|
1
|
Ohyama Y, Yamaguchi H, Nakajima K, Mizuno
T, Fukamachi Y, Yokoi Y, Tsuboi N, Inaguma D, Hasegawa M, Renfrow
MB, et al: Analysis of O-glycoforms of the IgA1 hinge region by
sequential deglycosylation. Sci Rep. 10(671)2020.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Kiryluk K, Li Y, Moldoveanu Z, Suzuki H,
Reily C, Hou P, Xie J, Mladkova N, Prakash S, Fischman C, et al:
GWAS for serum galactose-deficient IgA1 implicates critical genes
of the O-glycosylation pathway. PLoS Genet.
13(e1006609)2017.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Wang X, Li T, Si R, Chen J, Qu Z and Jiang
Y: Increased frequency of PD-1hiCXCR5- T
cells and B cells in patients with newly diagnosed IgA nephropathy.
Sci Rep. 10(492)2020.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Xing Y, Li L, Zhang Y, Wang F, He D, Liu
Y, Jia J, Yan T and Lin S: C1GALT1 expression is associated with
galactosylation of IgA1 in peripheral B lymphocyte in
immunoglobulin a nephropathy. BMC Nephrol. 21(18)2020.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Yeo SC, Cheung CK and Barratt J: New
insights into the pathogenesis of IgA nephropathy. Pediatr Nephrol.
33:763–777. 2018.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Perše M and Večerić-Haler Ž: The role of
IgA in the pathogenesis of IgA nephropathy. Int J Mol Sci.
20(E6199)2019.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Knoppova B, Reily C, Maillard N, Rizk DV,
Moldoveanu Z, Mestecky J, Raska M, Renfrow MB, Julian BA and Novak
J: The origin and activities of IgA1-containing immune complexes in
IgA nephropathy. Front Immunol. 7(117)2016.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Hu S, Bao H, Xu X, Zhou X, Qin W, Zeng C
and Liu Z: Increased miR-374b promotes cell proliferation and the
production of aberrant glycosylated IgA1 in B cells of IgA
nephropathy. FEBS Lett. 589:4019–4025. 2015.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Sallustio F, Curci C, Di Leo V, Gallone A,
Pesce F and Gesualdo L: A new vision of IgA nephropathy: The
missing link. Int J Mol Sci. 21(E189)2019.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Ito S, Misaki T, Naka S, Wato K, Nagasawa
Y, Nomura R, Otsugu M, Matsumoto-Nakano M, Nakano K, Kumagai H and
Oshima N: Specific strains of Streptococcus mutans, a
pathogen of dental caries, in the tonsils, are associated with IgA
nephropathy. Sci Rep. 9(20130)2019.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Makita Y, Suzuki H, Kano T, Takahata A,
Julian BA, Novak J and Suzuki Y: TLR9 activation induces aberrant
IgA glycosylation via APRIL- and IL-6-mediated pathways in IgA
nephropathy. Kidney Int. 97:340–349. 2020.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Suzuki H, Fan R, Zhang Z, Brown R, Hall S,
Julian BA, Chatham WW, Suzuki Y, Wyatt RJ, Moldoveanu Z, et al:
Aberrantly glycosylated IgA1 in IgA nephropathy patients is
recognized by IgG antibodies with restricted heterogeneity. J Clin
Invest. 119:1668–1677. 2009.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Xu BY, Meng SJ, Shi SF, Liu LJ, Lv JC, Zhu
L and Zhang H: MicroRNA-21-5p participates in IgA nephropathy by
driving T helper cell polarization. J Nephrol: Dec 20, 2019
doi.org/10.1007/s40620-019-00682-3 (Epub ahead of print).
|
|
14
|
Serino G, Sallustio F, Cox SN, Pesce F and
Schena FP: Abnormal miR-148b expression promotes aberrant
glycosylation of IgA1 in IgA nephropathy. J Am Soc Nephrol.
23:814–824. 2012.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Batra A, Smith AC, Feehally J and Barratt
J: T-cell homing receptor expression in IgA nephropathy. Nephrol
Dial Transplant. 22:2540–2548. 2007.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Enya T, Miyazawa T, Miyazaki K, Oshima R,
Morimoto Y, Okada M, Takemura T and Sugimoto K: Pathologic
tonsillar findings similar to IgA nephropathy and the role of
tonsillectomy in a patient with nephrotic syndrome. BMC Nephrol.
20(381)2019.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Meng H, Ohtake H, Ishida A, Ohta N,
Kakehata S and Yamakawa M: IgA production and tonsillar focal
infection in IgA nephropathy. J Clin Exp Hematop. 52:161–170.
2012.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Yang Y, Liu K, Chen Y, Gong Y and Liang Y:
Indoleamine 2,3-dioxygenase (IDO) regulates Th17/Treg immunity in
experimental IgA nephropathy. Folia Biol (Praha). 65:101–108.
2019.PubMed/NCBI
|
|
19
|
Yamada K, Kobayashi N, Ikeda T, Suzuki Y,
Tsuge T, Horikoshi S, Emancipator SN and Tomino Y: Down-regulation
of core 1 beta1,3-galactosyltransferase and Cosmc by Th2 cytokine
alters O-glycosylation of IgA1. Nephrol Dial Transplant.
25:3890–3897. 2010.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Suzuki H, Suzuki Y, Aizawa M, Yamanaka T,
Kihara M, Pang H, Horikoshi S and Tomino Y: Th1 polarization in
murine IgA nephropathy directed by bone marrow-derived cells.
Kidney Int. 72:319–327. 2007.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Meng T, Li X, Ao X, Zhong Y, Tang R, Peng
W, Yang J, Zou M and Zhou Q: Hemolytic Streptococcus may exacerbate
kidney damage in IgA nephropathy through CCL20 response to the
effect of Th17 cells. PLoS One. 9(e108723)2014.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Huang H, Sun W, Liang Y, Peng Y, Long XD,
Liu Z, Wen X, Jia M, Tian R, Bai C and Li C: CD4 (+)CD 25 (+)Treg
cells and IgA nephropathy patients with tonsillectomy: A clinical
and pathological study. Int Urol Nephrol. 46:2361–2369.
2014.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Zhang L, Wang Y, Shi X, Zou H and Jiang Y:
A higher frequency of CD4+CXCR5+ T follicular
helper cells in patients with newly diagnosed IgA nephropathy.
Immunol Lett. 158:101–108. 2014.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Otaka R, Takahara M, Ueda S, Nagato T,
Kishibe K, Nomura K, Katada A, Hayashi T and Harabuchi Y:
Up-regulation of CX3CR1 on tonsillar CD8-positive cells in patients
with IgA nephropathy. Hum Immunol. 78:375–383. 2017.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Chen X, Tang Y, Zhang Y, Zhuo M, Tang Z,
Yu Y and Zang G: Tapasin modification on the intracellular epitope
HBcAg18-27 enhances HBV-specific CTL immune response and inhibits
hepatitis B virus replication in vivo. Lab Invest. 94:478–490.
2014.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Wu YJ, Song YN, Geng XR, Ma F, Mo LH,
Zhang XW, Liu DB, Liu ZG and Yang PC: Soluble CD83 alleviates
experimental allergic rhinitis through modulating antigen-specific
Th2 cell property. Int J Biol Sci. 16:216–227. 2020.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Tortajada A, Gutierrez E, Pickering MC,
Praga Terente M and Medjeral-Thomas N: The role of complement in
IgA nephropathy. Mol Immunol. 114:123–132. 2019.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Shao F, Zheng P, Yu D, Zhou Z and Jia L:
Follicular helper T cells in type 1 diabetes. FASEB J. 34:30–40.
2020.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Gao Y, Jin H, Nan D, Yu W, Zhang J, Yang
Y, Hou R, Qin R, Hao H, Sun Y and Tian W: The role of T follicular
helper cells and T follicular regulatory cells in the pathogenesis
of autoimmune hemolytic anemia. Sci Rep. 9(19767)2019.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Oestreich KJ and Weinmann AS:
Transcriptional mechanisms that regulate T helper 1 cell
differentiation. Curr Opin Immunol. 24:191–195. 2012.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Wang Q, Li J, Yu TS, Liu Y, Li K, Liu S,
Liu Y, Feng Q, Zhang L, Li GS, et al: Disrupted balance of
CD4+ T-cell subsets in bone marrow of patients with
primary immune thrombocytopenia. Int J Biol Sci. 15:2798–2814.
2019.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Magen A, Nie J, Ciucci T, Tamoutounour S,
Zhao Y, Mehta M, Tran B, McGavern DB, Hannenhalli S and Bosselut R:
Single-cell profiling defines transcriptomic signatures specific to
tumor-reactive versus virus-responsive CD4+ T cells.
Cell Rep. 29:3019–3032.e6. 2019.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Tang Y, Chen X, Zhang Y, Tang Z, Zhuo M,
Li D, Wang P, Zang G and Yu Y: Fusion protein of tapasin and
hepatitis B core antigen 18-27 enhances T helper cell type 1/2
cytokine ratio and antiviral immunity by inhibiting suppressors of
cytokine signaling family members 1/3 in hepatitis B virus
transgenic mice. Mol Med Rep. 9:1171–1178. 2014.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Edwards ESJ, Bosco JJ, Aui PM, Stirling
RG, Cameron PU, Chatelier J, Hore-Lacy F, O'Hehir RE and van Zelm
MC: Predominantly antibody-deficient patients with non-infectious
complications have reduced naive B, Treg, Th17, and Tfh17 cells.
Front Immunol. 10(2593)2019.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Shea-Donohue T, Fasano A, Smith A and Zhao
A: Enteric pathogens and gut function: Role of cytokines and STATs.
Gut Microbes. 1:316–324. 2010.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Blokland SLM, van Vliet-Moret FM, Hillen
MR, Pandit A, Goldschmeding R, Kruize AA, Bouma G, van Maurik A,
Olek S, Hoffmueller U, et al: Epigenetically quantified immune
cells in salivary glands of Sjögren's syndrome patients: A novel
tool that detects robust correlations of T follicular helper cells
with immunopathology. Rheumatology (Oxford). 59:335–343.
2020.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Singer BD, King LS and D'Alessio FR:
Regulatory T cells as immunotherapy. Front Immunol.
5(46)2014.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Read KA, Powell MD and Oestreich KJ: T
follicular helper cell programming by cytokine-mediated events.
Immunology. 149:253–261. 2016.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Phillips S, Chokshi S, Riva A, Evans A,
Williams R and Naoumov NV: CD8(+) T cell control of hepatitis B
virus replication: Direct comparison between cytolytic and
noncytolytic functions. J Immunol. 184:287–295. 2010.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Tang YY, Tang ZH, Zhang Y, Zhuo M, Zang
GQ, Chen XH and Yu YS: The fusion protein of CTP-HBcAg18-27-tapasin
mediates the apoptosis of CD8(+)T cells and CD8(+) T cell response
in HLA-A2 transgenic mice. Hepat Mon. 14(e16161)2014.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Krebs CF and Steinmetz OM: CD4+
T cell fate in glomerulonephritis: A tale of Th1, Th17, and novel
Treg subtypes. Mediators Inflamm. 2016(5393894)2016.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Habura I, Fiedorowicz K, Woźniak A,
Idasiak-Piechocka I, Kosikowski P and Oko A: IgA nephropathy
associated with coeliac disease. Cent Eur J Immunol. 44:106–108.
2019.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Suzuki H and Suzuki Y: Murine models of
human IgA nephropathy. Semin Nephrol. 38:513–520. 2018.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Tsuruga K, Oki E, Aizawa-Yashiro T,
Yoshida H, Imaizumi T and Tanaka H: Potential Th1⁄Th2
predominance in children with newly diagnosed IgA nephropathy. Acta
Paediatr. 99:1584–1586. 2010.PubMed/NCBI View Article : Google Scholar
|
|
45
|
He L, Peng Y, Liu H, Yin W, Chen X, Peng
X, Shao J, Liu Y and Liu F: Activation of the interleukin-4/signal
transducer and activator of transcription 6 signaling pathway and
homeodomain-interacting protein kinase 2 production by tonsillar
mononuclear cells in IgA nephropathy. Am J Nephrol. 38:321–332.
2013.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Liu L, Kou P, Zeng Q, Pei G, Li Y, Liang
H, Xu G and Chen S: CD4+ T Lymphocytes, especially Th2 cells,
contribute to the progress of renal fibrosis. Am J Nephrol.
36:386–396. 2012.PubMed/NCBI View Article : Google Scholar
|
|
47
|
He L, Peng Y, Liu H, Yin W, Chen X, Peng
X, Shao J, Liu Y and Liu F: Th1/Th2 polarization in tonsillar
lymphocyte form patients with IgA nephropathy. Ren Fail.
36:407–412. 2014.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Takahara M, Nagato T, Nozaki Y, Kumai T,
Katada A, Hayashi T and Harabuchi Y: A proliferation-inducing
ligand (APRIL) induced hyper-production of IgA from tonsillar
mononuclear cells in patients with IgA nephropathy. Cell Immunol.
341(103925)2019.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Glassock RJ: Mortality risk in IgA
nephropathy. J Am Soc Nephrol. 30:720–722. 2019.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Sallustio F, Serino G, Cox SN, Dalla Gassa
A, Curci C, De Palma G, Banelli B, Zaza G, Romani M and Schena FP:
Aberrantly methylated DNA regions lead to low activation of CD4+
T-cells in IgA nephropathy. Clin Sci (Lond). 130:733–746.
2016.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Jang YS, Seo GY, Lee JM, Seo HY, Han HJ,
Kim SJ, Jin BR, Kim HJ, Park SR, Rhee KJ, et al: Lactoferrin causes
IgA and IgG2b isotype switching through betaglycan binding and
activation of canonical TGF-β signaling. Mucosal Immunol.
8:906–917. 2015.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Seo GY, Jang YS, Kim HA, Lee MR, Park MH,
Park SR, Lee JM, Choe J and Kim PH: Retinoic acid, acting as a
highly specific IgA isotype switch factor, cooperates with TGF-β1
to enhance the overall IgA response. J Leukoc Biol. 94:325–335.
2013.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Bai L, Li H, Li J, Song J, Zhou Y, Liu B,
Lu R, Zhang P, Chen J, Chen D, et al: Immunosuppressive effect of
artemisinin and hydroxychloroquine combination therapy on IgA
nephropathy via regulating the differentiation of CD4+ T cell
subsets in rats. Int Immunopharmacol. 70:313–323. 2019.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Ruszkowski J, Lisowska KA, Pindel M,
Heleniak Z, Dębska-Ślizień A and Witkowski JM: T cells in IgA
nephropathy: Role in pathogenesis, clinical significance and
potential therapeutic target. Clin Exp Nephrol. 23:291–303.
2019.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Xiao J, Wang M, Xiong D, Wang Y, Li Q,
Zhou J and Chen Q: TGF-β1 mimics the effect of IL-4 on the
glycosylation of IgA1 by downregulating core 1 β1,
3-galactosyltransferase and Cosmc. Mol Med Rep. 15:969–974.
2017.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Inoshita H, Kim BG, Yamashita M, Choi SH,
Tomino Y, Letterio JJ and Emancipator SN: Disruption of Smad4
expression in T cells leads to IgA nephropathy-like manifestations.
PLoS One. 8(e78736)2013.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Lai KN, Ho RT, Lai CK, Chan CH and Li PK:
Increase of both circulating Th1 and Th2 T lymphocyte subsets in
IgA nephropathy. Clin Exp Immunol. 96:116–121. 1994.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Kagami S: IL-23 and Th17 cells in
infections and psoriasis. Nihon Rinsho Meneki Gakkai Kaishi.
34:13–19. 2011.(In Japanese). PubMed/NCBI View Article : Google Scholar
|
|
59
|
Thomi R, Schlapbach C, Yawalkar N, Simon
D, Yerly D and Hunger RE: Elevated levels of the antimicrobial
peptide LL-37 in hidradenitis suppurativa are associated with a
Th1/Th17 immune response. Exp Dermatol. 27:172–177. 2018.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Waite JC and Skokos D: Th17 response and
inflammatory autoimmune diseases. Int J Inflamm.
2012(819467)2012.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Fu Y, Liu S, Wang Y, Ren F, Fan X, Liang
J, Liu C, Li J, Ju Y and Chang Z: GdX/UBL4A-knockout mice resist
collagen-induced arthritis by balancing the population of
Th1/Th17 and regulatory T cells. FASEB J.
33:8375–8385. 2019.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Peng Z, Tian J, Cui X, Xian W, Sun H, Li
E, Geng L, Zhang L and Zhao P: Increased number of Th22 cells and
correlation with Th17 cells in peripheral blood of patients with
IgA nephropathy. Hum Immunol. 74:1586–1591. 2013.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Yang L, Zhang X, Peng W, Wei M and Qin W:
MicroRNA-155-induced T lymphocyte subgroup drifting in IgA
nephropathy. Int Urol Nephrol. 49:353–361. 2017.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Lin FJ, Jiang GR, Shan JP, Zhu C, Zou J
and Wu XR: Imbalance of regulatory T cells to Th17 cells in IgA
nephropathy. Scand J Clin Lab Invest. 72:221–229. 2012.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Jain S, Stock A, Macian F and Putterman C:
A distinct T follicular helper cell subset infiltrates the brain in
murine neuropsychiatric lupus. Front Immunol. 9(487)2018.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Gowthaman U, Chen JS, Zhang B, Flynn WF,
Lu Y, Song W, Joseph J, Gertie JA, Xu L, Collet MA, et al:
Identification of a T follicular helper cell subset that drives
anaphylactic IgE. Science. 365(eaaw6433)2019.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Nus M, Sage AP, Lu Y, Masters L, Lam BYH,
Newland S, Weller S, Tsiantoulas D, Raffort J, Marcus D, et al:
Marginal zone B cells control the response of follicular helper T
cells to a high-cholesterol diet. Nat Med. 23:601–610.
2017.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Grados A, Ebbo M, Piperoglou C, Groh M,
Regent A, Samson M, Terrier B, Loundou A, Morel N, Audia S, et al:
T cell polarization toward TH2/TFH2 and
TH17/TFH17 in patients with IgG4-related
disease. Front Immunol. 8(235)2017.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Webb LMC and Linterman MA: Signals that
drive T follicular helper cell formation. Immunology. 152:185–194.
2017.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Makiyama A, Chiba A, Noto D, Murayama G,
Yamaji K, Tamura N and Miyake S: Expanded circulating peripheral
helper T cells in systemic lupus erythematosus: Association with
disease activity and B cell differentiation. Rheumatology (Oxford).
58:1861–1869. 2019.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Zhang Y, Long X and Wang X: Primary T-cell
transduction to study follicular helper T-cell differentiation.
Methods Mol Biol. 2111:115–126. 2020.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Patakas A, Platt AM, Butcher JP, Maffia P,
McInnes IB, Brewer JM, Garside P and Benson RA: Putative existence
of reciprocal dialogue between Tfh and B cells and its impact on
infectious and autoimmune disease. Immunol Lett. 138:38–46.
2011.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Chen Y, Yu M, Zheng Y, Fu G, Xin G, Zhu W,
Luo L, Burns R, Li QZ, Dent AL, et al:
CXCR5+PD-1+ follicular helper CD8 T cells
control B cell tolerance. Nat Commun. 10(4415)2019.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Suzuki H, Kiryluk K, Novak J, Moldoveanu
Z, Herr AB, Renfrow MB, Wyatt RJ, Scolari F, Mestecky J, Gharavi AG
and Julian BA: The pathophysiology of IgA nephropathy. J Am Soc
Nephrol. 22:1795–1803. 2011.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Wyatt RJ and Julian BA: IgA nephropathy. N
Engl J Med. 368:2402–2414. 2013.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Charbonnier LM, Cui Y, Stephen-Victor E,
Harb H, Lopez D, Bleesing JJ, Garcia-Lloret MI, Chen K, Ozen A,
Carmeliet P, et al: Functional reprogramming of regulatory T cells
in the absence of Foxp3. Nat Immunol. 20:1208–1219. 2019.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Cormican S and Griffin MD: The complex
role of interleukin 6 in regulating T-cell responses during acute
glomerulonephritis. J Am Soc Nephrol. 30:1341–1344. 2019.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Huang H, Peng Y, Liu H, Yang X and Liu F:
Decreased CD4+CD25+ cells and increased
dimeric IgA-producing cells in tonsils in IgA nephropathy. J
Nephrol. 23:202–209. 2010.PubMed/NCBI
|
|
79
|
Donadio ME, Loiacono E, Peruzzi L, Amore
A, Camilla R, Chiale F, Vergano L, Boido A, Conrieri M, Bianciotto
M, et al: Toll-like receptors, immunoproteasome and regulatory T
cells in children with Henoch-Schönlein purpura and primary IgA
nephropathy. Pediatr Nephrol. 29:1545–1551. 2014.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Shen BL, Qu QS, Miao SZ, Liu BL, Liu RY
and Gu DF: Study on the effects of regulatory T cells on renal
function of IgAN rat model. Eur Rev Med Pharmacol Sci. 19:284–288.
2015.PubMed/NCBI
|
|
81
|
Yang S, Chen B, Shi J, Chen F, Zhang J and
Sun Z: Analysis of regulatory T cell subsets in the peripheral
blood of immunoglobulin A nephropathy (IgAN) patients. Genet Mol
Res. 14:14088–14092. 2015.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Trifari S, Kaplan CD, Tran EH, Crellin NK
and Spits H: Identification of a human helper T cell population
that has abundant production of interleukin 22 and is distinct from
T(H)-17, T(H)1 and T(H)2 cells. Nat Immunol. 10:864–871.
2009.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Azizi G, Rastegar Pouyani M, Navabi SS,
Yazdani R, Kiaee F and Mirshafiey A: The newly identified T helper
22 cells lodge in leukemia. Int J Hematol Oncol Stem Cell Res.
9:143–154. 2015.PubMed/NCBI
|
|
84
|
Xiao C, Xiao P, Li X, Huang G, Li H and
Chen Y: Streptococcus may aggravate inflammatory damage in
chronic nephritis via the chemotaxis of Th22 cells. Am J Transl
Res. 11:7432–7440. 2019.PubMed/NCBI
|
|
85
|
Xiao C, Zhou Q, Li X, Li H, Zhong Y, Meng
T, Zhu M, Sun H, Liu S, Tang R, et al: Losartan and dexamethasone
may inhibit chemotaxis to reduce the infiltration of Th22 cells in
IgA nephropathy. Int Immunopharmacol. 42:203–208. 2017.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Liu K, Yang Y, Chen Y, Li S, Gong Y and
Liang Y: The therapeutic effect of dendritic cells expressing
indoleamine 2,3-dioxygenase (IDO) on an IgA nephropathy mouse
model. Int Urol Nephrol. 52:399–407. 2020.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Tomino Y, Ozaki T, Koide H, Yagame M,
Eguchi K, Nomoto Y and Sakai H: Glomerular T cell and monocyte
populations in patients with IgA nephropathy. Nihon Jinzo Gakkai
Shi. 31:221–226. 1989.PubMed/NCBI
|
|
88
|
Sabadini E, Castiglione A, Colasanti G,
Ferrario F, Civardi R, Fellin G and D'Amico G: Characterization of
interstitial infiltrating cells in Berger's disease. Am J Kidney
Dis. 12:307–315. 1988.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Shimamine R, Shibata R, Ozono Y, Harada T,
Taguchi T, Hara K and Kono S: Anti-CD8 monoclonal antibody protects
against spontaneous IgA nephropathy in ddY mice. Nephron.
78:310–318. 1998.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Johnson RJ, Iida H, Alpers CE, Majesky MW,
Schwartz SM, Pritzi P, Gordon K and Gown AM: Expression of smooth
muscle cell phenotype by rat mesangial cells in immune complex
nephritis. Alpha-smooth muscle actin is a marker of mesangial cell
proliferation. J Clin Invest. 87:847–858. 1991.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Alpers CE, Hudkins KL, Gown AM and Johnson
RJ: Enhanced expression of ‘muscle-specific’ actin in
glomerulonephritis. Kidney Int. 41:1134–1142. 1992.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Watanabe T, Kawachi H, Ikezumi Y,
Yanagihara T, Oda Y and Shimizu F: Glomerular CD8+ cells predict
progression of childhood IgA nephropathy. Pediatr Nephrol.
16:561–567. 2001.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Segerer S, Hughes E, Hudkins KL, Mack M,
Goodpaster T and Alpers CE: Expression of the fractalkine receptor
(CX3CR1) in human kidney diseases. Kidney Int. 62:488–495.
2002.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Nishimura M, Umehara H, Nakayama T, Yoneda
O, Hieshima K, Kakizaki M, Dohmae N, Yoshie O and Imai T: Dual
functions of fractalkine/CX3C ligand 1 in trafficking of
perforin+/granzyme B+ cytotoxic effector
lymphocytes that are defined by CX3CR1 expression. J Immunol.
168:6173–6180. 2002.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Addison EG, North J, Bakhsh I, Marden C,
Haq S, Al-Sarraj S, Malayeri R, Wickremasinghe RG, Davies JK and
Lowdell MW: Ligation of CD8alpha on human natural killer cells
prevents activation-induced apoptosis and enhances cytolytic
activity. Immunology. 116:354–361. 2005.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Yamanaka T, Tamauchi H, Suzuki Y, Suzuki
H, Horikoshi S, Terashima M, Iwabuchi K, Habu S, Okumura K and
Tomino Y: Release from Th1-type immune tolerance in spleen and
enhanced production of IL-5 in Peyer's patch by cholera toxin B
induce the glomerular deposition of IgA. Immunobiology.
221:577–585. 2016.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Hyun YY, Kim IO, Kim MH, Nam DH, Lee MH,
Kim JE, Song HK, Cha JJ, Kang YS, Lee JE, et al: Adipose-derived
stem cells improve renal function in a mouse model of IgA
nephropathy. Cell Transplant. 21:2425–2439. 2012.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Hong SJ, Traktuev DO and March KL:
Therapeutic potential of adipose-derived stem cells in vascular
growth and tissue repair. Curr Opin Organ Transplant. 15:86–91.
2010.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Chen F, Ma YL, Ding H and Chen BP: Effects
of Tripterygium wilfordii glycosides on regulatory T cells
and Th17 in an IgA nephropathy rat model. Genet Mol Res.
14:14900–14907. 2015.PubMed/NCBI View Article : Google Scholar
|