Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
June-2020 Volume 19 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2020 Volume 19 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

MicroRNA and mRNA analysis of angiotensin II‑induced renal artery endothelial cell dysfunction

  • Authors:
    • Yao Liu
    • Yuehua Jiang
    • Wei Li
    • Cong Han
    • Zhenqiang Qi
  • View Affiliations / Copyright

    Affiliations: Department of Clinical Chinese Medicine integrated with Western Medicine, First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China, Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China, Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 3723-3737
    |
    Published online on: March 19, 2020
       https://doi.org/10.3892/etm.2020.8613
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Continuous activation of angiotensin II (Ang II) induces renal vascular endothelial dysfunction, inflammation and oxidative stress, all of which may contribute to renal damage. MicroRNAs (miRs/miRNAs) play a crucial regulatory role in the pathogenesis of hypertensive nephropathy (HN). The present study aimed to assess the differential expression profiles of potential candidate genes involved in Ang II‑induced rat renal artery endothelial cell (RRAEC) dysfunction and explore their possible functions. In the present study, the changes in energy metabolism and autophagy function in RRAECs were evaluated using the Seahorse XF Glycolysis Stress Test and dansylcadaverine/transmission electron microscopy following exposure to Ang II. Subsequently, mRNA‑miRNA sequencing experiments were performed to determine the differential expression profiles of mRNAs and miRNAs. Integrated bioinformatics analysis was applied to further explore the molecular mechanisms of Ang II on endothelial injury induced by Ang II. The present data supported the notion that Ang II upregulated glycolysis levels and promoted autophagy activation in RRAECs. The sequencing data demonstrated that 443 mRNAs and 58 miRNAs were differentially expressed (DE) in response to Ang II exposure, where 66 mRNAs and 55 miRNAs were upregulated, while 377 mRNAs and 3 miRNAs were downregulated (fold change >1.5 or <0.67; P<0.05). Functional analysis indicated that DE mRNA and DE miRNA target genes were mainly associated with cell metabolism (metabolic pathways), differentiation (Th1 and Th2 cell differentiation), autophagy (autophagy‑animal and autophagy‑other) and repair (RNA‑repair). To the best of the authors' knowledge, this is the first report on mRNA‑miRNA integrated profiles of Ang II‑induced RRAECs. The present results provided evidence suggesting that the miRNA‑mediated effect on the ‘mTOR signaling pathway’ might play a role in Ang II‑induced RRAEC injury by driving glycolysis and autophagy activation. Targeting miRNAs and their associated pathways may provide valuable insight into the clinical management of HN and may improve patient outcome.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Kashiwagi M, Shinozaki M, Hirakata H, Tamaki K, Hirano T, Tokumoto M, Goto H, Okuda S and Fujishima M: Locally activated renin-angiotensin system associated with TGF-beta1 as a major factor for renal injury induced by chronic inhibition of nitric oxide synthase in rats. J Am Soc Nephrol. 11:616–624. 2000.PubMed/NCBI

2 

Kobori H, Nangaku M, Navar LG and Nishiyama A: The intrarenal renin-angiotensin system: From physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 59:251–287. 2007.PubMed/NCBI View Article : Google Scholar

3 

Klingbeil AU, John S, Schneider MP, Jacobi J, Handrock R and Schmieder RE: Effect of AT1 receptor blockade on endothelial function in essential hypertension. Am J Hypertens. 16:123–128. 2003.PubMed/NCBI View Article : Google Scholar

4 

Mennuni S, Rubattu S, Pierelli G, Tocci G, Fofi C and Volpe M: Hypertension and kidneys: Unraveling complex molecular mechanisms underlying hypertensive renal damage. J Hum Hypertens. 28:74–79. 2014.PubMed/NCBI View Article : Google Scholar

5 

Navar LG and Harrison-Bernard LM: Intrarenal angiotensin II augmentation in angiotensin II dependent hypertension. Hypertens Res. 23:291–301. 2000.PubMed/NCBI View Article : Google Scholar

6 

Geraci G, Mulè G, Mogavero M, Geraci C, D'Ignoti D, Guglielmo C and Cottone S: Renal haemodynamics and severity of carotid atherosclerosis in hypertensive patients with and without impaired renal function. Nutr Metab Cardiovasc Dis. 25:160–166. 2015.PubMed/NCBI View Article : Google Scholar

7 

Ferraro E, Pulicati A, Cencioni MT, Cozzolino M, Navoni F, di Martino S, Nardacci R, Carrì MT and Cecconi F: Apoptosome-deficient cells lose cytochrome c through proteasomal degradation but survive by autophagy-dependent glycolysis. Mol Biol Cell. 19:3576–3588. 2008.PubMed/NCBI View Article : Google Scholar

8 

Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009.PubMed/NCBI View Article : Google Scholar

9 

Zhang R, Su H, Ma X, Xu X, Liang L, Ma G and Shi L: MiRNA let-7b promotes the development of hypoxic pulmonary hypertension by targeting ACE2. Am J Physiol Lung Cell Mol Physiol. 316:L547–L557. 2019.PubMed/NCBI View Article : Google Scholar

10 

Huo KG, Richer C, Berillo O, Mahjoub N, Fraulob-Aquino JC, Barhoumi T, Ouerd S, Coelho SC, Sinnett D, Paradis P and Schiffrin EL: MiR-431-5p knockdown protects against angiotensin II-induced hypertension and vascular injury. Hypertension. 73:1007–1017. 2019.PubMed/NCBI View Article : Google Scholar

11 

Huang Y, Tang S, Huang C, Chen J, Li J, Cai A and Feng Y: Circulating miRNA-29 family expression levels in patients with essential hypertension as potential markers for left ventricular hypertrophy. Clin Exp Hypertens. 39:119–125. 2017.PubMed/NCBI View Article : Google Scholar

12 

Xu Z, Zou C, Yu W, Xu S, Huang L, Khan Z, Wang J, Liang G and Wang Y: Inhibition of STAT3 activation mediated by toll-like receptor 4 attenuates angiotensin II-induced renal fibrosis and dysfunction. Br J Pharmacol. 176:2627–2641. 2019.PubMed/NCBI View Article : Google Scholar

13 

Reers M, Smiley ST, Mottola-Hartshorn C, Chen A, Lin M and Chen LB: Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol. 260:406–417. 1995.PubMed/NCBI View Article : Google Scholar

14 

Biederbick A, Kern HF and Elsässer HP: Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol. 66:3–14. 1995.PubMed/NCBI

15 

Kovács AL and Klionsky DJ: A pioneer in the field of autophagy microscopy: Attila L Kovács. Autophagy. 9:1908–1921. 2013.PubMed/NCBI View Article : Google Scholar

16 

Liu P, Tseng G, Wang Z, Huang Y and Randhawa P: Diagnosis of T-cell mediated kidney rejection in formalin fixed paraffin embedded tissues using RNA-Seq based machine learning algorithms. Hum Pathol. 84:283–290. 2019.PubMed/NCBI View Article : Google Scholar

17 

Gu L, Yu J, Wang Q, Xu B, Ji L, Yu L, Zhang X and Cai H: Identification of a 5-lncRNA signature-based risk scoring system for survival prediction in colorectal cancer. Mol Med Rep. 18:279–291. 2018.PubMed/NCBI View Article : Google Scholar

18 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.PubMed/NCBI View Article : Google Scholar

19 

Enright AJ, John B, Gaul U, Tuschl T, Sander C and Marks DS: MicroRNA targets in Drosophila. Genome Biol. 5(R1)2003.PubMed/NCBI View Article : Google Scholar

20 

Popescu M, Keller JM and Mitchell JA: Fuzzy measures on the gene ontology for gene product similarity. IEEE/ACM Trans Comput Biol Bioinform. 3:263–274. 2006.PubMed/NCBI View Article : Google Scholar

21 

Yu J, Li J, Chen Y, Cao W, Lu Y, Yang J and Xing E: Snail enhances glycolysis in the epithelial-mesenchymal transition process by targeting FBP1 in gastric cancer. Cell Physiol Biochem. 43:31–38. 2017.PubMed/NCBI View Article : Google Scholar

22 

Cui J, Quan M, Jiang W, Hu H, Jiao F, Li N, Jin Z and Wang L, Wang Y and Wang L: Suppressed expression of LDHB promotes pancreatic cancer progression via inducing glycolytic phenotype. Med Oncol. 32(143)2015.PubMed/NCBI View Article : Google Scholar

23 

Tang Y, Zhang Y, Wang C, Sun Z, Li L, Cheng S and Zhou W: Overexpression of PCK1 gene antagonizes hepatocellular carcinoma through the activation of gluconeogenesis and suppression of glycolysis pathways. Cell Physiol Biochem. 47:344–355. 2018.PubMed/NCBI View Article : Google Scholar

24 

Guo T, Chen T, Gu C, Li B and Xu C: Genetic and molecular analyses reveal G6PC as a key element connecting glucose metabolism and cell cycle control in ovarian cancer. Tumour Biol. 36:7649–7658. 2015.PubMed/NCBI View Article : Google Scholar

25 

Peng SY, Lai PL, Pan HW, Hsiao LP and Hsu HC: Aberrant expression of the glycolytic enzymes aldolase B and type II hexokinase in hepatocellular carcinoma are predictive markers for advanced stage, early recurrence and poor prognosis. Oncol Rep. 19:1045–1053. 2008.PubMed/NCBI

26 

van Bruggen R, Gualtieri C, Iliescu A, Louicharoen Cheepsunthorn C, Mungkalasut P, Trape JF, Modiano D, Sirima BS, Singhasivanon P, Lathrop M, et al: Modulation of malaria phenotypes by pyruvate kinase (PKLR) variants in a thai population. PLoS One. 10(e0144555)2015.PubMed/NCBI View Article : Google Scholar

27 

Liu CC, Wang H, Wang WD, Wang L, Liu WJ, Wang JH, Geng QR and Lu Y: ENO2 promotes cell proliferation, glycolysis, and glucocorticoid-resistance in acute lymphoblastic leukemia. Cell Physiol Biochem. 46:1525–1535. 2018.PubMed/NCBI View Article : Google Scholar

28 

Li X, Jiang Y, Meisenhelder J, Yang W, Hawke DH, Zheng Y, Xia Y, Aldape K, He J, Hunter T, et al: Mitochondria-translocated phosphoglycerate PGK1 functions as a protein kinase to coordinate glycolysis and TCA cycle in tumorigenesis. Mol Cell. 61:705–719. 2016.PubMed/NCBI View Article : Google Scholar

29 

Kim NH, Cha YH, Lee J, Lee SH, Yang JH, Yun JS, Cho ES, Zhang X, Nam M, Kim N, et al: Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress. Nat Commun. 8(14374)2017.PubMed/NCBI View Article : Google Scholar

30 

He J, Jin Y, Chen Y, Yao HB, Xia YJ, Ma YY, Wang W and Shao QS: Downregulation of ALDOB is associated with poor prognosis of patients with gastric cancer. OncoTargets Ther. 9:6099–6109. 2016.PubMed/NCBI View Article : Google Scholar

31 

Liu L, Cai S, Han C, Banerjee A, Wu D, Cui T, Xie G, Zhang J, Zhang X, McLaughlin E, et al: ALDH1A1 contributes to PARP inhibitor resistance via enhancing DNA repair in BRCA2-/- ovarian cancer cells. Mol Cancer Ther. 19:199–210. 2020.PubMed/NCBI View Article : Google Scholar

32 

Singh P, Ravanan P and Talwar P: Death associated protein kinase 1 (DAPK1): A regulator of apoptosis and autophagy. Front Mol Neurosci. 9(46)2016.PubMed/NCBI View Article : Google Scholar

33 

Riehle C, Wende AR, Sena S, Pires KM, Pereira RO, Zhu Y, Bugger H, Frank D, Bevins J, Chen D, et al: Insulin receptor substrate signaling suppresses neonatal autophagy in the heart. J Clin Invest. 123:5319–5333. 2013.PubMed/NCBI View Article : Google Scholar

34 

Hou C, Zhu M, Sun M and Lin Y: MicroRNA let-7i induced autophagy to protect T cell from apoptosis by targeting IGF1R. Biochem Biophys Res Commun. 453:728–734. 2014.PubMed/NCBI View Article : Google Scholar

35 

Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, Kim H, Neufeld TP, Dillin A and Guan KL: ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol. 15:741–750. 2013.PubMed/NCBI View Article : Google Scholar

36 

Pham HQ, Yoshioka K, Mohri H, Nakata H, Aki S, Ishimaru K, Takuwa N and Takuwa Y: MTMR4, a phosphoinositide-specific 3'-phosphatase, regulates TFEB activity and the endocytic and autophagic pathways. Genes Cells: Jul 2, 2018 (Epub ahead of print).

37 

Diao J, Liu R, Rong Y, Zhao M, Zhang J, Lai Y, Zhou Q, Wilz LM, Li J, Vivona S, et al: ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature. 520:563–566. 2015.PubMed/NCBI View Article : Google Scholar

38 

Zhang D, Xu X and Dong Z: PRKCD/PKCδ contributes to nephrotoxicity during cisplatin chemotherapy by suppressing autophagy. Autophagy. 13:631–632. 2017.PubMed/NCBI View Article : Google Scholar

39 

Pascall JC, Rotondo S, Mukadam AS, Oxley D, Webster J, Walker SA, Piron J, Carter C, Ktistakis NT and Butcher GW: The immune system GTPase GIMAP6 interacts with the Atg8 homologue GABARAPL2 and is recruited to autophagosomes. PLoS One. 8(e77782)2013.PubMed/NCBI View Article : Google Scholar

40 

Liu H, Mi S, Li Z, Hua F and Hu ZW: Interleukin 17A inhibits autophagy through activation of PIK3CA to interrupt the GSK3B-mediated degradation of BCL2 in lung epithelial cells. Autophagy. 9:730–742. 2013.PubMed/NCBI View Article : Google Scholar

41 

Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M and Kim DH: ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 20:1992–2003. 2009.PubMed/NCBI View Article : Google Scholar

42 

Efeyan A, Zoncu R, Chang S, Gumper I, Snitkin H, Wolfson RL, Kirak O, Sabatini DD and Sabatini DM: Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature. 493:679–683. 2013.PubMed/NCBI View Article : Google Scholar

43 

Jung CH, Ro SH, Cao J, Otto NM and Kim DH: mTOR regulation of autophagy. FEBS Lett. 584:1287–1295. 2010.PubMed/NCBI View Article : Google Scholar

44 

Sakamaki JI and Ryan KM: Autophagy determines the path on the TRAIL to death. Dev Cell. 37:291–293. 2016.PubMed/NCBI View Article : Google Scholar

45 

Guo Y: Role of HIF-1a in regulating autophagic cell survival during cerebral ischemia reperfusion in rats. Oncotarget. 8:98482–98494. 2017.PubMed/NCBI View Article : Google Scholar

46 

Bin BH, Bhin J, Yang SH, Choi DH, Park K, Shin DW, Lee AY, Hwang D, Cho EG and Lee TR: Hyperosmotic stress reduces melanin production by altering melanosome formation. PLoS One. 9(e105965)2014.PubMed/NCBI View Article : Google Scholar

47 

He C, Zhu H, Zhang W, Okon I, Wang Q, Li H, Le YZ and Xie Z: 7-Ketocholesterol induces autophagy in vascular smooth muscle cells through Nox4 and Atg4B. Am J Pathol. 183:626–637. 2013.PubMed/NCBI View Article : Google Scholar

48 

Yuan J, Zhang Y, Sheng Y, Fu X, Cheng H and Zhou R: MYBL2 guides autophagy suppressor VDAC2 in the developing ovary to inhibit autophagy through a complex of VDAC2-BECN1-BCL2L1 in mammals. Autophagy. 11:1081–1098. 2015.PubMed/NCBI View Article : Google Scholar

49 

Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, Armistead S, Lemire K, Orrell J, Teich J, et al: Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol. 292:C125–C136. 2007.PubMed/NCBI View Article : Google Scholar

50 

Androulakis E, Tousoulis D, Papageorgiou N, Latsios G, Siasos G and Stefanadis C: The role of matrix metalloproteinases in essential hypertension. Curr Top Med Chem. 12:1149–1158. 2012.PubMed/NCBI View Article : Google Scholar

51 

Tran ED, DeLano AF and Schmid-Schönbein GW: Enhanced matrix metalloproteinase activity in the spontaneously hypertensive rat: VEGFR-2 cleavage endothelial apoptosis, and capillary rarefaction. J Vasc Res. 47:423–431. 2010.PubMed/NCBI View Article : Google Scholar

52 

Williams JM, Zhang J, North P, Lacy S, Yakes M, Dahly-Vernon A and Roman RJ: Evaluation of metalloprotease inhibitors on hypertension and diabetic nephropathy. Am J Physiol Renal Physiol. 300:F983–F998. 2011.PubMed/NCBI View Article : Google Scholar

53 

Allawzi AM, Vang A, Clements RT, Jhun BS, Kue NR, Mancini TJ, Landi AK, Terentyev D, O-Uchi J, Comhair SA, et al: Activation of anoctamin-1 limits pulmonary endothelial cell proliferation via p38-mitogen-activated protein kinase-dependent apoptosis. Am J Respir Cell Mol Biol. 58:658–667. 2018.PubMed/NCBI View Article : Google Scholar

54 

Heinze C, Seniuk A, Sokolov MV, Huebner AK, Klementowicz AE, Szijártó IA, Schleifenbaum J, Vitzthum H, Gollasch M, Ehmke H, et al: Disruption of vascular Ca2+-activated chloride currents lowers blood pressure. J Clin Invest. 124:675–686. 2014.PubMed/NCBI View Article : Google Scholar

55 

Manoury B, Tamuleviciute A and Tammaro P: TMEM16A/anoctamin-1 protein mediates calcium-activated chloride currents in pulmonary arterial smooth muscle cells. J Physiol. 588:2305–2314. 2010.PubMed/NCBI View Article : Google Scholar

56 

Usatyuk PV, Singleton PA, Pendyala S, Kalari SK, He D, Gorshkova IA, Camp SM, Moitra J, Dudek SM, Garcia JG and Natarajan V: Novel role for non-muscle myosin light chain kinase (MLCK) in hyperoxia-induced recruitment of cytoskeletal proteins, NADPH oxidase activation, and reactive oxygen species generation in lung endothelium. J Biol Chem. 287:9360–9375. 2012.PubMed/NCBI View Article : Google Scholar

57 

Rigor RR, Shen Q, Pivetti CD, Wu MH and Yuan SY: Myosin light chain kinase signaling in endothelial barrier dysfunction. Med Res Rev. 33:911–933. 2013.PubMed/NCBI View Article : Google Scholar

58 

Torimoto K, Okada Y and Tanaka Y: Type 2 diabetes and vascular endothelial dysfunction. J UOEH. 40:65–75. 2018.PubMed/NCBI View Article : Google Scholar : (In Japanese).

59 

Rahman TJ, Mayosi BM, Hall D, Avery PJ, Stewart PM, Connell JM, Watkins H and Keavney B: Common variation at the 11-b hydroxysteroid dehydrogenase type 1 gene is associated with left ventricular mass. Circ Cardiovasc Genet. 4:156–162. 2011.PubMed/NCBI View Article : Google Scholar

60 

White PC, Rogoff D and McMillan DR: Physiological roles of 11 beta-hydroxysteroid dehydrogenase type 1 and hexose-6-phoshate dehydrogenase. Curr Opin Pediatr. 20:453–457. 2008.PubMed/NCBI View Article : Google Scholar

61 

Spolarics Z, Lang CH, Bagby GJ and Spitzer JJ: Glutamine and fatty acid oxidation are the main sources of energy for Kupffer and endothelial cells. Am J Physiol. 261:G185–G190. 1991.PubMed/NCBI View Article : Google Scholar

62 

Mertens S, Noll T, Spahr R, Krützfeldt A and Piper HM: Energetic response of coronary endothelial cells to hypoxia. Am J Physiol. 258:H689–H694. 1990.PubMed/NCBI View Article : Google Scholar

63 

De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, Quaegebeur A, Ghesquière B, Cauwenberghs S, Eelen G, et al: Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 154:651–663. 2013.PubMed/NCBI View Article : Google Scholar

64 

Polet F and Feron O: Endothelial cell metabolism and tumour angiogenesis: Glucose and glutamine as essential fuels and lactate as the driving force. J Inter Med. 273:156–165. 2013.PubMed/NCBI View Article : Google Scholar

65 

Schoors S, Bruning U, Missiaen R, Queiroz KC, Borgers G, Elia I, Zecchin A, Cantelmo AR, Christen S, Goveia J, et al: Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature. 520:192–197. 2015.PubMed/NCBI View Article : Google Scholar

66 

Rüster C and Wolf G: Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol. 17:2985–2991. 2006.PubMed/NCBI View Article : Google Scholar

67 

Wolf G, Butzmann U and Wenzel UO: The renin-angiotensin system and progression of renal disease: From hemodynamics to cell biology. Nephron Physiol. 93:P3–P13. 2003.PubMed/NCBI View Article : Google Scholar

68 

Tian Z, Greene AS, Pietrusz JL, Matus IR and Liang M: MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res. 18:404–411. 2008.PubMed/NCBI View Article : Google Scholar

69 

Perdigão-Henriques R, Petrocca F, Altschuler G, Thomas MP, Le MT, Tan SM, Hide W and Lieberman J: MiR-200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes. Oncogene. 35:158–172. 2016.PubMed/NCBI View Article : Google Scholar

70 

Filios SR, Xu G, Chen J, Hong K, Jing G and Shalev A: MicroRNA-200 is induced by thioredoxin-interacting protein and regulates Zeb1 protein signaling and beta cell apoptosis. J Biol Chem. 289:36275–36283. 2014.PubMed/NCBI View Article : Google Scholar

71 

Pan Y, Liang H, Liu H, Li D, Chen X, Li L, Zhang C and Zen K: Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. J Immunol. 192:437–446. 2014.PubMed/NCBI View Article : Google Scholar

72 

Meloche J, Le Guen M, Potus F, Vinck J, Ranchoux B, Johnson I, Antigny F, Tremblay E, Breuils-Bonnet S, Perros F, et al: MiR-223 reverses experimental pulmonary arterial hypertension. Am J Physiol Cell Physiol. 309:C363–C372. 2015.PubMed/NCBI View Article : Google Scholar

73 

Wang X, Zhang X, Ren XP, Chen J, Liu H, Yang J, Medvedovic M, Hu Z and Fan GC: MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury. Circulation. 122:1308–1318. 2010.PubMed/NCBI View Article : Google Scholar

74 

Shukla GC, Singh J and Barik S: MicroRNAs: Processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol. 3:83–92. 2011.PubMed/NCBI

75 

Laplante M and Sabatini DM: MTOR signaling in growth control and disease. Cell. 149:274–293. 2012.PubMed/NCBI View Article : Google Scholar

76 

Shimobayashi M and Hall MN: Making new contacts: The mTOR network in metabolism and signaling crosstalk. Nat Rev Mol Cell Biol. 15:155–162. 2014.PubMed/NCBI View Article : Google Scholar

77 

Surviladze Z, Sterk RT, DeHaro SA and Ozbun MA: Cellular entry of human papillomavirus type 16 involves activation of the phosphatidylinositol 3-kinase/Akt/mTOR pathway and inhibition of autophagy. J Virol. 87:2508–2517. 2013.PubMed/NCBI View Article : Google Scholar

78 

Jin Y, Liu S, Ma Q, Xiao D and Chen L: Berberine enhances the AMPK activation and autophagy and mitigates high glucose-induced apoptosis of mouse podocytes. Eur J Pharmacol. 794:106–114. 2017.PubMed/NCBI View Article : Google Scholar

79 

Bruckova L, Soukup T, Visek B, Moos J, Moosova M, Pavelkova J, Rezabek K, Kucerova L, Micuda S, Brcakova E and Mokry J: Proliferative potential and phenotypic analysis of long-term cultivated human granulosa cells initiated by addition of follicular fluid. J Assist Reprod Genet. 28:939–950. 2011.PubMed/NCBI View Article : Google Scholar

80 

Rabelink TJ and Carmeliet P: Renal metabolism in 2017: Glycolytic adaptation and progression of kidney disease. Nat Rev Nephrol. 14:75–76. 2018.PubMed/NCBI View Article : Google Scholar

81 

Garcia D and Shaw RJ: AMPK: Mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell. 66:789–800. 2017.PubMed/NCBI View Article : Google Scholar

82 

Robey RB and Hay N: Akt, hexokinase, mTOR: Targeting cellular energy metabolism for cancer therapy. Drug Discov Today Dis Mech. 2:239–246. 2005.

83 

Jiao L, Zhang HL, Li DD, Yang KL, Tang J, Li X, Ji J, Yu Y, Wu RY, Ravichandran S, et al: Regulation of glycolytic metabolism by autophagy in liver cancer involves selective autophagic degradation of HK2 (hexokinase 2). Autophagy. 14:671–684. 2018.PubMed/NCBI View Article : Google Scholar

84 

Duan L, Perez RE, Davaadelger B, Dedkova EN, Blatter LA and Maki CG: p53-regulated autophagy is controlled by glycolysis and determines cell fate. Oncotarget. 6:23135–23156. 2015.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu Y, Jiang Y, Li W, Han C and Qi Z: MicroRNA and mRNA analysis of angiotensin II‑induced renal artery endothelial cell dysfunction. Exp Ther Med 19: 3723-3737, 2020.
APA
Liu, Y., Jiang, Y., Li, W., Han, C., & Qi, Z. (2020). MicroRNA and mRNA analysis of angiotensin II‑induced renal artery endothelial cell dysfunction. Experimental and Therapeutic Medicine, 19, 3723-3737. https://doi.org/10.3892/etm.2020.8613
MLA
Liu, Y., Jiang, Y., Li, W., Han, C., Qi, Z."MicroRNA and mRNA analysis of angiotensin II‑induced renal artery endothelial cell dysfunction". Experimental and Therapeutic Medicine 19.6 (2020): 3723-3737.
Chicago
Liu, Y., Jiang, Y., Li, W., Han, C., Qi, Z."MicroRNA and mRNA analysis of angiotensin II‑induced renal artery endothelial cell dysfunction". Experimental and Therapeutic Medicine 19, no. 6 (2020): 3723-3737. https://doi.org/10.3892/etm.2020.8613
Copy and paste a formatted citation
x
Spandidos Publications style
Liu Y, Jiang Y, Li W, Han C and Qi Z: MicroRNA and mRNA analysis of angiotensin II‑induced renal artery endothelial cell dysfunction. Exp Ther Med 19: 3723-3737, 2020.
APA
Liu, Y., Jiang, Y., Li, W., Han, C., & Qi, Z. (2020). MicroRNA and mRNA analysis of angiotensin II‑induced renal artery endothelial cell dysfunction. Experimental and Therapeutic Medicine, 19, 3723-3737. https://doi.org/10.3892/etm.2020.8613
MLA
Liu, Y., Jiang, Y., Li, W., Han, C., Qi, Z."MicroRNA and mRNA analysis of angiotensin II‑induced renal artery endothelial cell dysfunction". Experimental and Therapeutic Medicine 19.6 (2020): 3723-3737.
Chicago
Liu, Y., Jiang, Y., Li, W., Han, C., Qi, Z."MicroRNA and mRNA analysis of angiotensin II‑induced renal artery endothelial cell dysfunction". Experimental and Therapeutic Medicine 19, no. 6 (2020): 3723-3737. https://doi.org/10.3892/etm.2020.8613
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team