|
1
|
Kuznetsov L, Dworzynski K, Davies M and
Overton C; Guideline Committee, : Diagnosis and management of
endometriosis: Summary of NICE guidance. BMJ. 358:j39352017.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Dunselman GA, Vermeulen N, Becker C,
Calhaz-Jorge C, D'Hooghe T, De Bie B, Heikinheimo O, Horne AW,
Kiesel L, Nap A, et al: ESHRE guideline: Management of women with
endometriosis. Hum Reprod. 29:400–412. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Guo SW: Recurrence of endometriosis and
its control. Hum Reprod Update. 15:441–461. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Halme J, Hammond MG, Hulka JF, Raj SG and
Talbert LM: Retrograde menstruation in healthy women and in
patients with endometriosis. Obstet Gynecol. 64:151–154.
1984.PubMed/NCBI
|
|
5
|
Bruner-Tran KL, Mokshagundam S, Herington
JL, Ding T and Osteen KG: Rodent models of experimental
endometriosis: Identifying mechanisms of disease and therapeutic
targets. Curr Womens Health Rev. 14:173–188. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
King CM, Barbara C, Prentice A, Brenton JD
and Charnock-Jones DS: Models of endometriosis and their utility in
studying progression to ovarian clear cell carcinoma. J Pathol.
238:185–196. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Banu SK, Lee J, Starzinski-Powitz A and
Arosh JA: Gene expression profiles and functional characterization
of human immortalized endometriotic epithelial and stromal cells.
Fertil Steril. 90:972–987. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lee J, Banu SK, Rodriguez R,
Starzinski-Powitz A and Arosh JA: Selective blockade of
prostaglandin E2 receptors EP2 and EP4 signaling inhibits
proliferation of human endometriotic epithelial cells and stromal
cells through distinct cell cycle arrest. Fertil Steril.
93:2498–2506. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Köster F, Jin L, Shen Y, Schally AV, Cai
RZ, Block NL, Hornung D, Marschner G, Rody A, Engel JB and Finas D:
Effects of an antagonistic analog of growth hormone-releasing
hormone on endometriosis in a mouse model and in vitro. Reprod Sci.
24:1503–1511. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Adammek M, Greve B, Kassens N, Schneider
C, Brüggemann K, Schüring AN, Starzinski-Powitz A, Kiesel L and
Götte M: MicroRNA miR-145 inhibits proliferation, invasiveness, and
stem cell phenotype of an in vitro endometriosis model by targeting
multiple cytoskeletal elements and pluripotency factors. Fertil
Steril. 99:1346–1355.e5. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Králíčková M, Fiala L, Losan P, Tomes P
and Vetvicka V: Altered immunity in endometriosis: What came first?
Immunol Invest. 47:569–582. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Miller JE, Monsanto SP, Ahn SH, Khalaj K,
Fazleabas AT, Young SL, Lessey BA, Koti M and Tayade C:
Interleukin-33 modulates inflammation in endometriosis. Sci Rep.
7:179032017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ruiz A, Ruiz L, Colòn-Caraballo M,
Torres-Collazo BJ, Monteiro JB, Bayona M, Fazleabas AT and Flores
I: Pharmacological blockage of the CXCR4-CXCL12 axis in
endometriosis leads to contrasting effects in proliferation,
migration, and invasion. Biol Reprod. 98:4–14. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Brueggmann D, Templeman C,
Starzinski-Powitz A, Rao NP, Gayther SA and Lawrenson K: Novel
three-dimensional in vitro models of ovarian endometriosis. J
Ovarian Res. 7:172014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ryan IP, Schriock ED and Taylor RN:
Isolation, characterization, and comparison of human endometrial
and endometriosis cells in vitro. J Clin Endocrinol Metab.
78:642–649. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Boccellino M, Quagliuolo L, Verde A, La
Porta R, Crispi S, Piccolo MT, Vitiello A, Baldi A and Signorile
PG: In vitro model of stromal and epithelial immortalized
endometriotic cells. J Cell Biochem. 113:1292–1301. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Liu J, Zhang Z, Liu J and Wang D: LIM
Kinase 1 mediates estradiol effects on the phosphorylation of
Cofilin1 in eutopic endometrial stromal cells during the invasion
and proliferation of endometriosis. Reprod Sci. 26:1499–1505. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Olivares C, Bilotas M, Buquet R, Borghi M,
Sueldo C, Tesone M and Meresman G: Effects of a selective
cyclooxygenase-2 inhibitor on endometrial epithelial cells from
patients with endometriosis. Hum Reprod. 23:2701–2708. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Matsuzaki S, Canis M, Pouly JL and Darcha
C: Soft matrices inhibit cell proliferation and inactivate the
fibrotic phenotype of deep endometriotic stromal cells in vitro.
Hum Reprod. 31:541–553. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Matsuzaki S and Darcha C: Co-operation
between the AKT and ERK signaling pathways may support growth of
deep endometriosis in a fibrotic microenvironment in vitro. Hum
Reprod. 30:1606–1616. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Overton CE, Fernandez-Shaw S, Hicks B,
Barlow DH and Starkey P: In vitro culture of endometrial stromal
and gland cells as a model for endometriosis: The effect of
peritoneal fluid on proliferation. Fertil Steril. 67:51–56. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Braza-Boïls A, Salloum-Asfar S,
Marí-Alexandre J, Arroyo AB, González-Conejero R, Barcelo-Mólina M,
García-Oms J, Vicente V, Estelles A, Gilabert-Estelles J and
Martínez C: Peritoneal fluid modifies the microRNA expression
profile in endometrial and endometriotic cells from women with
endometriosis. Hum Reprod. 30:2292–2302. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Braza-Boïls A, Gilabert-Estélles J, Ramon
LA, Gilabert J, Marí-Alexandre J, Chirivella M, Espana F and
Estelles A: Peritoneal fluid reduces angiogenesis-related microRNA
expression in cell cultures of endometrial and endometriotic
tissues from women with endometriosis. PLoS One. 8:e623702013.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Surrey ES and Halme J: Effect of
platelet-derived growth factor on endometrial stromal cell
proliferation in vitro: A model for endometriosis? Fertil Steril.
56:672–679. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Liang Z, Chen Y, Zhao Y, Xu C, Zhang A,
Zhang Q, Wang D, He J, Hua W and Duan P: miR-200c suppresses
endometriosis by targeting MALAT1 in vitro and in vivo. Stem Cell
Res Ther. 8:2512017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Matsuzaki S and Darcha C: Antifibrotic
properties of epigallocatechin-3-gallate in endometriosis. Hum
Reprod. 29:1677–1687. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kim SH, Cho S, Ihm HJ, Oh YS, Heo SH, Chun
S, Im H, Chae HD, Kim CH and Kang BM: Possible role of phthalate in
the pathogenesis of endometriosis: In vitro, animal, and human
data. J Clin Endocrinol Metab. 100:E1502–E1511. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Matsuzaki S and Darcha C: Involvement of
the Wnt/β-catenin signaling pathway in the cellular and molecular
mechanisms of fibrosis in endometriosis. PLoS One. 8:e768082013.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Laschke MW and Menger MD: In vitro and in
vivo approaches to study angiogenesis in the pathophysiology and
therapy of endometriosis. Hum Reprod Update. 13:331–342. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Fujimoto J, Sakaguchi H, Hirose R and
Tamaya T: Expression of platelet-derived endothelial cell growth
factor (PD-ECGF) related to angiogenesis in ovarian endometriosis.
J Clin Endocrinol Metab. 84:359–362. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Gazvani R, Smith L and Fowler PA: Effect
of interleukin-8 (IL-8), anti-IL-8, and IL-12 on endometrial cell
survival in combined endometrial gland and stromal cell cultures
derived from women with and without endometriosis. Fertil Steril.
77:62–67. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lv J, Zhu Q, Jia X, Yu N and Li Q: In
vitro and in vivo effects of tumor suppressor gene PTEN on
endometriosis: An experimental study. Med Sci Monit. 22:3727–3736.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wang Y, Nicholes K and Shih IM: The origin
and pathogenesis of endometriosis. Annu Rev Pathol. Sep
3–2019.(Epub ahead of print). PubMed/NCBI
|
|
34
|
Savilova AM, Yushina MN, Rudimova YV,
Khabas GN, Chuprynin VD and Sukhikh GT: Characteristics of
multipotent mesenchymal stromal cells isolated from human
endometrium and endometriosis lesions. Bull Exp Biol Med.
161:610–615. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Savilova AM, Farkhat KN, Yushina MN,
Rudimova YV, Makiyan ZN and Adamyan LV: Characteristics of
multipotent mesenchymal stromal cells isolated from the endometrium
and endometriosis lesions of women with malformations of the
internal reproductive organs. Bull Exp Biol Med. 162:539–544. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kao AP, Wang KH, Long CY, Chai CY, Tsai
CF, Hsieh TH, Hsu CY, Chang CC, Lee JN and Tsai EM: Interleukin-1β
induces cyclooxygenase-2 expression and promotes the invasive
ability of human mesenchymal stem cells derived from ovarian
endometrioma. Fertil Steril. 96:678–684 e671. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Canosa S, Moggio A, Brossa A, Pittatore G,
Marchino GL, Leoncini S, Benedetto C, Revelli A and Bussolati B:
Angiogenic properties of endometrial mesenchymal stromal cells in
endothelial co-culture: An in vitro model of endometriosis. Mol Hum
Reprod. 23:187–198. 2017.PubMed/NCBI
|
|
38
|
Hapangama DK, Drury J, Da Silva L,
Al-Lamee H, Earp A, Valentijn AJ, Edirisinghe DP, Murray PA,
Fazleabas AT and Gargett CE: Abnormally located SSEA1+/SOX9+
endometrial epithelial cells with a basalis-like phenotype in the
eutopic functionalis layer may play a role in the pathogenesis of
endometriosis. Hum Reprod. 34:56–68. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Esfandiari N, Nazemian Z and Casper RF:
Three-dimensional culture of endometrial cells: An in vitro model
of endometriosis. Am J Reprod Immunol. 60:283–289. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Fasciani A, Bocci G, Xu J, Bielecki R,
Greenblatt E, Leyland N and Casper RF: Three-dimensional in vitro
culture of endometrial explants mimics the early stages of
endometriosis. Fertil Steril. 80:1137–1143. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Prechapanich J, Kajihara T, Fujita K, Sato
K, Uchino S, Tanaka K, Matsumoto S, Akita M, Nagashima M, Brosens
JJ and Ishihara O: Effect of a dienogest for an experimental
three-dimensional endometrial culture model for endometriosis. Med
Mol Morphol. 47:189–195. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Esfandiari N, Ai J, Nazemian Z, Javed MH,
Gotlieb L and Casper RF: Expression of glycodelin and
cyclooxygenase-2 in human endometrial tissue following
three-dimensional culture. Am J Reprod Immunol. 57:49–54. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Esfandiari N, Khazaei M, Ai J, Bielecki R,
Gotlieb L, Ryan E and Casper RF: Effect of a statin on an in vitro
model of endometriosis. Fertil Steril. 87:257–262. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Maas JW, Le Noble FA, Dunselman GA, de
Goeij AF, Struyker Boudier HA and Evers JL: The chick embryo
chorioallantoic membrane as a model to investigate the angiogenic
properties of human endometrium. Gynecol Obstet Invest. 48:108–112.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Nap AW, Groothuis PG, Demir AY, Maas JW,
Dunselman GA, de Goeij AF and Evers JL: Tissue integrity is
essential for ectopic implantation of human endometrium in the
chicken chorioallantoic membrane. Hum Reprod. 18:30–34. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Nap AW, Groothuis PG, Punyadeera C,
Klein-Hitpass L, Kamps R, Delvoux B and Dunselman GA: Oral
contraceptives prevent the development of endometriosis in the
chicken chorioallantoic membrane model. Contraception. 78:257–265.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Nap AW, Dunselman GA, Griffioen AW, Mayo
KH, Evers JL and Groothuis PG: Angiostatic agents prevent the
development of endometriosis-like lesions in the chicken
chorioallantoic membrane. Fertil Steril. 83:793–795. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Koks CA, Groothuis PG, Dunselman GA, de
Goeij AF and Evers JL: Adhesion of shed menstrual tissue in an
in-vitro model using amnion and peritoneum: A light and electron
microscopic study. Hum Reprod. 14:816–1822. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
van der Linden PJ, de Goeij AF, Dunselman
GA, Erkens HW and Evers JL: Amniotic membrane as an in vitro model
for endometrium-extracellular matrix interactions. Gynecol Obstet
Invest. 45:7–11. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Groothuis PG, Koks CA, de Goeij AF,
Dunselman GA, Arends JW and Evers JL: Adhesion of human endometrium
to the epithelial lining and extracellular matrix of amnion in
vitro: An electron microscopic study. Hum Reprod. 13:2275–2281.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
van der Linden PJ, de Goeij AF, Dunselman
GA, Erkens HW and Evers JL: Endometrial cell adhesion in an in
vitro model using intact amniotic membranes. Fertil Steril.
65:76–80. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Witz CA, Dechaud H, Montoya-Rodriguez IA,
Thomas MR, Nair AS, Centonze VE and Schenken RS: An in vitro model
to study the pathogenesis of the early endometriosis lesion. Ann N
Y Acad Sci. 955:296–307, 340–342, 396–406. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Witz CA, Monotoya-Rodriguez IA and
Schenken RS: Whole explants of peritoneum and endometrium: A novel
model of the early endometriosis lesion. Fertil Steril. 71:56–60.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Groothuis PG, Koks CA, de Goeij AF,
Dunselman GA, Arends JW and Evers JL: Adhesion of human endometrial
fragments to peritoneum in vitro. Fertil Steril. 71:1119–1124.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wild RA, Zhang RJ and Medders D: Whole
endometrial fragments form characteristics of in vivo endometriosis
in a mesothelial cell co-culture system: An in vitro model for the
study of the histogenesis of endometriosis. J Soc Gynecol Investig.
1:65–68. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lucidi RS, Witz CA, Chrisco M, Binkley PA,
Shain SA and Schenken RS: A novel in vitro model of the early
endometriotic lesion demonstrates that attachment of endometrial
cells to mesothelial cells is dependent on the source of
endometrial cells. Fertil Steril. 84:16–21. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Debrock S, De Strooper B, Vander Perre S,
Hill JA and D'Hooghe TM: Tumour necrosis factor-alpha,
interleukin-6 and interleukin-8 do not promote adhesion of human
endometrial epithelial cells to mesothelial cells in a quantitative
in vitro model. Hum Reprod. 21:605–609. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Griffith JS, Binkley PA, Kirma NB,
Schenken RS, Witz CA and Tekmal RR: Imatinib decreases endometrial
stromal cell transmesothial migration and proliferation in the
extracellular matrix of modeled peritoneum. Fertil Steril.
94:2531–2535. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Nair AS, Nair HB, Lucidi RS, Kirchner AJ,
Schenken RS, Tekmal RR and Witz CA: Modeling the early
endometriotic lesion: Mesothelium-endometrial cell co-culture
increases endometrial invasion and alters mesothelial and
endometrial gene transcription. Fertil Steril. 90:1487–1495. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chen Z, Dai Y, Dong Z, Li M, Mu X, Zhang
R, Wang Z, Zhang W, Lang J, Leng J and Jiang X: Co-cultured
endometrial stromal cells and peritoneal mesothelial cells for an
in vitro model of endometriosis. Integr Biol (Camb). 4:1090–1095.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yu J, Wang Y, Zhou WH, Wang L, He YY and
Li DJ: Combination of estrogen and dioxin is involved in the
pathogenesis of endometriosis by promoting chemokine secretion and
invasion of endometrial stromal cells. Hum Reprod. 23:1614–1626.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Loh FH, Bongso A, Fong CY, Koh DR, Lee SH
and Zhao HQ: Effects of peritoneal macrophages from women with
endometriosis on endometrial cellular proliferation in an in vitro
coculture model. Fertil Steril. 72:533–538. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Takaoka O, Mori T, Ito F, Okimura H,
Kataoka H, Tanaka Y, Koshiba A, Kusuki I, Shigehiro S, Amami T and
Kitawaki J: Daidzein-rich isoflavone aglycones inhibit cell growth
and inflammation in endometriosis. J Steroid Biochem Mol Biol.
181:125–132. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wu D, Lu P, Mi X and Miao J: Exosomal
miR-214 from endometrial stromal cells inhibits endometriosis
fibrosis. Mol Hum Reprod. 24:357–365. 2018.PubMed/NCBI
|
|
65
|
Lawrenson K, Lee N, Torres HA, Lee JM,
Brueggmann D, Rao PN, Noushmehr H and Gayther SA: Src as a novel
therapeutic target for endometriosis. Gynecol Oncol. 135:100–107.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ohtake H, Katabuchi H, Matsuura K and
Okamura H: A novel in vitro experimental model for ovarian
endometriosis: The three-dimensional culture of human ovarian
surface epithelial cells in collagen gels. Fertil Steril. 71:50–55.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Vigano P, Candiani M, Monno A, Giacomini
E, Vercellini P and Somigliana E: Time to redefine endometriosis
including its pro-fibrotic nature. Hum Reprod. 33:347–352. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhang Q, Duan J, Liu X and Guo SW:
Platelets drive smooth muscle metaplasia and fibrogenesis in
endometriosis through epithelial-mesenchymal transition and
fibroblast-to-myofibroblast transdifferentiation. Mol Cell
Endocrinol. 428:1–16. 2016. View Article : Google Scholar : PubMed/NCBI
|