Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
March-2020 Volume 19 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2020 Volume 19 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

ERK/MAPK signalling pathway and tumorigenesis (Review)

  • Authors:
    • Yan‑Jun Guo
    • Wei‑Wei Pan
    • Sheng‑Bing Liu
    • Zhong‑Fei Shen
    • Ying Xu
    • Ling‑Ling Hu
  • View Affiliations / Copyright

    Affiliations: Department of Human Anatomy and Embryology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
    Copyright: © Guo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1997-2007
    |
    Published online on: January 15, 2020
       https://doi.org/10.3892/etm.2020.8454
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Mitogen‑activated protein kinase (MAPK) cascades are key signalling pathways that regulate a wide variety of cellular processes, including proliferation, differentiation, apoptosis and stress responses. The MAPK pathway includes three main kinases, MAPK kinase kinase, MAPK kinase and MAPK, which activate and phosphorylate downstream proteins. The extracellular signal‑regulated kinases ERK1 and ERK2 are evolutionarily conserved, ubiquitous serine‑threonine kinases that regulate cellular signalling under both normal and pathological conditions. ERK expression is critical for development and their hyperactivation plays a major role in cancer development and progression. The Ras/Raf/MAPK (MEK)/ERK pathway is the most important signalling cascade among all MAPK signal transduction pathways, and plays a crucial role in the survival and development of tumour cells. The present review discusses recent studies on Ras and ERK pathway members. With respect to processes downstream of ERK activation, the role of ERK in tumour proliferation, invasion and metastasis is highlighted, and the role of the ERK/MAPK signalling pathway in tumour extracellular matrix degradation and tumour angiogenesis is emphasised.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Keshet Y and Seger R: The MAP kinase signaling cascades: A system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol. 661:3–38. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Sabio G and Davis RJ: TNF and MAP kinase signalling pathways. Semin Immunol. 26:237–245. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Plotnikov A, Zehorai E, Procaccia S and Seger R: The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta. 1813:1619–1633. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Eblen ST: Extracellular-regulated kinases: Signaling from ras to ERK substrates to control biological outcomes. Adv Cancer Res. 138:99–142. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Roskoski R Jr: ERK1/2 MAP kinases: Structure, function, and regulation. Pharmacol Res. 66:105–143. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Wortzel I and Seger R: The ERK cascade: Distinct functions within various subcellular organelles. Genes Cancer. 2:195–209. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Seternes OM, Kidger AM and Keyse SM: Dual-specificity MAP kinase phosphatases in health and disease. Biochim Biophys Acta Mol Cell Res. 1866:124–143. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Patterson KI, Brummer T, O'Brien PM and Daly RJ: Dual-specificity phosphatases: Critical regulators with diverse cellular targets. Biochem J. 418:475–489. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Zhou B, Wang ZX, Zhao Y, Brautigan DL and Zhang ZY: The specificity of extracellular signal-regulated kinase 2 dephosphorylation by protein phosphatases. J Biol Chem. 277:31818–31825. 2002. View Article : Google Scholar : PubMed/NCBI

10 

Yao Z and Seger R: The molecular mechanism of MAPK/ERK inactivation. Curr Genomics. 5:385–393. 2004. View Article : Google Scholar

11 

Kolch W: Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol. 6:827–837. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Morrison DK and Davis RJ: Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol. 19:91–118. 2003. View Article : Google Scholar : PubMed/NCBI

13 

Chuderland D and Seger R: Protein-protein interactions in the regulation of the extracellular signal-regulated kinase. Mol Biotechnol. 29:57–74. 2005. View Article : Google Scholar : PubMed/NCBI

14 

Shaul YD and Seger R: The MEK/ERK cascade: From signaling specificity to diverse functions. Biochim Biophys Acta. 1773:1213–1226. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Marshall CJ: Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation. Cell. 80:179–185. 1995. View Article : Google Scholar : PubMed/NCBI

16 

Wainstein E and Seger R: The dynamic subcellular localization of ERK: Mechanisms of translocation and role in various organelles. Curr Opin Cell Biol. 39:15–20. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Yao Z and Seger R: The ERK signaling cascade-views from different subcellular compartments. Biofactors. 35:407–416. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Kim JY, Lee SG, Chung JY, Kim YJ, Park JE, Koh H, Han MS, Park YC, Yoo YH and Kim JM: Ellipticine induces apoptosis in human endometrial cancer cells: The potential involvement of reactive oxygen species and mitogen-activated protein kinases. Toxicology. 289:91–102. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Yoshizumi M, Kyotani Y, Zhao J, Nagayama K, Ito S, Tsuji Y and Ozawa K: Role of big mitogen-activated protein kinase 1 (BMK1)/extracellular signal-regulated kinase 5 (ERK5) in the pathogenesis and progression of atherosclerosis. J Pharmacol Sci. 120:259–263. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Bogoyevitch MA, Ngoei KR, Zhao TT, Yeap YY and Ng DC: c-Jun N-terminal kinase (JNK) signaling: Recent advances and challenges. Biochim Biophys Acta. 1804:463–475. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Wagner EF and Nebreda AR: Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 9:537–549. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Gupta J and Nebreda AR: Roles of p38α mitogen-activated protein kinase in mouse models of inflammatory diseases and cancer. FEBS J. 282:1841–1857. 2015. View Article : Google Scholar : PubMed/NCBI

23 

García-Gómez R, Bustelo XR and Crespo P: Protein-protein interactions: Emerging oncotargets in the RAS-ERK pathway. Trends Cancer. 4:616–633. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Khotskaya YB, Holla VR, Farago AF, Mills Shaw KR, Meric-Bernstam F and Hong DS: Targeting TRK family proteins in cancer. Pharmacol Ther. 173:58–66. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Maik-Rachline G, Hacohen-Lev-Ran A and Seger R: Nuclear ERK: Mechanism of translocation, substrates, and role in cancer. Int J Mol Sci. 20(pii): E11942019. View Article : Google Scholar : PubMed/NCBI

26 

Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia S, et al: Oncogenic signaling pathways in the cancer genome atlas. Cell. 173:321–337.e10. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Holderfield M, Deuker MM, McCormick F and McMahon M: Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer. 14:455–467. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Kyriakis JM and Avruch J: Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 81:807–869. 2001. View Article : Google Scholar : PubMed/NCBI

29 

Khokhlatchev AV, Canagarajah B, Wilsbacher J, Robinson M, Atkinson M, Goldsmith E and Cobb MH: Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell. 93:605–615. 1998. View Article : Google Scholar : PubMed/NCBI

30 

Chang L and Karin M: Mammalian MAP kinase signalling cascades. Nature. 410:37–40. 2001. View Article : Google Scholar : PubMed/NCBI

31 

Yang S and Liu G: Targeting the Ras/Raf/MEK/ERK pathway in hepatocellular carcinoma. Oncol Lett. 13:1041–1047. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Anjum R and Blenis J: The RSK family of kinases: Emerging roles in cellular signalling. Nat Rev Mol Cell Biol. 9:747–758. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH and Yancopoulos GD: ERKs: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell. 65:663–675. 1991. View Article : Google Scholar : PubMed/NCBI

34 

Morimoto H, Kondoh K, Nishimoto S, Terasawa K and Nishida E: Activation of a C-terminal transcriptional activation domain of ERK5 by autophosphorylation. J Biol Chem. 282:35449–35456. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Buschbeck M and Ullrich A: The unique C-terminal tail of the mitogen-activated protein kinase ERK5 regulates its activation and nuclear shuttling. J Biol Chem. 280:2659–2667. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Nishimoto S and Nishida E: MAPK signalling: ERK5 versus ERK1/2. EMBO Rep. 7:782–786. 2006. View Article : Google Scholar : PubMed/NCBI

37 

Kondoh K, Terasawa K, Morimoto H and Nishida E: Regulation of nuclear translocation of extracellular signal-regulated kinase 5 by active nuclear import and export mechanisms. Mol Cell Biol. 26:1679–1690. 2006. View Article : Google Scholar : PubMed/NCBI

38 

Yan C, Luo H, Lee JD, Abe J and Berk BC: Molecular cloning of mouse ERK5/BMK1 splice variants and characterization of ERK5 functional domains. J Biol Chem. 276:10870–10878. 2001. View Article : Google Scholar : PubMed/NCBI

39 

Zhou B, Der CJ and Cox AD: The role of wild type RAS isoforms in cancer. Semin Cell Dev Biol. 58:60–69. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Muñoz-Maldonado C, Zimmer Y and Medová M: A comparative analysis of individual RAS mutations in cancer biology. Front Oncol. 9:10882019. View Article : Google Scholar : PubMed/NCBI

41 

Dohlman HG and Campbell SL: Regulation of large and small G proteins by ubiquitination. J Biol Chem. 294:18613–18623. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Terrell EM and Morrison DK: Ras-mediated activation of the raf family kinases. Cold Spring Harb Perspect Med. 9(pii): a0337462019. View Article : Google Scholar : PubMed/NCBI

43 

Bandaru P, Kondo Y and Kuriyan J: The interdependent activation of son-of-sevenless and ras. Cold Spring Harb Perspect Med. 9(pii): a0315342019. View Article : Google Scholar : PubMed/NCBI

44 

Simanshu DK, Nissley DV and McCormick F: RAS proteins and their regulators in human disease. Cell. 170:17–33. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Rukhlenko OS, Khorsand F, Krstic A, Rozanc J, Alexopoulos LG, Rauch N, Erickson KE, Hlavacek WS, Posner RG, Gómez-Coca S, et al: Dissecting RAF inhibitor resistance by structure-based modeling reveals ways to overcome oncogenic RAS signaling. Cell Syst. 7:161–179.e14. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Roskoski R Jr: RAF protein-serine/threonine kinases: Structure and regulation. Biochem Biophys Res Commun. 399:313–317. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Roskoski R Jr: Targeting ERK1/2 protein-serine/threonine kinases in human cancers. Pharmacol Res. 142:151–168. 2019. View Article : Google Scholar : PubMed/NCBI

48 

Stokoe D and McCormick F: Activation of c-Raf-1 by Ras and Src through different mechanisms: Activation in vivo and in vitro. EMBO J. 16:2384–2396. 1997. View Article : Google Scholar : PubMed/NCBI

49 

Vandamme D, Herrero A, Al-Mulla F and Kolch W: Regulation of the MAPK pathway by raf kinase inhibitory protein. Crit Rev Oncog. 19:405–415. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Ding Q, Wang Q and Evers BM: Alterations of MAPK activities associated with intestinal cell differentiation. Biochem Biophys Res Commun. 284:282–288. 2001. View Article : Google Scholar : PubMed/NCBI

51 

Colombino M, Capone M, Lissia A, Cossu A, Rubino C, De Giorgi V, Massi D, Fonsatti E, Staibano S, Nappi O, et al: BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol. 30:2522–2529. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Edlundh-Rose E, Egyházi S, Omholt K, Månsson-Brahme E, Platz A, Hansson J and Lundeberg J: NRAS and BRAF mutations in melanoma tumours in relation to clinical characteristics: A study based on mutation screening by pyrosequencing. Melanoma Res. 16:471–478. 2006. View Article : Google Scholar : PubMed/NCBI

53 

Namba H, Nakashima M, Hayashi T, Hayashida N, Maeda S, Rogounovitch TI, Ohtsuru A, Saenko VA, Kanematsu T and Yamashita S: Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab. 88:4393–4397. 2003. View Article : Google Scholar : PubMed/NCBI

54 

Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, et al: Mutations of the BRAF gene in human cancer. Nat. 417:949–954. 2002. View Article : Google Scholar

55 

Murugan AK, Dong J, Xie J and Xing M: MEK1 mutations, but not ERK2 mutations, occur in melanomas and colon carcinomas, but none in thyroid carcinomas. Cell Cycle. 8:2122–2124. 2009. View Article : Google Scholar : PubMed/NCBI

56 

Nikolaev SI, Rimoldi D, Iseli C, Valsesia A, Robyr D, Gehrig C, Harshman K, Guipponi M, Bukach O, Zoete V, et al: Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat Genet. 44:133–139. 2011. View Article : Google Scholar : PubMed/NCBI

57 

Wang D, Boerner SA, Winkler JD and LoRusso PM: Clinical experience of MEK inhibitors in cancer therapy. Biochim Biophys Acta. 1773:1248–1255. 2007. View Article : Google Scholar : PubMed/NCBI

58 

Jänne PA, van den Heuvel MM, Barlesi F, Cobo M, Mazieres J, Crinò L, Orlov S, Blackhall F, Wolf J, Garrido P, et al: Selumetinib plus docetaxel compared with docetaxel alone and progression-free survival in patients with KRAS-mutant advanced non-small cell lung cancer: The SELECT-1 randomized clinical trial. JAMA. 317:1844–1853. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Seo JS, Ju YS, Lee WC, Shin JY, Lee JK, Bleazard T, Lee J, Jung YJ, Kim JO, Shin JY, et al: The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res. 22:2109–2119. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Cardarella S, Ogino A, Nishino M, Butaney M, Shen J, Lydon C, Yeap BY, Sholl LM, Johnson BE and Jänne PA: Clinical, pathologic, and biologic features associated with BRAF mutations in non-small cell lung cancer. Clin Cancer Res. 19:4532–4540. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Tol J, Nagtegaal ID and Punt CJ: BRAF mutation in metastatic colorectal cancer. N Engl J Med. 361:98–99. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Jones JC, Renfro LA, Al-Shamsi HO, Schrock AB, Rankin A, Zhang BY, Kasi PM, Voss JS, Leal AD, Sun J, et al: Non-V600 BRAF mutations define a clinically distinct molecular subtype of metastatic colorectal cancer. J Clin Oncol. 35:2624–2630. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Sieben NL, Macropoulos P, Roemen GM, Kolkman-Uljee SM, Jan Fleuren G, Houmadi R, Diss T, Warren B, Al Adnani M, De Goeij AP, et al: In ovarian neoplasms, BRAF, but not KRAS, mutations are restricted to low-grade serous tumours. J Pathol. 202:336–340. 2004. View Article : Google Scholar : PubMed/NCBI

64 

Bell DA: Origins and molecular pathology of ovarian cancer. Mod Pathol. 18 (Suppl 2):S19–S32. 2005. View Article : Google Scholar : PubMed/NCBI

65 

Singer G, Oldt R III, Cohen Y, Wang BG, Sidransky D, Kurman RJ and Shih IeM: Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst. 95:484–486. 2003. View Article : Google Scholar : PubMed/NCBI

66 

Bansal M, Gandhi M, Ferris RL, Nikiforova MN, Yip L, Carty SE and Nikiforov YE: Molecular and histopathologic characteristics of multifocal papillary thyroid carcinoma. Am J Surg Pathol. 37:1586–1591. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Paik PK, Arcila ME, Fara M, Sima CS, Miller VA, Kris MG, Ladanyi M and Riely GJ: Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol. 29:2046–2051. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B, Yip L, Mian C, Vianello F, Tuttle RM, et al: Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA. 309:1493–1501. 2013. View Article : Google Scholar : PubMed/NCBI

69 

Tiacci E, Trifonov V, Schiavoni G, Holmes A, Kern W, Martelli MP, Pucciarini A, Bigerna B, Pacini R, Wells VA, et al: BRAF mutations in hairy-cell leukemia. N Engl J Med. 364:2305–2315. 2011. View Article : Google Scholar : PubMed/NCBI

70 

Xi L, Arons E, Navarro W, Calvo KR, Stetler-Stevenson M, Raffeld M and Kreitman RJ: Both variant and IGHV4-34-expressing hairy cell leukemia lack the BRAF V600E mutation. Blood. 119:3330–3332. 2012. View Article : Google Scholar : PubMed/NCBI

71 

Chao TH, Hayashi M, Tapping RI, Kato Y and Lee JD: MEKK3 directly regulates MEK5 activity as part of the big mitogen-activated protein kinase 1 (BMK1) signaling pathway. J Biol Chem. 274:36035–36038. 1999. View Article : Google Scholar : PubMed/NCBI

72 

Cheng J, Yu L, Zhang D, Huang Q, Spencer D and Su B: Dimerization through the catalytic domain is essential for MEKK2 activation. J Biol Chem. 280:13477–13482. 2005. View Article : Google Scholar : PubMed/NCBI

73 

Sun W, Kesavan K, Schaefer BC, Garrington TP, Ware M, Johnson NL, Gelfand EW and Johnson GL: MEKK2 associates with the adapter protein Lad/RIBP and regulates the MEK5-BMK1/ERK5 pathway. J Biol Chem. 276:5093–5100. 2001. View Article : Google Scholar : PubMed/NCBI

74 

Manning G, Whyte DB, Martinez R, Hunter T and Sudarsanam S: The protein kinase complement of the human genome. Science. 298:1912–1934. 2002. View Article : Google Scholar : PubMed/NCBI

75 

Muta Y, Matsuda M and Imajo M: Divergent dynamics and functions of ERK MAP kinase signaling in development, homeostasis and cancer: Lessons from fluorescent bioimaging. Cancers (Basel). 11(pii): E5132019. View Article : Google Scholar : PubMed/NCBI

76 

Avruch J, Khokhlatchev A, Kyriakis JM, Luo Z, Tzivion G, Vavvas D and Zhang XF: Ras activation of the Raf kinase: Tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res. 56:127–155. 2001. View Article : Google Scholar : PubMed/NCBI

77 

Lawrence MC, Jivan A, Shao C, Duan L, Goad D, Zaganjor E, Osborne J, McGlynn K, Stippec S, Earnest S, et al: The roles of MAPKs in disease. Cell Res. 18:436–442. 2008. View Article : Google Scholar : PubMed/NCBI

78 

Shin M, Franks CE and Hsu KL: Isoform-selective activity-based profiling of ERK signaling. Chem Sci. 9:2419–2431. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Sanchez JN, Wang T and Cohen MS: BRAF and MEK inhibitors: Use and resistance in BRAF-mutated cancers. Drugs. 78:549–566. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Kolch W: Meaningful relationships: The regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J. 351:289–305. 2000. View Article : Google Scholar : PubMed/NCBI

81 

Schulze A, Lehmann K, Jefferies HB, McMahon M and Downward J: Analysis of the transcriptional program induced by Raf in epithelial cells. Genes Dev. 15:981–994. 2001. View Article : Google Scholar : PubMed/NCBI

82 

Deming D, Geiger P, Chen H, Vaccaro A, Kunnimalaiyaan M and Holen K: ZM336372, a Raf-1 activator, causes suppression of proliferation in a human hepatocellular carcinoma cell line. J Gastrointest Surg. 12:852–857. 2008. View Article : Google Scholar : PubMed/NCBI

83 

O'Neill E and Kolch W: Conferring specificity on the ubiquitous Raf/MEK signalling pathway. Br J Cancer. 90:283–288. 2004. View Article : Google Scholar : PubMed/NCBI

84 

Rubinfeld H and Seger R: The ERK cascade: A prototype of MAPK signaling. Mol Biotechnol. 31:151–174. 2005. View Article : Google Scholar : PubMed/NCBI

85 

Bhartiya D and Singh J: FSH-FSHR3-stem cells in ovary surface epithelium: Basis for adult ovarian biology, failure, aging, and cancer. Reproduction. 149:R35–E48. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Bang YJ, Kwon JH, Kang SH, Kim JW and Yang YC: Increased MAPK activity and MKP-1 overexpression in human gastric adenocarcinoma. Biochem Biophys Res Commun. 250:43–47. 1998. View Article : Google Scholar : PubMed/NCBI

87 

Rao A and Herr DR: G protein-coupled receptor GPR19 regulates E-cadherin expression and invasion of breast cancer cells. Biochim Biophys Acta Mol Cell Res. 1864:1318–1327. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Tang Q, Wu J, Zheng F, Hann SS and Chen Y: Emodin increases expression of insulin-like growth factor binding protein 1 through activation of MEK/ERK/AMPKα and interaction of PPARγ and Sp1 in lung cancer. Cell Physiol Biochem. 41:339–357. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Denkert C, Schmitt WD, Berger S, Reles A, Pest S, Siegert A, Lichtenegger W, Dietel M and Hauptmann S: Expression of mitogen-activated protein kinase phosphatase-1 (MKP-1) in primary human ovarian carcinoma. Int J Cancer. 102:507–513. 2002. View Article : Google Scholar : PubMed/NCBI

90 

Hong L, Wang Y, Chen W and Yang S: MicroRNA-508 suppresses epithelial-mesenchymal transition, migration, and invasion of ovarian cancer cells through the MAPK1/ERK signaling pathway. J Cell Biochem. 119:7431–7440. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Lee SH, Lee JW, Soung YH, Kim SY, Nam SW, Park WS, Kim SH, Yoo NJ and Lee JY: Colorectal tumors frequently express phosphorylated mitogen-activated protein kinase. APMIS. 112:233–238. 2004. View Article : Google Scholar : PubMed/NCBI

92 

Sebolt-Leopold JS, Dudley DT, Herrera R, Van Becelaere K, Wiland A, Gowan RC, Tecle H, Barrett SD, Bridges A, Przybranowski S, et al: Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med. 5:810–816. 1999. View Article : Google Scholar : PubMed/NCBI

93 

Mader S and Pantel K: Liquid biopsy: Current status and future perspectives. Oncol Res Treat. 40:404–408. 2017. View Article : Google Scholar : PubMed/NCBI

94 

Baek JH, Jang JE, Kang CM, Chung HY, Kim ND and Kim KW: Hypoxia-induced VEGF enhances tumor survivability via suppression of serum deprivation-induced apoptosis. Oncogene. 19:4621–4631. 2000. View Article : Google Scholar : PubMed/NCBI

95 

Lefloch R, Pouysségur J and Lenormand P: Total ERK1/2 activity regulates cell proliferation. Cell cycle. 8:705–711. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Gauthier R, Harnois C, Drolet JF, Reed JC, Vézina A and Vachon PH: Human intestinal epithelial cell survival: Differentiation state-specific control mechanisms. Am J Physiol Cell Physiol. 280:C1540–C1554. 2001. View Article : Google Scholar : PubMed/NCBI

97 

Huang Y, Zou Y, Lin L, Ma X and Zheng R: miR-101 regulates the cell proliferation and apoptosis in diffuse large B-cell lymphoma by targeting MEK1 via regulation of the ERK/MAPK signaling pathway. Oncol Rep. 41:377–386. 2019.PubMed/NCBI

98 

Shah S, Brock EJ, Ji K and Mattingly RR: Ras and Rap1: A tale of two GTPases. Semin Cancer Biol. 54:29–39. 2019. View Article : Google Scholar : PubMed/NCBI

99 

Maemura K, Shiraishi N, Sakagami K, Kawakami K, Inoue T, Murano M, Watanabe M and Otsuki Y: Proliferative effects of gamma-aminobutyric acid on the gastric cancer cell line are associated with extracellular signal-regulated kinase 1/2 activation. J Gastroenterol Hepatol. 24:688–696. 2009. View Article : Google Scholar : PubMed/NCBI

100 

Kang SK, Tai CJ, Cheng KW and Leung PC: Gonadotropin-releasing hormone activates mitogen-activated protein kinase in human ovarian and placental cells. Mol Cell Endocrinol. 170:143–151. 2000. View Article : Google Scholar : PubMed/NCBI

101 

Ma Y, Xu Y and Li L: SPARCL1 suppresses the proliferation and migration of human ovarian cancer cells via the MEK/ERK signaling. Exp Ther Med. 16:3195–3201. 2018.PubMed/NCBI

102 

Sulzmaier FJ and Ramos JW: RSK isoforms in cancer cell invasion and metastasis. Cancer Res. 73:6099–6105. 2013. View Article : Google Scholar : PubMed/NCBI

103 

Sung HY, Yang SD, Ju W and Ahn JH: Aberrant epigenetic regulation of GABRP associates with aggressive phenotype of ovarian cancer. Exp Mol Med. 49:e3352017. View Article : Google Scholar : PubMed/NCBI

104 

Liu SB, Lin XP, Xu Y, Shen ZF and Pan WW: DAXX promotes ovarian cancer ascites cell proliferation and migration by activating the ERK signaling pathway. J Ovarian Res. 11:902018. View Article : Google Scholar : PubMed/NCBI

105 

Zhao J, Ye W, Wu J, Liu L, Yang L, Gao L, Chen B, Zhang F, Yang H and Li Y: Sp1-CD147 positive feedback loop promotes the invasion ability of ovarian cancer. Oncol Rep. 34:67–76. 2015. View Article : Google Scholar : PubMed/NCBI

106 

Zhang LQ, Yang SQ, Wang Y, Fang Q, Chen XJ, Lu HS and Zhao LP: Long noncoding RNA MIR4697HG promotes cell growth and metastasis in human ovarian cancer. Anal Cell Pathol (Amst). 2017:82678632017.PubMed/NCBI

107 

Gialeli C, Theocharis AD and Karamanos NK: Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 278:16–27. 2011. View Article : Google Scholar : PubMed/NCBI

108 

Maeda-Yamamoto M, Suzuki N, Sawai Y, Miyase T, Sano M, Hashimoto-Ohta A and Isemura M: Association of suppression of extracellular signal-regulated kinase phosphorylation by epigallocatechin gallate with the reduction of matrix metalloproteinase activities in human fibrosarcoma HT1080 cells. J Agric Food Chem. 51:1858–1863. 2003. View Article : Google Scholar : PubMed/NCBI

109 

Simon C, Hicks MJ, Nemechek AJ, Mehta R, O'Malley BW Jr, Goepfert H, Flaitz CM and Boyd D: PD 098059, an inhibitor of ERK1 activation, attenuates the in vivo invasiveness of head and neck squamous cell carcinoma. Br J Cancer. 80:1412–1419. 1999. View Article : Google Scholar : PubMed/NCBI

110 

Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L, Rusu A, Irimie A, Atanasov AG, Slaby O, et al: A comprehensive review on MAPK: A promising therapeutic target in cancer. Cancers (Basel). 11(pii): E16182019. View Article : Google Scholar : PubMed/NCBI

111 

Gao J, Wang Y, Yang J, Zhang W, Meng K, Sun Y, Li Y and He QY: RNF128 promotes invasion and metastasis via the EGFR/MAPK/MMP-2 pathway in esophageal squamous cell carcinoma. Cancers (Basel). 11(pii): E8402019. View Article : Google Scholar : PubMed/NCBI

112 

Chang MC, Chen CA, Chen PJ, Chiang YC, Chen YL, Mao TL, Lin HW, Lin Chiang WH and Cheng WF: Mesothelin enhances invasion of ovarian cancer by inducing MMP-7 through MAPK/ERK and JNK pathways. Biochem J. 442:293–302. 2012. View Article : Google Scholar : PubMed/NCBI

113 

Hohmann T and Dehghani F: The cytoskeleton-A complex interacting meshwork. Cells. 8(pii): E3622019. View Article : Google Scholar : PubMed/NCBI

114 

Bray D: Cell movements, 2nd editionn. Garland Publishing; New York: pp. 792001

115 

Yamamoto T, Kozawa O, Tanabe K, Akamatsu S, Matsuno H, Dohi S and Uematsu T: Involvement of p38 MAP kinase in TGF-beta-stimulated VEGF synthesis in aortic smooth muscle cells. J Cell Biochem. 82:591–598. 2001. View Article : Google Scholar : PubMed/NCBI

116 

Krishna Priya S, Nagare RP, Sneha VS, Sidhanth C, Bindhya S, Manasa P and Ganesan TS: Tumour angiogenesis-Origin of blood vessels. Int J Cancer. 139:729–735. 2016. View Article : Google Scholar : PubMed/NCBI

117 

Heikenwalder M and Lorentzen A: The role of polarisation of circulating tumour cells in cancer metastasis. Cell Mol Life Sci. 76:3765–3781. 2019. View Article : Google Scholar : PubMed/NCBI

118 

Javan MR, Khosrojerdi A and Moazzeni SM: New insights into implementation of mesenchymal stem cells in cancer therapy: Prospects for anti-angiogenesis treatment. Front Oncol. 9:8402019. View Article : Google Scholar : PubMed/NCBI

119 

Song M and Finley SD: Mechanistic insight into activation of MAPK signaling by pro-angiogenic factors. BMC Syst Biol. 12:1452018. View Article : Google Scholar : PubMed/NCBI

120 

Su CM, Su YH, Chiu CF, Chang YW, Hong CC, Yu YH, Ho YS, Wu CH, Yen CS and Su JL: Vascular endothelial growth factor-C upregulates cortactin and promotes metastasis of esophageal squamous cell carcinoma. Ann Surg Oncol. 21 (Suppl 4):S767–S775. 2014. View Article : Google Scholar : PubMed/NCBI

121 

Bhattacharya R, Ray Chaudhuri S and Roy SS: FGF9-induced ovarian cancer cell invasion involves VEGF-A/VEGFR2 augmentation by virtue of ETS1 upregulation and metabolic reprogramming. J Cell Biochem. 119:8174–8189. 2018. View Article : Google Scholar : PubMed/NCBI

122 

Soula-Rothhut M, Coissard C, Sartelet H, Boudot C, Bellon G, Martiny L and Rothhut B: The tumor suppressor PTEN inhibits EGF-induced TSP-1 and TIMP-1 expression in FTC-133 thyroid carcinoma cells. Exp Cell Res. 304:187–201. 2005. View Article : Google Scholar : PubMed/NCBI

123 

Zhang YH, Wei W, Xu H, Wang YY and Wu WX: Inducing effects of hepatocyte growth factor on the expression of vascular endothelial growth factor in human colorectal carcinoma cells through MEK and PI3K signaling pathways. Chin Med J (Engl). 120:743–748. 2007. View Article : Google Scholar : PubMed/NCBI

124 

Bian CX, Shi Z, Meng Q, Jiang Y, Liu LZ and Jiang BH: P70S6K 1 regulation of angiogenesis through VEGF and HIF-1alpha expression. Biochem Biophys Res Commun. 398:395–399. 2010. View Article : Google Scholar : PubMed/NCBI

125 

Ping H, Guo L, Xi J and Wang D: Angiotensin II type 2 receptor-interacting protein 3a inhibits ovarian carcinoma metastasis via the extracellular HMGA2-mediated ERK/EMT pathway. Tumor Biol. 39:10104283177133892017.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and Hu LL: ERK/MAPK signalling pathway and tumorigenesis (Review). Exp Ther Med 19: 1997-2007, 2020.
APA
Guo, Y., Pan, W., Liu, S., Shen, Z., Xu, Y., & Hu, L. (2020). ERK/MAPK signalling pathway and tumorigenesis (Review). Experimental and Therapeutic Medicine, 19, 1997-2007. https://doi.org/10.3892/etm.2020.8454
MLA
Guo, Y., Pan, W., Liu, S., Shen, Z., Xu, Y., Hu, L."ERK/MAPK signalling pathway and tumorigenesis (Review)". Experimental and Therapeutic Medicine 19.3 (2020): 1997-2007.
Chicago
Guo, Y., Pan, W., Liu, S., Shen, Z., Xu, Y., Hu, L."ERK/MAPK signalling pathway and tumorigenesis (Review)". Experimental and Therapeutic Medicine 19, no. 3 (2020): 1997-2007. https://doi.org/10.3892/etm.2020.8454
Copy and paste a formatted citation
x
Spandidos Publications style
Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and Hu LL: ERK/MAPK signalling pathway and tumorigenesis (Review). Exp Ther Med 19: 1997-2007, 2020.
APA
Guo, Y., Pan, W., Liu, S., Shen, Z., Xu, Y., & Hu, L. (2020). ERK/MAPK signalling pathway and tumorigenesis (Review). Experimental and Therapeutic Medicine, 19, 1997-2007. https://doi.org/10.3892/etm.2020.8454
MLA
Guo, Y., Pan, W., Liu, S., Shen, Z., Xu, Y., Hu, L."ERK/MAPK signalling pathway and tumorigenesis (Review)". Experimental and Therapeutic Medicine 19.3 (2020): 1997-2007.
Chicago
Guo, Y., Pan, W., Liu, S., Shen, Z., Xu, Y., Hu, L."ERK/MAPK signalling pathway and tumorigenesis (Review)". Experimental and Therapeutic Medicine 19, no. 3 (2020): 1997-2007. https://doi.org/10.3892/etm.2020.8454
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team