Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
December-2019 Volume 18 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2019 Volume 18 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Effect of ATM on inflammatory response and autophagy in renal tubular epithelial cells in LPS‑induced septic AKI

  • Authors:
    • Chenfei Zheng
    • Ying Zhou
    • Yueyue Huang
    • Bicheng Chen
    • Minmin Wu
    • Yue Xie
    • Xinxin Chen
    • Mei Sun
    • Yi Liu
    • Chaosheng Chen
    • Jingye Pan
  • View Affiliations / Copyright

    Affiliations: Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China, Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China, Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
    Copyright: © Zheng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 4707-4717
    |
    Published online on: October 21, 2019
       https://doi.org/10.3892/etm.2019.8115
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The aim of the present study was to explore the role of ataxia‑telangiectasia mutated (ATM) in lipopolysaccharide (LPS)‑induced in vitro model of septic acute kidney injury (AKI) and the association between ATM, tubular epithelial inflammatory response and autophagy. The renal tubular epithelial cell HK‑2 cell line was cultured and passaged, with HK‑2 cell injury induced by LPS. The effects of LPS on HK‑2 cell morphology, viability, ATM expression and inflammation were observed. Lentiviral vectors encoding ATM shRNA were constructed to knock down ATM expression in HK‑2 cells. The efficiency of ATM knockdown in HK‑2 cells was detected by western blot analysis and reverse transcription‑quantitative PCR (RT‑qPCR). HK‑2 cells transfected with the ATM shRNA lentivirus were used for subsequent experiments. Following ATM knockdown, corresponding controls were set up, and the effects of ATM on inflammation and autophagy were detected in HK‑2 cells using RT‑qPCR, western blotting and ELISA. After LPS stimulation, the HK‑2 cells were rounded into a slender or fusiform shape with poorly defined outlines. LPS treatment reduced cell viability in a partly dose‑dependent manner. LPS increased the expression of tumor necrosis factor‑α, interleukin (IL)‑1β and IL‑6, with the levels reaching its highest value at 10 µg/ml. IL‑6 and IL‑1β expression increased with increasing LPS concentration. These findings suggest that LPS reduced HK‑2 cell viability whilst increasing the expression of inflammatory factors. Following transfection with ATM shRNA, expression levels of key autophagy indicators microtubule associated protein 1 light chain 3α I/II ratio and beclin‑1 in the two ATM shRNA groups were also significantly reduced compared with the NC shRNA group. In summary, downregulation of ATM expression in HK‑2 cells reduced LPS‑induced inflammation and autophagy in sepsis‑induced AKI in vitro, suggesting that LPS may induce autophagy in HK‑2 cells through the ATM pathway leading to the upregulation of inflammatory factors.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Bagshaw SM, Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, et al: Septic acute kidney injury in critically ill patients: Clinical characteristics and outcomes. Clin J Am Soc Nephrol. 2:431–439. 2007. View Article : Google Scholar : PubMed/NCBI

2 

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al: The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Holthoff JH, Wang Z, Patil NK, Gokden N and Mayeux PR: Rolipram improves renal perfusion and function during sepsis in the mouse. J Pharmacol Exp Ther. 347:357–364. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Howell GM, Gomez H, Collage RD, Loughran P, Zhang X, Escobar DA, Billiar TR, Zuckerbraun BS and Rosengart MR: Augmenting autophagy to treat acute kidney injury during endotoxemia in mice. PLoS One. 8:e695202013. View Article : Google Scholar : PubMed/NCBI

5 

Bagshaw SM, George C and Bellomo R; ANZICS Database Management Committee, : Early acute kidney injury and sepsis: A multicentre evaluation. Crit Care. 12:R472008. View Article : Google Scholar : PubMed/NCBI

6 

Wang F, Zhang G, Lu Z, Geurts AM, Usa K, Jacob HJ, Cowley AW, Wang N and Liang M: Antithrombin III/SerpinC1 insufficiency exacerbates renal ischemia/reperfusion injury. Kidney Int. 88:796–803. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Chen LW, Chen W, Hu ZQ, Bian JL, Ying L, Hong GL, Qiu QM, Zhao GJ and Lu ZQ: Protective effects of growth arrest-specific protein 6 (Gas6) on sepsis-induced acute kidney injury. Inflammation. 39:575–582. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Yohannes S and Chawla LS: Evolving practices in the management of acute kidney injury in the ICU (Intensive Care Unit). Clin Nephrol. 71:602–607. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Gómez H, Kellum JA and Ronco C: Metabolic reprogramming and tolerance during sepsis-induced AKI. Nat Rev Nephrol. 13:143–151. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Luo CJ, Luo F, Zhang L, Xu Y, Cai GY, Fu B, Feng Z, Sun XF and Chen XM: Knockout of interleukin-17A protects against sepsis-associated acute kidney injury. Ann Intensive Care. 6:562016. View Article : Google Scholar : PubMed/NCBI

11 

Chunzhi G, Zunfeng L, Chengwei Q, Xiangmei B and Jingui Y: Hyperin protects against LPS-induced acute kidney injury by inhibiting TLR4 and NLRP3 signaling pathways. Oncotarget. 7:82602–82608. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Xu C, Chang A, Hack BK, Eadon MT, Alper SL and Cunningham PN: TNF-mediated damage to glomerular endothelium is an important determinant of acute kidney injury in sepsis. Kidney Int. 85:72–81. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Ahn JM, You SM, Lee YM, Oh SW, Ahn SY, Kim S, Chin HJ, Chae DW and Na KY: Hypoxia-inducible factor activation protects the kidney from gentamicin-induced acute injury. PLoS One. 7:e489522012. View Article : Google Scholar : PubMed/NCBI

14 

Sutton TA, Hato T, Mai E, Yoshimoto M, Kuehl S, Anderson M, Mang H, Plotkin Z, Chan RJ and Dagher PC: p53 Is renoprotective after ischemic kidney injury by reducing inflammation. J Am Soc Nephrol. 24:113–124. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Klionsky DJ and Emr SD: Autophagy as a regulated pathway of cellular degradation. Science. 290:1717–1721. 2000. View Article : Google Scholar : PubMed/NCBI

16 

Levine B and Kroemer G: Autophagy in the pathogenesis of disease. Cell. 132:27–42. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Leventhal JS, Ni J, Osmond M, Lee K, Gusella GL, Salem F and Ross MJ: Autophagy limits endotoxemic acute kidney injury and alters renal tubular epithelial cell cytokine expression. PLoS One. 11:e01500012016. View Article : Google Scholar : PubMed/NCBI

18 

Mei S, Livingston M, Hao J, Li L, Mei C and Dong Z: Autophagy is activated to protect against endotoxic acute kidney injury. Sci Rep. 6:221712016. View Article : Google Scholar : PubMed/NCBI

19 

Yu JH, Cho SO, Lim JW, Kim N and Kim H: Ataxia telangiectasia mutated inhibits oxidative stress-induced apoptosis by regulating heme oxygenase-1 expression. Int J Biochem Cell Biol. 60:147–156. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Moser BA, Subramanian L, Khair L, Chang YT and Nakamura TM: Fission yeast Tel1 (ATM) and Rad3 (ATR) promote telomere protection and telomerase recruitment. PLoS Genet. 5:e10006222009. View Article : Google Scholar : PubMed/NCBI

21 

Abraham RT: Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15:2177–2196. 2001. View Article : Google Scholar : PubMed/NCBI

22 

Bencokova Z, Kaufmann MR, Pires IM, Lecane PS, Giaccia AJ and Hammond EM: ATM activation and signaling under hypoxic conditions. Mol Cell Biol. 29:526–537. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Wang LT, Chen BL, Wu CT, Huang KH, Chiang CK and Hwa Liu S: Protective role of AMP-activated protein kinase-evoked autophagy on an in vitro model of ischemia/reperfusion-induced renal tubular cell injury. PLoS One. 8:e798142013. View Article : Google Scholar : PubMed/NCBI

24 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Jung G, Roh J, Lee H, Gil M, Yoon DH, Suh C, Jang S, Park CJ, Huh J and Park CS: Autophagic markers BECLIN 1 and LC3 are associated with prognosis of multiple myeloma. Acta Haematol. 134:17–24. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Dellepiane S, Marengo M and Cantaluppi V: Detrimental cross-talk between sepsis and acute kidney injury: New pathogenic mechanisms, early biomarkers and targeted therapies. Crit Care. 20:612016. View Article : Google Scholar : PubMed/NCBI

27 

Jackson WL Jr: Acute renal failure and sepsis. N Engl J Med. 351:2347–2349. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Langenberg C, Wan L, Egi M, May CN and Bellomo R: Renal blood flow in experimental septic acute renal failure. Kidney Int. 69:1996–2002. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Fani F, Regolisti G, Delsante M, Cantaluppi V, Castellano G, Gesualdo L, Villa G and Fiaccadori E: Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury. J Nephrol. 31:351–359. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Chen L, Yang S, Zumbrun EE, Guan H, Nagarkatti PS and Nagarkatti M: Resveratrol attenuates lipopolysaccharide-induced acute kidney injury by suppressing inflammation driven by macrophages. Mol Nutr Food Res. 59:853–864. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Deng SY, Zhang LM, Ai YH, Pan PH, Zhao SP, Su XL, Wu DD, Tan HY, Zhang LN and Tsung A: Role of interferon regulatory factor-1 in lipopolysaccharide-induced mitochondrial damage and oxidative stress responses in macrophages. Int J Mol Med. 40:1261–1269. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Li T, Zhao J, Miao S, Xu Y, Xiao X and Liu Y: Dynamic expression and roles of sequestome-1/p62 in LPS-induced acute kidney injury in mice. Mol Med Rep. 17:7618–7626. 2018.PubMed/NCBI

33 

Jiao XY, Shen YQ and Li KS: The correlation between cytokine production by cerebral cortical glial cells and brain lateralization in mice. Neuromodulation. 11:23–32. 2008. View Article : Google Scholar : PubMed/NCBI

34 

Johnson RL, Murray ST, Camacho DK and Wilson CG: Vagal nerve stimulation attenuates IL-6 and TNFα expression in respiratory regions of the developing rat brainstem. Respir Physiol Neurobiol. 229:1–4. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Lee WS, Shin JS, Jang DS and Lee KT: Cnidilide, an alkylphthalide isolated from the roots of Cnidium officinale, suppresses LPS-induced NO, PGE2, IL-1β, IL-6 and TNF-α production by AP-1 and NF-κB inactivation in RAW 264.7 macrophages. Int Immunopharmacol. 40:146–155. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Kim KH and Lee MS: Autophagy as a crosstalk mediator of metabolic organs in regulation of energy metabolism. Rev Endoc Metab Disord. 15:11–20. 2014. View Article : Google Scholar

37 

Shen HM and Codogno P: Autophagic cell death: Loch Ness monster or endangered species? Autophagy. 7:457–465. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Shintani T and Klionsky DJ: Autophagy in health and disease: A double-edged sword. Science. 306:990–995. 2004. View Article : Google Scholar : PubMed/NCBI

39 

Levine B and Yuan J: Autophagy in cell death: An innocent convict? J Clin Invest. 115:2679–2688. 2005. View Article : Google Scholar : PubMed/NCBI

40 

Casado P, Bilanges B, Rajeeve V, Vanhaesebroeck B and Cutillas PR: Environmental stress affects the activity of metabolic and growth factor signaling networks and induces autophagy markers in MCF7 breast cancer cells. Mol Cell Proteomics. 13:836–848. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Shi R, Weng J, Zhao L, Li XM, Gao TM and Kong J: Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci Ther. 18:250–260. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Livingston MJ and Dong Z: Autophagy in acute kidney injury. Semin Nephrol. 34:17–26. 2014. View Article : Google Scholar : PubMed/NCBI

43 

Chien WS, Chen YH, Chiang PC, Hsiao HW, Chuang SM, Lue SI and Hsu C: Suppression of autophagy in rat liver at late stage of polymicrobial sepsis. Shock. 35:506–511. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Hsieh CH, Pai PY, Hsueh HW, Yuan SS and Hsieh YC: Complete induction of autophagy is essential for cardioprotection in sepsis. Ann Surg. 253:1190–1200. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Şen V, Uluca Ü, Ece A, Güneş A, Zeytun H, Arslan S, Kaplan I, Türkçü G and Tekin R: Role of Ankaferd on bacterial translocation and inflammatory response in an experimental rat model of intestinal obstruction. Int J Clin Exp Med. 7:2677–2686. 2014.PubMed/NCBI

46 

Sang HS, Lee KE, Kim IJ, Kim O, Kim CS, Choi JS, Choi HI, Bae EH, Ma SK, Lee JU and Kim SW: Alpha-lipoic acid attenuates lipopolysaccharide-induced kidney injury. Clin Exp Nephrol. 19:82–91. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Xiang H, Hu B, Li Z and Li J: Dexmedetomidine controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Inflammation. 37:1763–1770. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Kong Y, Yin J, Cheng D, Lu Z, Wang N, Wang F and Liang M: Antithrombin III attenuates AKI following acute severe pancreatitis. Shock. 49:572–579. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Lu Z, Cheng D, Yin J, Wu R, Zhang G, Zhao Q, Wang N, Wang F and Liang M: Antithrombin III protects against contrast-induced nephropathy. EBioMedicine. 17:101–107. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Chen K, Dai H, Yuan J, Chen J, Lin L, Zhang W, Wang L, Zhang J, Li K and He Y: Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy. Cell Death Dis. 9:1052018. View Article : Google Scholar : PubMed/NCBI

51 

Lu B, Capan E and Li C: Autophagy induction and autophagic cell death in effector T cells. Autophagy. 3:158–159. 2007. View Article : Google Scholar : PubMed/NCBI

52 

Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Lam HC, Rabinovitch M, et al: Autophagy proteins regulate innate immune response by inhibiting NALP3 inflammasome-mediated mitochondrial DAN release. American Thoracic Society 2011 International Conference, May 13–18, 2011 • Denver Colorado. 2011.A1077

53 

Carchman EH, Rao J, Loughran PA, Rosengart MR and Zuckerbraun BS: Heme oxygenase-1-mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice. Hepatology. 53:2053–2062. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Kaushal GP: Autophagy protects proximal tubular cells from injury and apoptosis. Kidney Int. 82:1250–1253. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zheng C, Zhou Y, Huang Y, Chen B, Wu M, Xie Y, Chen X, Sun M, Liu Y, Chen C, Chen C, et al: Effect of ATM on inflammatory response and autophagy in renal tubular epithelial cells in LPS‑induced septic AKI. Exp Ther Med 18: 4707-4717, 2019.
APA
Zheng, C., Zhou, Y., Huang, Y., Chen, B., Wu, M., Xie, Y. ... Pan, J. (2019). Effect of ATM on inflammatory response and autophagy in renal tubular epithelial cells in LPS‑induced septic AKI. Experimental and Therapeutic Medicine, 18, 4707-4717. https://doi.org/10.3892/etm.2019.8115
MLA
Zheng, C., Zhou, Y., Huang, Y., Chen, B., Wu, M., Xie, Y., Chen, X., Sun, M., Liu, Y., Chen, C., Pan, J."Effect of ATM on inflammatory response and autophagy in renal tubular epithelial cells in LPS‑induced septic AKI". Experimental and Therapeutic Medicine 18.6 (2019): 4707-4717.
Chicago
Zheng, C., Zhou, Y., Huang, Y., Chen, B., Wu, M., Xie, Y., Chen, X., Sun, M., Liu, Y., Chen, C., Pan, J."Effect of ATM on inflammatory response and autophagy in renal tubular epithelial cells in LPS‑induced septic AKI". Experimental and Therapeutic Medicine 18, no. 6 (2019): 4707-4717. https://doi.org/10.3892/etm.2019.8115
Copy and paste a formatted citation
x
Spandidos Publications style
Zheng C, Zhou Y, Huang Y, Chen B, Wu M, Xie Y, Chen X, Sun M, Liu Y, Chen C, Chen C, et al: Effect of ATM on inflammatory response and autophagy in renal tubular epithelial cells in LPS‑induced septic AKI. Exp Ther Med 18: 4707-4717, 2019.
APA
Zheng, C., Zhou, Y., Huang, Y., Chen, B., Wu, M., Xie, Y. ... Pan, J. (2019). Effect of ATM on inflammatory response and autophagy in renal tubular epithelial cells in LPS‑induced septic AKI. Experimental and Therapeutic Medicine, 18, 4707-4717. https://doi.org/10.3892/etm.2019.8115
MLA
Zheng, C., Zhou, Y., Huang, Y., Chen, B., Wu, M., Xie, Y., Chen, X., Sun, M., Liu, Y., Chen, C., Pan, J."Effect of ATM on inflammatory response and autophagy in renal tubular epithelial cells in LPS‑induced septic AKI". Experimental and Therapeutic Medicine 18.6 (2019): 4707-4717.
Chicago
Zheng, C., Zhou, Y., Huang, Y., Chen, B., Wu, M., Xie, Y., Chen, X., Sun, M., Liu, Y., Chen, C., Pan, J."Effect of ATM on inflammatory response and autophagy in renal tubular epithelial cells in LPS‑induced septic AKI". Experimental and Therapeutic Medicine 18, no. 6 (2019): 4707-4717. https://doi.org/10.3892/etm.2019.8115
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team