|
1
|
Panoutsopoulou K and Zeggini E: Advances
in osteoarthritis genetics. J Med Genet. 50:715–724. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Yamasaki K, Nakasa T, Miyaki S, Ishikawa
M, Deie M, Adachi N, Yasunaga Y, Asahara H and Ochi M: Expression
of MicroRNA-146a in osteoarthritis cartilage. Arthritis Rheum.
60:1035–1041. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Li H, Zeng C, Wei J, Yang T, Gao SG, Li
YS, Luo W, Xiao WF, Xiong YL and Lei GH: Serum Calcium
Concentration Is Inversely Associated With Radiographic Knee
Osteoarthritis: A Cross-Sectional Study. Medicine (Baltimore).
95:e28382016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Roman-Blas JA, Castañeda S, Largo R and
Herrero-Beaumont G: Osteoarthritis associated with estrogen
deficiency. Arthritis Res Ther. 11:2412009. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Dequeker J, Aerssens J and Luyten FP:
Osteoarthritis and osteoporosis: Clinical and research evidence of
inverse relationship. Aging Clin Exp Res. 15:426–439. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Franceschi C, Garagnani P, Morsiani C,
Conte M, Santoro A, Grignolio A, Monti D, Capri M and Salvioli S:
The continuum of aging and age-related diseases: common mechanisms
but different rates. Front Med (Lausanne). 5:612018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Cosman F, de Beur SJ, LeBoff MS, Lewiecki
EM, Tanner B, Randall S and Lindsay R; National Osteoporosis
Foundation, : Clinician's Guide to Prevention and Treatment of
Osteoporosis. Osteoporos Int. 25:2359–2381. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Sözen T, Özışık L and Başaran NC: An
overview and management of osteoporosis. Eur J Rheumatol. 4:46–56.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ganguly P, El-Jawhari JJ, Giannoudis PV,
Burska AN, Ponchel F and Jones EA: Age-related changes in bone
marrow mesenchymal stromal cells: A potential impact on
osteoporosis and osteoarthritis development. Cell Transplant.
26:1520–1529. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Nelson AE: Osteoarthritis year in review
2017: Clinical. Osteoarthritis Cartilage. 26:319–325. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Nikitovic D, Aggelidakis J, Young MF,
Iozzo RV, Karamanos NK and Tzanakakis GN: The biology of small
leucine-rich proteoglycans in bone pathophysiology. J Biol Chem.
287:33926–33933. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lotz M and Loeser RF: Effects of aging on
articular cartilage homeostasis. Bone. 51:241–248. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhang M, Theleman JL, Lygrisse KA and Wang
J: Epigenetic mechanisms underlying the aging of articular
cartilage and osteoarthritis. Gerontology. 65:387–396. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Martin JA and Buckwalter JA: Roles of
articular cartilage aging and chondrocyte senescence in the
pathogenesis of osteoarthritis. Iowa Orthop J. 21:1–7.
2001.PubMed/NCBI
|
|
15
|
Ginaldi L, Di Benedetto MC and De Martinis
M: Osteoporosis, inflammation and ageing. Immun Ageing. 2:142005.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Eghbali-Fatourechi G, Khosla S, Sanyal A,
Boyle WJ, Lacey DL and Riggs BL: Role of RANK ligand in mediating
increased bone resorption in early postmenopausal women. J Clin
Invest. 111:1221–1230. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
D'Amelio P, Grimaldi A, Di Bella S,
Brianza SZM, Cristofaro MA, Tamone C, Giribaldi G, Ulliers D,
Pescarmona GP and Isaia G: Estrogen deficiency increases
osteoclastogenesis up-regulating T cells activity: A key mechanism
in osteoporosis. Bone. 43:92–100. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ponzetti M and Rucci N: Updates on
Osteoimmunology: What's New on the Cross-Talk Between Bone and
Immune System. Front Endocrinol. 10:2362019. View Article : Google Scholar
|
|
19
|
Wauquier F, Leotoing L, Coxam V, Guicheux
J and Wittrant Y: Oxidative stress in bone remodelling and disease.
Trends Mol Med. 15:468–477. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Sies H, Cadenas E, Symons MCR and Scott G:
Oxidative stress: Damage to intact cells and organs. Philos Trans R
Soc Lond B Biol Sci. 311:617–631. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Valko M, Leibfritz D, Moncol J, Cronin MT,
Mazur M and Telser J: Free radicals and antioxidants in normal
physiological functions and human disease. Int J Biochem Cell Biol.
39:44–84. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Fischer-Nielsen A, Corcoran GB, Poulsen
HE, Kamendulis LM and Loft S: Menadione-induced DNA fragmentation
without 8-oxo-2′-deoxyguanosine formation in isolated rat
hepatocytes. Biochem Pharmacol. 49:1469–1474. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Yermilov V, Rubio J, Becchi M, Friesen MD,
Pignatelli B and Ohshima H: Formation of 8-nitroguanine by the
reaction of guanine with peroxynitrite in vitro. Carcinogenesis.
16:2045–2050. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Masutomi K, Possemato R, Wong JM, Currier
JL, Tothova Z, Manola JB, Ganesan S, Lansdorp PM, Collins K and
Hahn WC: The telomerase reverse transcriptase regulates chromatin
state and DNA damage responses. Proc Natl Acad Sci USA.
102:8222–8227. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Aubert G and Lansdorp PM: Telomeres and
aging. Physiol Rev. 88:557–579. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Harley CB, Vaziri H, Counter CM and
Allsopp RC: The telomere hypothesis of cellular aging. Exp
Gerontol. 27:375–382. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Saretzki G: Telomeres, Telomerase and
Ageing. Subcell Biochem. 90:221–308. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Tsoukalas D, Fragkiadaki P, Docea AO,
Alegakis AK, Sarandi E, Thanasoula M, Spandidos DA, Tsatsakis A,
Razgonova MP and Calina D: Discovery of potent telomerase
activators: Unfolding new therapeutic and anti-aging perspectives.
Mol Med Rep. 20:3701–3708. 2019.PubMed/NCBI
|
|
29
|
Counter CM, Meyerson M, Eaton EN and
Weinberg RA: The catalytic subunit of yeast telomerase. Proc Natl
Acad Sci USA. 94:9202–9207. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Blackburn EH: Switching and signaling at
the telomere. Cell. 106:661–673. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kosebent EG, Uysal F and Ozturk S:
Telomere length and telomerase activity during folliculogenesis in
mammals. J Reprod Dev. 64:477–484. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Yu Y, Zhou L, Yang Y and Liu Y:
Cycloastragenol: An exciting novel candidate for age-associated
diseases. Exp Ther Med. 16:2175–2182. 2018.PubMed/NCBI
|
|
33
|
Bernardes B de Jesus, Schneeberger K, Vera
E, Tejera A, Harley CB and Blasco MA: The telomerase activator
TA-65 elongates short telomeres and increases health span of
adult/old mice without increasing cancer incidence. Aging Cell.
10:604–621. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Fujii H, Shao L, Colmegna I, Goronzy JJ
and Weyand CM: Telomerase insufficiency in rheumatoid arthritis.
Proc Natl Acad Sci USA. 106:4360–4365. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Vakonaki E, Tsiminikaki K, Plaitis S,
Fragkiadaki P, Tsoukalas D, Katsikantami I, Vaki G, Tzatzarakis MN,
Spandidos DA and Tsatsakis AM: Common mental disorders and
association with telomere length (Review). Biomed Rep. 8:111–116.
2018.PubMed/NCBI
|
|
36
|
Wu KD, Orme LM, Shaughnessy J Jr, Jacobson
J, Barlogie B and Moore MA: Telomerase and telomere length in
multiple myeloma: Correlations with disease heterogeneity,
cytogenetic status, and overall survival. Blood. 101:4982–4989.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Willeit P, Willeit J, Brandstätter A,
Ehrlenbach S, Mayr A, Gasperi A, Weger S, Oberhollenzer F, Reindl
M, Kronenberg F, et al: Cellular aging reflected by leukocyte
telomere length predicts advanced atherosclerosis and
cardiovascular disease risk. Arterioscler Thromb Vasc Biol.
30:1649–1656. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Calado RT and Young NS: Telomere diseases.
N Engl J Med. 361:2353–2365. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Fragkiadaki P, Tsoukalas D, Fragkiadoulaki
I, Psycharakis C, Nikitovic D, Spandidos DA and Tsatsakis AM:
Telomerase activity in pregnancy complications (Review). Mol Med
Rep. 14:16–21. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Vasilopoulos E, Fragkiadaki P, Kalliora C,
Fragou D, Docea AO, Vakonaki E, Tsoukalas D, Calina D, Buga AM,
Georgiadis G, et al: The association of female and male infertility
with telomere length (Review). Int J Mol Med. 44:375–389.
2019.PubMed/NCBI
|
|
41
|
Vakonaki E, Tzatzarakis M, Tsiminikai K,
Nathena D, Fragkiadaki P, Kalliantasi K, Kanaki K, Vaki G, Plaitis
S, Tsoukalas D, et al: Effect of chronic and heavy drug abuse on
biological aging. World Acad Sci J. 1:67–73. 2019.
|
|
42
|
Hemann MT, Strong MA, Hao LY and Greider
CW: The shortest telomere, not average telomere length, is critical
for cell viability and chromosome stability. Cell. 107:67–77. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Muraki K, Nyhan K, Han L and Murnane JP:
Mechanisms of telomere loss and their consequences for chromosome
instability. Front Oncol. 2:1352012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Thanasoula M, Escandell JM, Martinez P,
Badie S, Muñoz P, Blasco MA and Tarsounas M: p53 prevents entry
into mitosis with uncapped telomeres. Curr Biol. 20:521–526. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Thanasoula M, Escandell JM, Suwaki N and
Tarsounas M: ATM/ATR checkpoint activation downregulates CDC25C to
prevent mitotic entry with uncapped telomeres. EMBO J.
31:3398–3410. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Tsatsakis A, Tsoukalas D, Fragkiadaki P,
Vakonaki E, Tzatzarakis M, Sarandi E, Nikitovic D, Tsilimidos G and
Alegakis AK: Developing BIOTEL: A Semi-Automated Spreadsheet for
Estimating Telomere Length and Biological Age. Front Genet.
10:842019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Oreffo RO, Bennett A, Carr AJ and Triffitt
JT: Patients with primary osteoarthritis show no change with ageing
in the number of osteogenic precursors. Scand J Rheumatol.
27:415–424. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Rodríguez JP, Garat S, Gajardo H, Pino AM
and Seitz G: Abnormal osteogenesis in osteoporotic patients is
reflected by altered mesenchymal stem cells dynamics. J Cell
Biochem. 75:414–423. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Benisch P, Schilling T, Klein-Hitpass L,
Frey SP, Seefried L, Raaijmakers N, Krug M, Regensburger M, Zeck S,
Schinke T, et al: The transcriptional profile of mesenchymal stem
cell populations in primary osteoporosis is distinct and shows
overexpression of osteogenic inhibitors. PLoS One. 7:e451422012.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhou Z, Gao M, Liu Q and Tao MD:
Comprehensive transcriptome analysis of mesenchymal stem cells in
elderly patients with osteoporosis. Aging Clin Exp Res. 27:595–601.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang H, Chen Q, Lee SH, Choi Y, Johnson FB
and Pignolo RJ: Impairment of osteoblast differentiation due to
proliferation-independent telomere dysfunction in mouse models of
accelerated aging. Aging Cell. 11:704–713. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Valdes AM, Richards JB, Gardner JP,
Swaminathan R, Kimura M, Xiaobin L, Aviv A and Spector TD: Telomere
length in leukocytes correlates with bone mineral density and is
shorter in women with osteoporosis. Osteoporos Int. 18:1203–1210.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Bekaert S, Van Pottelbergh I, De Meyer T,
Zmierczak H, Kaufman JM, Van Oostveldt P and Goemaere S: Telomere
length versus hormonal and bone mineral status in healthy elderly
men. Mech Ageing Dev. 126:1115–1122. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kveiborg M, Kassem M, Langdahl B, Eriksen
EF, Clark BFC and Rattan SIS: Telomere shortening during aging of
human osteoblasts in vitro and leukocytes in vivo: Lack of
excessive telomere loss in osteoporotic patients. Mech Ageing Dev.
106:261–271. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Tao L, Huang Q, Yang R, Dai Y, Zeng Y, Li
C, Li X, Zeng J and Wang Q: The age modification to leukocyte
telomere length effect on bone mineral density and osteoporosis
among Chinese elderly women. J Bone Miner Metab. 37:1004–1012.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Calmy A, Chevalley T, Delhumeau C,
Toutous-Trellu L, Spycher-Elbes R, Ratib O, Zawadynski S and
Rizzoli R: Long-term HIV infection and antiretroviral therapy are
associated with bone microstructure alterations in premenopausal
women. Osteoporos Int. 24:1843–1852. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
McCulloch K, Litherland GJ and Rai TS:
Cellular senescence in osteoarthritis pathology. Aging Cell.
16:210–218. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Poonpet T, Saetan N, Tanavalee A,
Wilairatana V, Yuktanandana P and Honsawek S: Association between
leukocyte telomere length and angiogenic cytokines in knee
osteoarthritis. Int J Rheum Dis. 21:118–125. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yudoh K, Nguyen vT, Nakamura H,
Hongo-Masuko K, Kato T and Nishioka K: Potential involvement of
oxidative stress in cartilage senescence and development of
osteoarthritis: oxidative stress induces chondrocyte telomere
instability and downregulation of chondrocyte function. Arthritis
Res Ther. 7:R380–R391. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
60
|
Martin JA and Buckwalter JA: Aging,
articular cartilage chondrocyte senescence and osteoarthritis.
Biogerontology. 3:257–264. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Price JS, Waters JG, Darrah C, Pennington
C, Edwards DR, Donell ST and Clark IM: The role of chondrocyte
senescence in osteoarthritis. Aging Cell. 1:57–65. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhai G, Aviv A, Hunter DJ, Hart DJ,
Gardner JP, Kimura M, Lu X, Valdes AM and Spector TD: Reduction of
leucocyte telomere length in radiographic hand osteoarthritis: A
population-based study. Ann Rheum Dis. 65:1444–1448. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Li J, Huang J, Dai L, Yu D, Chen Q, Zhang
X and Dai K: miR-146a, an IL-1β responsive miRNA, induces vascular
endothelial growth factor and chondrocyte apoptosis by targeting
Smad4. Arthritis Res Ther. 14:R752012. View
Article : Google Scholar : PubMed/NCBI
|
|
64
|
Tamayo M, Mosquera A, Rego JI,
Fernández-Sueiro JL, Blanco FJ and Fernández JL: Differing patterns
of peripheral blood leukocyte telomere length in rheumatologic
diseases. Mutat Res. 683:68–73. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Tamayo M, Mosquera A, Rego I, Blanco FJ,
Gosálvez J and Fernández JL: Decreased length of telomeric DNA
sequences and increased numerical chromosome aberrations in human
osteoarthritic chondrocytes. Mutat Res. 708:50–58. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Aigner T, Haag J, Martin J and Buckwalter
J: Osteoarthritis: Aging of matrix and cells--going for a remedy.
Curr Drug Targets. 8:325–331. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
McAlindon T, Roberts M, Driban J, Schaefer
L, Haugen IK, Smith SE, Duryea J, Cunha D, Blanco F,
Fernández-Garcia JL, et al: Incident hand OA is strongly associated
with reduced peripheral blood leukocyte telomere length.
Osteoarthritis Cartilage. 26:1651–1657. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Harbo M, Delaisse JM, Kjaersgaard-Andersen
P, Soerensen FB, Koelvraa S and Bendix L: The relationship between
ultra-short telomeres, aging of articular cartilage and the
development of human hip osteoarthritis. Mech Ageing Dev.
134:367–372. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Sibille KT, Chenc H, Bartley EJ, Riley J
III, Gloverd TL, King CD, Zhang H, Cruz-Almeid Y, Goodin BR,
Sotolongo A, et al: Accelerated aging in adults with knee
osteoarthritis pain: consideration for frequency, intensity, time,
and total pain sites. Pain Rep. 2:e5912017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Hudita A, Galateanu B, Dinescu S, Costache
M, Dinischiotu A, Negrei C, Stan M, Tsatsakis A, Nikitovic D,
Lupuliasa D, et al: In Vitro Effects of Cetylated Fatty Acids
Mixture from Celadrin on Chondrogenesis and Inflammation with
Impact on Osteoarthritis. Cartilage. 11:88–97. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Sanders JL, Cauley JA, Boudreau RM, Zmuda
JM, Strotmeyer ES, Opresko PL, Hsueh WC, Cawthon RM, Li R, Harris
TB, et al Health ABC Study, : Leukocyte Telomere Length Is Not
Associated With BMD, Osteoporosis, or Fracture in Older Adults:
Results From the Health, Aging and Body Composition Study. J Bone
Miner Res. 24:1531–1536. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Tang NL, Woo J, Suen EW, Liao CD, Leung JC
and Leung PC: The effect of telomere length, a marker of biological
aging, on bone mineral density in elderly population. Osteoporos
Int. 21:89–97. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Nielsen BR, Linneberg A, Bendix L, Harboe
M, Christensen K and Schwarz P: Association between leukocyte
telomere length and bone mineral density in women 25–93 years of
age. Exp Gerontol. 66:25–31. 2015. View Article : Google Scholar : PubMed/NCBI
|