple JL, Cordero P, Li J, Nguyen V and
Oben JA: A guide to non-alcoholic fatty liver disease in childhood
and adolescence. Int J Mol Sci. 17:9472016. View Article : Google Scholar
|
|
71
|
Berardis S and Sokal E: Pediatric
non-alcoholic fatty liver disease: An increasing public health
issue. Eur J Pediatr. 173:131–139. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yu Q, Jiang Z and Zhang L: Bile acid
regulation: A novel therapeutic strategy in non-alcoholic fatty
liver disease. Pharmacol Ther. 190:81–90. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Chow MD, Lee YH and Guo GL: The role of
bile acids in nonalcoholic fatty liver disease and nonalcoholic
steatohepatitis. Mol Aspects Med. 56:34–44. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Chávez-Talavera O, Tailleux A, Lefebvre P
and Staels B: Bile acid control of metabolism and inflammation in
obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty
liver disease. Gastroenterology. 152:1679–1694.e3. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Park MY, Kim SJ, Ko EK, Ahn SH, Seo H and
Sung MK: Gut microbiota-associated bile acid deconjugation
accelerates hepatic steatosis in ob/ob mice. J Appl Microbiol.
121:800–810. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Janssen AWF, Houben T, Katiraei S, Dijk W,
Boutens L, van der Bolt N, Wang Z, Brown JM, Hazen SL, Mandard S,
et al: Modulation of the gut microbiota impacts nonalcoholic fatty
liver disease: A potential role for bile acids. J Lipid Res.
58:1399–1416. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Puri P, Daita K, Joyce A, Mirshahi F,
Santhekadur PK, Cazanave S, Luketic VA, Siddiqui MS, Boyett S, Min
HK, et al: The presence and severity of nonalcoholic
steatohepatitis is associated with specific changes in circulating
bile acids. Hepatology. Jul 11–2017.(Epub ahead of print) Doi:
10.1002/hep.29359.
|
|
78
|
Zhang L, Xie C, Nichols RG, Chan SH, Jiang
C, Hao R, Smith PB, Cai J, Simons MN, Hatzakis E, et al: Farnesoid
X receptor signaling shapes the gut microbiota and controls hepatic
lipid metabolism. mSystems. 1:e00070–16. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Sepe V, Distrutti E, Fiorucci S and
Zampella A: Farnesoid X receptor modulators 2014-present: A patent
review. Expert Opin Ther Pat. 28:351–364. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Cruz-Ramón V, Chinchilla-López P,
Ramírez-Pérez O and Méndez-Sánchez N: Bile acids in nonalcoholic
fatty liver disease: New concepts and therapeutic advances. Ann
Hepatol. 16 (Suppl 1: S3-S105):S58–S67. 2017. View Article : Google Scholar
|
|
81
|
Belei O, Olariu L, Dobrescu A, Marcovici T
and Marginean O: The relationship between non-alcoholic fatty liver
disease and small intestinal bacterial overgrowth among overweight
and obese children and adolescents. J Pediatr Endocrinol Metab.
30:1161–1168. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Alves CC, Waitzberg DL, de Andrade LS, Dos
Santos Aguiar L, Reis MB, Guanabara CC, Júnior OA, Ribeiro DA and
Sala P: Prebiotic and synbiotic modifications of beta oxidation and
lipogenic gene expression after experimental hypercholesterolemia
in rat liver. Front Microbiol. 8:20102017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Xu RY, Wan YP, Fang QY, Lu W and Cai W:
Supplementation with probiotics modifies gut flora and attenuates
liver fat accumulation in rat nonalcoholic fatty liver disease
model. J Clin Biochem Nutr. 50:72–77. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Raso GM, Simeoli R, Iacono A, Santoro A,
Amero P, Paciello O, Russo R, D'Agostino G, Di Costanzo M, Canani
RB, et al: Effects of a Lactobacillus paracasei B21060 based
synbiotic on steatosis, insulin signaling and toll-like receptor
expression in rats fed a high-fat diet. J Nutr Biochem. 25:81–90.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Nobili V, Putignani L, Mosca A, Chierico
FD, Vernocchi P, Alisi A, Stronati L, Cucchiara S, Toscano M and
Drago L: Bifidobacteria and Lactobacilli in the gut microbiome of
children with non-alcoholic fatty liver disease: Which strains act
as health players? Arch Med Sci. 14:81–87. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Bakker GJ and Nieuwdorp M: Fecal
microbiota transplantation: Therapeutic potential for a multitude
of diseases beyond Clostridium difficile. Microbiol Spectr.
5:2017. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
de Groot PF, Frissen MN, de Clercq NC and
Nieuwdorp M: Fecal microbiota transplantation in metabolic
syndrome: History, present and future. Gut Microbes. 8:253–267.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Woodhouse CA, Patel VC, Singanayagam A and
Shawcross DL: Review article: The gut microbiome as a therapeutic
target in the pathogenesis and treatment of chronic liver disease.
Aliment Pharmacol Ther. 47:192–202. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zhou D, Pan Q, Shen F, Cao HX, Ding WJ,
Chen YW and Fan JG: Total fecal microbiota transplantation
alleviates high-fat diet-induced steatohepatitis in mice via
beneficial regulation of gut microbiota. Sci Rep. 7:15292017.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Le Roy T, Llopis M, Lepage P, Bruneau A,
Rabot S, Bevilacqua C, Martin P, Philippe C, Walker F, Bado A, et
al: Intestinal microbiota determines development of non-alcoholic
fatty liver disease in mice. Gut. 62:1787–1794. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Gutiérrez-Rodelo C, Roura-Guiberna A and
Olivares-Reyes JA: Molecular mechanisms of insulin resistance: An
update. Gac Med Mex. 153:214–228. 2017.(In Spanish). PubMed/NCBI
|
|
92
|
Manco M: Insulin resistance and NAFLD: A
dangerous liaison beyond the genetics. Children (Basel).
4:E742017.PubMed/NCBI
|
|
93
|
Montandon SA and Jornayvaz FR: Effects of
antidiabetic drugs on gut microbiota composition. Genes (Basel).
8:E2502017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Sumida Y, Seko Y and Yoneda M; Japan Study
Group of NAFLD (JSG-NAFLD), : Novel antidiabetic medications for
non-alcoholic fatty liver disease with type 2 diabetes mellitus.
Hepatol Res. 47:266–280. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Pernicova I and Korbonits M:
Metformin-mode of action and clinical implications for diabetes and
cancer. Nat Rev Endocrinol. 10:143–156. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Napolitano A, Miller S, Nicholls AW, Baker
D, Van Horn S, Thomas E, Rajpal D, Spivak A, Brown JR and Nunez DJ:
Novel gut-based pharmacology of metformin in patients with type 2
diabetes mellitus. PLoS One. 9:e1007782014. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Brunkwall L and Orho-Melander M: The gut
microbiome as a target for prevention and treatment of
hyperglycaemia in type 2 diabetes: From current human evidence to
future possibilities. Diabetologia. 60:943–951. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Shin NR, Lee JC, Lee HY, Kim MS, Whon TW,
Lee MS and Bae JW: An increase in the Akkermansia spp. population
induced by metformin treatment improves glucose homeostasis in
diet-induced obese mice. Gut. 63:727–735. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Lee H and Ko G: Effect of metformin on
metabolic improvement and gut microbiota. Appl Environ Microbiol.
80:5935–5943. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Do HJ, Lee YS, Ha MJ, Cho Y, Yi H, Hwang
YJ, Hwang GS and Shin MJ: Beneficial effects of voglibose
administration on body weight and lipid metabolism via
gastrointestinal bile acid modification. Endocr J. 63:691–702.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Shin NR, Bose S, Wang JH, Ansari A, Lim
SK, Chin YW, Choi HS and Kim H: Flos lonicera combined with
metformin ameliorates hepatosteatosis and glucose intolerance in
association with gut microbiota modulation. Front Microbiol.
8:22712017. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Kishida Y, Okubo H, Ohno H, Oki K and
Yoneda M: Effect of miglitol on the suppression of nonalcoholic
steatohepatitis development and improvement of the gut environment
in a rodent model. J Gastroenterol. 52:1180–1191. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zhang X, Zhao Y, Xu J, Xue Z, Zhang M,
Pang X, Zhang X and Zhao L: Modulation of gut microbiota by
berberine and metformin during the treatment of high-fat
diet-induced obesity in rats. Sci Rep. 5:144052015. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Bai J, Zhu Y and Dong Y: Response of gut
microbiota and inflammatory status to bitter melon (Momordica
charantia L.) in high fat diet induced obese rats. J
Ethnopharmacol. 194:717–726. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Wang L, Li P, Tang Z, Yan X and Feng B:
Structural modulation of the gut microbiota and the relationship
with body weight: Compared evaluation of liraglutide and
saxagliptin treatment. Sci Rep. 6:332512016. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Yan X, Feng B, Li P, Tang Z and Wang L:
Microflora disturbance during progression of glucose intolerance
and effect of sitagliptin: An animal study. J Diabetes Res.
2016:20931712016. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wu H, Esteve E, Tremaroli V, Khan MT,
Caesar R, Mannerås-Holm L, Ståhlman M, Olsson LM, Serino M,
Planas-Fèlix M, et al: Metformin alters the gut microbiome of
individuals with treatment-naive type 2 diabetes, contributing to
the therapeutic effects of the drug. Nat Med. 23:850–858. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
de la Cuesta-Zuluaga J, Mueller NT,
Corrales-Agudelo V, Velásquez-Mejía EP, Carmona JA, Abad JM and
Escobar JS: Metformin is associated with higher relative abundance
of mucin-degrading akkermansia muciniphila and several short-chain
fatty acid-producing microbiota in the gut. Diabetes Care.
40:54–62. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Forslund K, Hildebrand F, Nielsen T,
Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S,
Gudmundsdottir V, Pedersen HK, et al: Disentangling type 2 diabetes
and metformin treatment signatures in the human gut microbiota.
Nature. 528:262–266. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhang X, Fang Z, Zhang C, Xia H, Jie Z,
Han X, Chen Y and Ji L: Effects of acarbose on the gut microbiota
of prediabetic patients: A randomized, double-blind, controlled
crossover trial. Diabetes Ther. 8:293–307. 2017. View Article : Google Scholar : PubMed/NCBI
|