Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
July-2020 Volume 20 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2020 Volume 20 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

T lymphocytes in IgA nephropathy (Review)

  • Authors:
    • Yuyan Tang
    • Haidong He
    • Pin Hu
    • Xudong Xu
  • View Affiliations / Copyright

    Affiliations: Department of Nephrology, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
    Copyright: © Tang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 186-194
    |
    Published online on: April 22, 2020
       https://doi.org/10.3892/etm.2020.8673
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Immunoglobulin A nephropathy (IgAN), the most common primary glomerulonephritis worldwide, is the main cause of end‑stage renal disease. IgAN is characterized by the accumulation of immune complexes in the circulation, which contain abnormal levels of IgA. IgAN primarily results from galactose‑deficient IgA1 (Gd‑IgA1) and Gd‑IgA1 deposition in the renal mesangium, causing local proliferation and matrix expansion. Gd‑IgA1 has been confirmed as one of the key effectors in the pathogenesis of IgAN, but the origin of Gd‑IgA1 is not clear. Recent studies have shown that Gd‑IgA1 deposition could be the result of mucosally primed plasma cells and is associated with T cell dysregulation. T cells contribute to the IgA response and play an important role in the development of IgAN. In the present review, the latest discoveries regarding the role of T lymphocytes in the pathogenesis of IgAN have been summarized. Understanding these advances will allow novel therapeutic strategies for the treatment of IgAN.
View Figures

Figure 1

View References

1 

Ohyama Y, Yamaguchi H, Nakajima K, Mizuno T, Fukamachi Y, Yokoi Y, Tsuboi N, Inaguma D, Hasegawa M, Renfrow MB, et al: Analysis of O-glycoforms of the IgA1 hinge region by sequential deglycosylation. Sci Rep. 10(671)2020.PubMed/NCBI View Article : Google Scholar

2 

Kiryluk K, Li Y, Moldoveanu Z, Suzuki H, Reily C, Hou P, Xie J, Mladkova N, Prakash S, Fischman C, et al: GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genet. 13(e1006609)2017.PubMed/NCBI View Article : Google Scholar

3 

Wang X, Li T, Si R, Chen J, Qu Z and Jiang Y: Increased frequency of PD-1hiCXCR5- T cells and B cells in patients with newly diagnosed IgA nephropathy. Sci Rep. 10(492)2020.PubMed/NCBI View Article : Google Scholar

4 

Xing Y, Li L, Zhang Y, Wang F, He D, Liu Y, Jia J, Yan T and Lin S: C1GALT1 expression is associated with galactosylation of IgA1 in peripheral B lymphocyte in immunoglobulin a nephropathy. BMC Nephrol. 21(18)2020.PubMed/NCBI View Article : Google Scholar

5 

Yeo SC, Cheung CK and Barratt J: New insights into the pathogenesis of IgA nephropathy. Pediatr Nephrol. 33:763–777. 2018.PubMed/NCBI View Article : Google Scholar

6 

Perše M and Večerić-Haler Ž: The role of IgA in the pathogenesis of IgA nephropathy. Int J Mol Sci. 20(E6199)2019.PubMed/NCBI View Article : Google Scholar

7 

Knoppova B, Reily C, Maillard N, Rizk DV, Moldoveanu Z, Mestecky J, Raska M, Renfrow MB, Julian BA and Novak J: The origin and activities of IgA1-containing immune complexes in IgA nephropathy. Front Immunol. 7(117)2016.PubMed/NCBI View Article : Google Scholar

8 

Hu S, Bao H, Xu X, Zhou X, Qin W, Zeng C and Liu Z: Increased miR-374b promotes cell proliferation and the production of aberrant glycosylated IgA1 in B cells of IgA nephropathy. FEBS Lett. 589:4019–4025. 2015.PubMed/NCBI View Article : Google Scholar

9 

Sallustio F, Curci C, Di Leo V, Gallone A, Pesce F and Gesualdo L: A new vision of IgA nephropathy: The missing link. Int J Mol Sci. 21(E189)2019.PubMed/NCBI View Article : Google Scholar

10 

Ito S, Misaki T, Naka S, Wato K, Nagasawa Y, Nomura R, Otsugu M, Matsumoto-Nakano M, Nakano K, Kumagai H and Oshima N: Specific strains of Streptococcus mutans, a pathogen of dental caries, in the tonsils, are associated with IgA nephropathy. Sci Rep. 9(20130)2019.PubMed/NCBI View Article : Google Scholar

11 

Makita Y, Suzuki H, Kano T, Takahata A, Julian BA, Novak J and Suzuki Y: TLR9 activation induces aberrant IgA glycosylation via APRIL- and IL-6-mediated pathways in IgA nephropathy. Kidney Int. 97:340–349. 2020.PubMed/NCBI View Article : Google Scholar

12 

Suzuki H, Fan R, Zhang Z, Brown R, Hall S, Julian BA, Chatham WW, Suzuki Y, Wyatt RJ, Moldoveanu Z, et al: Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest. 119:1668–1677. 2009.PubMed/NCBI View Article : Google Scholar

13 

Xu BY, Meng SJ, Shi SF, Liu LJ, Lv JC, Zhu L and Zhang H: MicroRNA-21-5p participates in IgA nephropathy by driving T helper cell polarization. J Nephrol: Dec 20, 2019 doi.org/10.1007/s40620-019-00682-3 (Epub ahead of print).

14 

Serino G, Sallustio F, Cox SN, Pesce F and Schena FP: Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy. J Am Soc Nephrol. 23:814–824. 2012.PubMed/NCBI View Article : Google Scholar

15 

Batra A, Smith AC, Feehally J and Barratt J: T-cell homing receptor expression in IgA nephropathy. Nephrol Dial Transplant. 22:2540–2548. 2007.PubMed/NCBI View Article : Google Scholar

16 

Enya T, Miyazawa T, Miyazaki K, Oshima R, Morimoto Y, Okada M, Takemura T and Sugimoto K: Pathologic tonsillar findings similar to IgA nephropathy and the role of tonsillectomy in a patient with nephrotic syndrome. BMC Nephrol. 20(381)2019.PubMed/NCBI View Article : Google Scholar

17 

Meng H, Ohtake H, Ishida A, Ohta N, Kakehata S and Yamakawa M: IgA production and tonsillar focal infection in IgA nephropathy. J Clin Exp Hematop. 52:161–170. 2012.PubMed/NCBI View Article : Google Scholar

18 

Yang Y, Liu K, Chen Y, Gong Y and Liang Y: Indoleamine 2,3-dioxygenase (IDO) regulates Th17/Treg immunity in experimental IgA nephropathy. Folia Biol (Praha). 65:101–108. 2019.PubMed/NCBI

19 

Yamada K, Kobayashi N, Ikeda T, Suzuki Y, Tsuge T, Horikoshi S, Emancipator SN and Tomino Y: Down-regulation of core 1 beta1,3-galactosyltransferase and Cosmc by Th2 cytokine alters O-glycosylation of IgA1. Nephrol Dial Transplant. 25:3890–3897. 2010.PubMed/NCBI View Article : Google Scholar

20 

Suzuki H, Suzuki Y, Aizawa M, Yamanaka T, Kihara M, Pang H, Horikoshi S and Tomino Y: Th1 polarization in murine IgA nephropathy directed by bone marrow-derived cells. Kidney Int. 72:319–327. 2007.PubMed/NCBI View Article : Google Scholar

21 

Meng T, Li X, Ao X, Zhong Y, Tang R, Peng W, Yang J, Zou M and Zhou Q: Hemolytic Streptococcus may exacerbate kidney damage in IgA nephropathy through CCL20 response to the effect of Th17 cells. PLoS One. 9(e108723)2014.PubMed/NCBI View Article : Google Scholar

22 

Huang H, Sun W, Liang Y, Peng Y, Long XD, Liu Z, Wen X, Jia M, Tian R, Bai C and Li C: CD4 (+)CD 25 (+)Treg cells and IgA nephropathy patients with tonsillectomy: A clinical and pathological study. Int Urol Nephrol. 46:2361–2369. 2014.PubMed/NCBI View Article : Google Scholar

23 

Zhang L, Wang Y, Shi X, Zou H and Jiang Y: A higher frequency of CD4+CXCR5+ T follicular helper cells in patients with newly diagnosed IgA nephropathy. Immunol Lett. 158:101–108. 2014.PubMed/NCBI View Article : Google Scholar

24 

Otaka R, Takahara M, Ueda S, Nagato T, Kishibe K, Nomura K, Katada A, Hayashi T and Harabuchi Y: Up-regulation of CX3CR1 on tonsillar CD8-positive cells in patients with IgA nephropathy. Hum Immunol. 78:375–383. 2017.PubMed/NCBI View Article : Google Scholar

25 

Chen X, Tang Y, Zhang Y, Zhuo M, Tang Z, Yu Y and Zang G: Tapasin modification on the intracellular epitope HBcAg18-27 enhances HBV-specific CTL immune response and inhibits hepatitis B virus replication in vivo. Lab Invest. 94:478–490. 2014.PubMed/NCBI View Article : Google Scholar

26 

Wu YJ, Song YN, Geng XR, Ma F, Mo LH, Zhang XW, Liu DB, Liu ZG and Yang PC: Soluble CD83 alleviates experimental allergic rhinitis through modulating antigen-specific Th2 cell property. Int J Biol Sci. 16:216–227. 2020.PubMed/NCBI View Article : Google Scholar

27 

Tortajada A, Gutierrez E, Pickering MC, Praga Terente M and Medjeral-Thomas N: The role of complement in IgA nephropathy. Mol Immunol. 114:123–132. 2019.PubMed/NCBI View Article : Google Scholar

28 

Shao F, Zheng P, Yu D, Zhou Z and Jia L: Follicular helper T cells in type 1 diabetes. FASEB J. 34:30–40. 2020.PubMed/NCBI View Article : Google Scholar

29 

Gao Y, Jin H, Nan D, Yu W, Zhang J, Yang Y, Hou R, Qin R, Hao H, Sun Y and Tian W: The role of T follicular helper cells and T follicular regulatory cells in the pathogenesis of autoimmune hemolytic anemia. Sci Rep. 9(19767)2019.PubMed/NCBI View Article : Google Scholar

30 

Oestreich KJ and Weinmann AS: Transcriptional mechanisms that regulate T helper 1 cell differentiation. Curr Opin Immunol. 24:191–195. 2012.PubMed/NCBI View Article : Google Scholar

31 

Wang Q, Li J, Yu TS, Liu Y, Li K, Liu S, Liu Y, Feng Q, Zhang L, Li GS, et al: Disrupted balance of CD4+ T-cell subsets in bone marrow of patients with primary immune thrombocytopenia. Int J Biol Sci. 15:2798–2814. 2019.PubMed/NCBI View Article : Google Scholar

32 

Magen A, Nie J, Ciucci T, Tamoutounour S, Zhao Y, Mehta M, Tran B, McGavern DB, Hannenhalli S and Bosselut R: Single-cell profiling defines transcriptomic signatures specific to tumor-reactive versus virus-responsive CD4+ T cells. Cell Rep. 29:3019–3032.e6. 2019.PubMed/NCBI View Article : Google Scholar

33 

Tang Y, Chen X, Zhang Y, Tang Z, Zhuo M, Li D, Wang P, Zang G and Yu Y: Fusion protein of tapasin and hepatitis B core antigen 18-27 enhances T helper cell type 1/2 cytokine ratio and antiviral immunity by inhibiting suppressors of cytokine signaling family members 1/3 in hepatitis B virus transgenic mice. Mol Med Rep. 9:1171–1178. 2014.PubMed/NCBI View Article : Google Scholar

34 

Edwards ESJ, Bosco JJ, Aui PM, Stirling RG, Cameron PU, Chatelier J, Hore-Lacy F, O'Hehir RE and van Zelm MC: Predominantly antibody-deficient patients with non-infectious complications have reduced naive B, Treg, Th17, and Tfh17 cells. Front Immunol. 10(2593)2019.PubMed/NCBI View Article : Google Scholar

35 

Shea-Donohue T, Fasano A, Smith A and Zhao A: Enteric pathogens and gut function: Role of cytokines and STATs. Gut Microbes. 1:316–324. 2010.PubMed/NCBI View Article : Google Scholar

36 

Blokland SLM, van Vliet-Moret FM, Hillen MR, Pandit A, Goldschmeding R, Kruize AA, Bouma G, van Maurik A, Olek S, Hoffmueller U, et al: Epigenetically quantified immune cells in salivary glands of Sjögren's syndrome patients: A novel tool that detects robust correlations of T follicular helper cells with immunopathology. Rheumatology (Oxford). 59:335–343. 2020.PubMed/NCBI View Article : Google Scholar

37 

Singer BD, King LS and D'Alessio FR: Regulatory T cells as immunotherapy. Front Immunol. 5(46)2014.PubMed/NCBI View Article : Google Scholar

38 

Read KA, Powell MD and Oestreich KJ: T follicular helper cell programming by cytokine-mediated events. Immunology. 149:253–261. 2016.PubMed/NCBI View Article : Google Scholar

39 

Phillips S, Chokshi S, Riva A, Evans A, Williams R and Naoumov NV: CD8(+) T cell control of hepatitis B virus replication: Direct comparison between cytolytic and noncytolytic functions. J Immunol. 184:287–295. 2010.PubMed/NCBI View Article : Google Scholar

40 

Tang YY, Tang ZH, Zhang Y, Zhuo M, Zang GQ, Chen XH and Yu YS: The fusion protein of CTP-HBcAg18-27-tapasin mediates the apoptosis of CD8(+)T cells and CD8(+) T cell response in HLA-A2 transgenic mice. Hepat Mon. 14(e16161)2014.PubMed/NCBI View Article : Google Scholar

41 

Krebs CF and Steinmetz OM: CD4+ T cell fate in glomerulonephritis: A tale of Th1, Th17, and novel Treg subtypes. Mediators Inflamm. 2016(5393894)2016.PubMed/NCBI View Article : Google Scholar

42 

Habura I, Fiedorowicz K, Woźniak A, Idasiak-Piechocka I, Kosikowski P and Oko A: IgA nephropathy associated with coeliac disease. Cent Eur J Immunol. 44:106–108. 2019.PubMed/NCBI View Article : Google Scholar

43 

Suzuki H and Suzuki Y: Murine models of human IgA nephropathy. Semin Nephrol. 38:513–520. 2018.PubMed/NCBI View Article : Google Scholar

44 

Tsuruga K, Oki E, Aizawa-Yashiro T, Yoshida H, Imaizumi T and Tanaka H: Potential Th1⁄Th2 predominance in children with newly diagnosed IgA nephropathy. Acta Paediatr. 99:1584–1586. 2010.PubMed/NCBI View Article : Google Scholar

45 

He L, Peng Y, Liu H, Yin W, Chen X, Peng X, Shao J, Liu Y and Liu F: Activation of the interleukin-4/signal transducer and activator of transcription 6 signaling pathway and homeodomain-interacting protein kinase 2 production by tonsillar mononuclear cells in IgA nephropathy. Am J Nephrol. 38:321–332. 2013.PubMed/NCBI View Article : Google Scholar

46 

Liu L, Kou P, Zeng Q, Pei G, Li Y, Liang H, Xu G and Chen S: CD4+ T Lymphocytes, especially Th2 cells, contribute to the progress of renal fibrosis. Am J Nephrol. 36:386–396. 2012.PubMed/NCBI View Article : Google Scholar

47 

He L, Peng Y, Liu H, Yin W, Chen X, Peng X, Shao J, Liu Y and Liu F: Th1/Th2 polarization in tonsillar lymphocyte form patients with IgA nephropathy. Ren Fail. 36:407–412. 2014.PubMed/NCBI View Article : Google Scholar

48 

Takahara M, Nagato T, Nozaki Y, Kumai T, Katada A, Hayashi T and Harabuchi Y: A proliferation-inducing ligand (APRIL) induced hyper-production of IgA from tonsillar mononuclear cells in patients with IgA nephropathy. Cell Immunol. 341(103925)2019.PubMed/NCBI View Article : Google Scholar

49 

Glassock RJ: Mortality risk in IgA nephropathy. J Am Soc Nephrol. 30:720–722. 2019.PubMed/NCBI View Article : Google Scholar

50 

Sallustio F, Serino G, Cox SN, Dalla Gassa A, Curci C, De Palma G, Banelli B, Zaza G, Romani M and Schena FP: Aberrantly methylated DNA regions lead to low activation of CD4+ T-cells in IgA nephropathy. Clin Sci (Lond). 130:733–746. 2016.PubMed/NCBI View Article : Google Scholar

51 

Jang YS, Seo GY, Lee JM, Seo HY, Han HJ, Kim SJ, Jin BR, Kim HJ, Park SR, Rhee KJ, et al: Lactoferrin causes IgA and IgG2b isotype switching through betaglycan binding and activation of canonical TGF-β signaling. Mucosal Immunol. 8:906–917. 2015.PubMed/NCBI View Article : Google Scholar

52 

Seo GY, Jang YS, Kim HA, Lee MR, Park MH, Park SR, Lee JM, Choe J and Kim PH: Retinoic acid, acting as a highly specific IgA isotype switch factor, cooperates with TGF-β1 to enhance the overall IgA response. J Leukoc Biol. 94:325–335. 2013.PubMed/NCBI View Article : Google Scholar

53 

Bai L, Li H, Li J, Song J, Zhou Y, Liu B, Lu R, Zhang P, Chen J, Chen D, et al: Immunosuppressive effect of artemisinin and hydroxychloroquine combination therapy on IgA nephropathy via regulating the differentiation of CD4+ T cell subsets in rats. Int Immunopharmacol. 70:313–323. 2019.PubMed/NCBI View Article : Google Scholar

54 

Ruszkowski J, Lisowska KA, Pindel M, Heleniak Z, Dębska-Ślizień A and Witkowski JM: T cells in IgA nephropathy: Role in pathogenesis, clinical significance and potential therapeutic target. Clin Exp Nephrol. 23:291–303. 2019.PubMed/NCBI View Article : Google Scholar

55 

Xiao J, Wang M, Xiong D, Wang Y, Li Q, Zhou J and Chen Q: TGF-β1 mimics the effect of IL-4 on the glycosylation of IgA1 by downregulating core 1 β1, 3-galactosyltransferase and Cosmc. Mol Med Rep. 15:969–974. 2017.PubMed/NCBI View Article : Google Scholar

56 

Inoshita H, Kim BG, Yamashita M, Choi SH, Tomino Y, Letterio JJ and Emancipator SN: Disruption of Smad4 expression in T cells leads to IgA nephropathy-like manifestations. PLoS One. 8(e78736)2013.PubMed/NCBI View Article : Google Scholar

57 

Lai KN, Ho RT, Lai CK, Chan CH and Li PK: Increase of both circulating Th1 and Th2 T lymphocyte subsets in IgA nephropathy. Clin Exp Immunol. 96:116–121. 1994.PubMed/NCBI View Article : Google Scholar

58 

Kagami S: IL-23 and Th17 cells in infections and psoriasis. Nihon Rinsho Meneki Gakkai Kaishi. 34:13–19. 2011.(In Japanese). PubMed/NCBI View Article : Google Scholar

59 

Thomi R, Schlapbach C, Yawalkar N, Simon D, Yerly D and Hunger RE: Elevated levels of the antimicrobial peptide LL-37 in hidradenitis suppurativa are associated with a Th1/Th17 immune response. Exp Dermatol. 27:172–177. 2018.PubMed/NCBI View Article : Google Scholar

60 

Waite JC and Skokos D: Th17 response and inflammatory autoimmune diseases. Int J Inflamm. 2012(819467)2012.PubMed/NCBI View Article : Google Scholar

61 

Fu Y, Liu S, Wang Y, Ren F, Fan X, Liang J, Liu C, Li J, Ju Y and Chang Z: GdX/UBL4A-knockout mice resist collagen-induced arthritis by balancing the population of Th1/Th17 and regulatory T cells. FASEB J. 33:8375–8385. 2019.PubMed/NCBI View Article : Google Scholar

62 

Peng Z, Tian J, Cui X, Xian W, Sun H, Li E, Geng L, Zhang L and Zhao P: Increased number of Th22 cells and correlation with Th17 cells in peripheral blood of patients with IgA nephropathy. Hum Immunol. 74:1586–1591. 2013.PubMed/NCBI View Article : Google Scholar

63 

Yang L, Zhang X, Peng W, Wei M and Qin W: MicroRNA-155-induced T lymphocyte subgroup drifting in IgA nephropathy. Int Urol Nephrol. 49:353–361. 2017.PubMed/NCBI View Article : Google Scholar

64 

Lin FJ, Jiang GR, Shan JP, Zhu C, Zou J and Wu XR: Imbalance of regulatory T cells to Th17 cells in IgA nephropathy. Scand J Clin Lab Invest. 72:221–229. 2012.PubMed/NCBI View Article : Google Scholar

65 

Jain S, Stock A, Macian F and Putterman C: A distinct T follicular helper cell subset infiltrates the brain in murine neuropsychiatric lupus. Front Immunol. 9(487)2018.PubMed/NCBI View Article : Google Scholar

66 

Gowthaman U, Chen JS, Zhang B, Flynn WF, Lu Y, Song W, Joseph J, Gertie JA, Xu L, Collet MA, et al: Identification of a T follicular helper cell subset that drives anaphylactic IgE. Science. 365(eaaw6433)2019.PubMed/NCBI View Article : Google Scholar

67 

Nus M, Sage AP, Lu Y, Masters L, Lam BYH, Newland S, Weller S, Tsiantoulas D, Raffort J, Marcus D, et al: Marginal zone B cells control the response of follicular helper T cells to a high-cholesterol diet. Nat Med. 23:601–610. 2017.PubMed/NCBI View Article : Google Scholar

68 

Grados A, Ebbo M, Piperoglou C, Groh M, Regent A, Samson M, Terrier B, Loundou A, Morel N, Audia S, et al: T cell polarization toward TH2/TFH2 and TH17/TFH17 in patients with IgG4-related disease. Front Immunol. 8(235)2017.PubMed/NCBI View Article : Google Scholar

69 

Webb LMC and Linterman MA: Signals that drive T follicular helper cell formation. Immunology. 152:185–194. 2017.PubMed/NCBI View Article : Google Scholar

70 

Makiyama A, Chiba A, Noto D, Murayama G, Yamaji K, Tamura N and Miyake S: Expanded circulating peripheral helper T cells in systemic lupus erythematosus: Association with disease activity and B cell differentiation. Rheumatology (Oxford). 58:1861–1869. 2019.PubMed/NCBI View Article : Google Scholar

71 

Zhang Y, Long X and Wang X: Primary T-cell transduction to study follicular helper T-cell differentiation. Methods Mol Biol. 2111:115–126. 2020.PubMed/NCBI View Article : Google Scholar

72 

Patakas A, Platt AM, Butcher JP, Maffia P, McInnes IB, Brewer JM, Garside P and Benson RA: Putative existence of reciprocal dialogue between Tfh and B cells and its impact on infectious and autoimmune disease. Immunol Lett. 138:38–46. 2011.PubMed/NCBI View Article : Google Scholar

73 

Chen Y, Yu M, Zheng Y, Fu G, Xin G, Zhu W, Luo L, Burns R, Li QZ, Dent AL, et al: CXCR5+PD-1+ follicular helper CD8 T cells control B cell tolerance. Nat Commun. 10(4415)2019.PubMed/NCBI View Article : Google Scholar

74 

Suzuki H, Kiryluk K, Novak J, Moldoveanu Z, Herr AB, Renfrow MB, Wyatt RJ, Scolari F, Mestecky J, Gharavi AG and Julian BA: The pathophysiology of IgA nephropathy. J Am Soc Nephrol. 22:1795–1803. 2011.PubMed/NCBI View Article : Google Scholar

75 

Wyatt RJ and Julian BA: IgA nephropathy. N Engl J Med. 368:2402–2414. 2013.PubMed/NCBI View Article : Google Scholar

76 

Charbonnier LM, Cui Y, Stephen-Victor E, Harb H, Lopez D, Bleesing JJ, Garcia-Lloret MI, Chen K, Ozen A, Carmeliet P, et al: Functional reprogramming of regulatory T cells in the absence of Foxp3. Nat Immunol. 20:1208–1219. 2019.PubMed/NCBI View Article : Google Scholar

77 

Cormican S and Griffin MD: The complex role of interleukin 6 in regulating T-cell responses during acute glomerulonephritis. J Am Soc Nephrol. 30:1341–1344. 2019.PubMed/NCBI View Article : Google Scholar

78 

Huang H, Peng Y, Liu H, Yang X and Liu F: Decreased CD4+CD25+ cells and increased dimeric IgA-producing cells in tonsils in IgA nephropathy. J Nephrol. 23:202–209. 2010.PubMed/NCBI

79 

Donadio ME, Loiacono E, Peruzzi L, Amore A, Camilla R, Chiale F, Vergano L, Boido A, Conrieri M, Bianciotto M, et al: Toll-like receptors, immunoproteasome and regulatory T cells in children with Henoch-Schönlein purpura and primary IgA nephropathy. Pediatr Nephrol. 29:1545–1551. 2014.PubMed/NCBI View Article : Google Scholar

80 

Shen BL, Qu QS, Miao SZ, Liu BL, Liu RY and Gu DF: Study on the effects of regulatory T cells on renal function of IgAN rat model. Eur Rev Med Pharmacol Sci. 19:284–288. 2015.PubMed/NCBI

81 

Yang S, Chen B, Shi J, Chen F, Zhang J and Sun Z: Analysis of regulatory T cell subsets in the peripheral blood of immunoglobulin A nephropathy (IgAN) patients. Genet Mol Res. 14:14088–14092. 2015.PubMed/NCBI View Article : Google Scholar

82 

Trifari S, Kaplan CD, Tran EH, Crellin NK and Spits H: Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat Immunol. 10:864–871. 2009.PubMed/NCBI View Article : Google Scholar

83 

Azizi G, Rastegar Pouyani M, Navabi SS, Yazdani R, Kiaee F and Mirshafiey A: The newly identified T helper 22 cells lodge in leukemia. Int J Hematol Oncol Stem Cell Res. 9:143–154. 2015.PubMed/NCBI

84 

Xiao C, Xiao P, Li X, Huang G, Li H and Chen Y: Streptococcus may aggravate inflammatory damage in chronic nephritis via the chemotaxis of Th22 cells. Am J Transl Res. 11:7432–7440. 2019.PubMed/NCBI

85 

Xiao C, Zhou Q, Li X, Li H, Zhong Y, Meng T, Zhu M, Sun H, Liu S, Tang R, et al: Losartan and dexamethasone may inhibit chemotaxis to reduce the infiltration of Th22 cells in IgA nephropathy. Int Immunopharmacol. 42:203–208. 2017.PubMed/NCBI View Article : Google Scholar

86 

Liu K, Yang Y, Chen Y, Li S, Gong Y and Liang Y: The therapeutic effect of dendritic cells expressing indoleamine 2,3-dioxygenase (IDO) on an IgA nephropathy mouse model. Int Urol Nephrol. 52:399–407. 2020.PubMed/NCBI View Article : Google Scholar

87 

Tomino Y, Ozaki T, Koide H, Yagame M, Eguchi K, Nomoto Y and Sakai H: Glomerular T cell and monocyte populations in patients with IgA nephropathy. Nihon Jinzo Gakkai Shi. 31:221–226. 1989.PubMed/NCBI

88 

Sabadini E, Castiglione A, Colasanti G, Ferrario F, Civardi R, Fellin G and D'Amico G: Characterization of interstitial infiltrating cells in Berger's disease. Am J Kidney Dis. 12:307–315. 1988.PubMed/NCBI View Article : Google Scholar

89 

Shimamine R, Shibata R, Ozono Y, Harada T, Taguchi T, Hara K and Kono S: Anti-CD8 monoclonal antibody protects against spontaneous IgA nephropathy in ddY mice. Nephron. 78:310–318. 1998.PubMed/NCBI View Article : Google Scholar

90 

Johnson RJ, Iida H, Alpers CE, Majesky MW, Schwartz SM, Pritzi P, Gordon K and Gown AM: Expression of smooth muscle cell phenotype by rat mesangial cells in immune complex nephritis. Alpha-smooth muscle actin is a marker of mesangial cell proliferation. J Clin Invest. 87:847–858. 1991.PubMed/NCBI View Article : Google Scholar

91 

Alpers CE, Hudkins KL, Gown AM and Johnson RJ: Enhanced expression of ‘muscle-specific’ actin in glomerulonephritis. Kidney Int. 41:1134–1142. 1992.PubMed/NCBI View Article : Google Scholar

92 

Watanabe T, Kawachi H, Ikezumi Y, Yanagihara T, Oda Y and Shimizu F: Glomerular CD8+ cells predict progression of childhood IgA nephropathy. Pediatr Nephrol. 16:561–567. 2001.PubMed/NCBI View Article : Google Scholar

93 

Segerer S, Hughes E, Hudkins KL, Mack M, Goodpaster T and Alpers CE: Expression of the fractalkine receptor (CX3CR1) in human kidney diseases. Kidney Int. 62:488–495. 2002.PubMed/NCBI View Article : Google Scholar

94 

Nishimura M, Umehara H, Nakayama T, Yoneda O, Hieshima K, Kakizaki M, Dohmae N, Yoshie O and Imai T: Dual functions of fractalkine/CX3C ligand 1 in trafficking of perforin+/granzyme B+ cytotoxic effector lymphocytes that are defined by CX3CR1 expression. J Immunol. 168:6173–6180. 2002.PubMed/NCBI View Article : Google Scholar

95 

Addison EG, North J, Bakhsh I, Marden C, Haq S, Al-Sarraj S, Malayeri R, Wickremasinghe RG, Davies JK and Lowdell MW: Ligation of CD8alpha on human natural killer cells prevents activation-induced apoptosis and enhances cytolytic activity. Immunology. 116:354–361. 2005.PubMed/NCBI View Article : Google Scholar

96 

Yamanaka T, Tamauchi H, Suzuki Y, Suzuki H, Horikoshi S, Terashima M, Iwabuchi K, Habu S, Okumura K and Tomino Y: Release from Th1-type immune tolerance in spleen and enhanced production of IL-5 in Peyer's patch by cholera toxin B induce the glomerular deposition of IgA. Immunobiology. 221:577–585. 2016.PubMed/NCBI View Article : Google Scholar

97 

Hyun YY, Kim IO, Kim MH, Nam DH, Lee MH, Kim JE, Song HK, Cha JJ, Kang YS, Lee JE, et al: Adipose-derived stem cells improve renal function in a mouse model of IgA nephropathy. Cell Transplant. 21:2425–2439. 2012.PubMed/NCBI View Article : Google Scholar

98 

Hong SJ, Traktuev DO and March KL: Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Curr Opin Organ Transplant. 15:86–91. 2010.PubMed/NCBI View Article : Google Scholar

99 

Chen F, Ma YL, Ding H and Chen BP: Effects of Tripterygium wilfordii glycosides on regulatory T cells and Th17 in an IgA nephropathy rat model. Genet Mol Res. 14:14900–14907. 2015.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Tang Y, He H, Hu P and Xu X: T lymphocytes in IgA nephropathy (Review). Exp Ther Med 20: 186-194, 2020.
APA
Tang, Y., He, H., Hu, P., & Xu, X. (2020). T lymphocytes in IgA nephropathy (Review). Experimental and Therapeutic Medicine, 20, 186-194. https://doi.org/10.3892/etm.2020.8673
MLA
Tang, Y., He, H., Hu, P., Xu, X."T lymphocytes in IgA nephropathy (Review)". Experimental and Therapeutic Medicine 20.1 (2020): 186-194.
Chicago
Tang, Y., He, H., Hu, P., Xu, X."T lymphocytes in IgA nephropathy (Review)". Experimental and Therapeutic Medicine 20, no. 1 (2020): 186-194. https://doi.org/10.3892/etm.2020.8673
Copy and paste a formatted citation
x
Spandidos Publications style
Tang Y, He H, Hu P and Xu X: T lymphocytes in IgA nephropathy (Review). Exp Ther Med 20: 186-194, 2020.
APA
Tang, Y., He, H., Hu, P., & Xu, X. (2020). T lymphocytes in IgA nephropathy (Review). Experimental and Therapeutic Medicine, 20, 186-194. https://doi.org/10.3892/etm.2020.8673
MLA
Tang, Y., He, H., Hu, P., Xu, X."T lymphocytes in IgA nephropathy (Review)". Experimental and Therapeutic Medicine 20.1 (2020): 186-194.
Chicago
Tang, Y., He, H., Hu, P., Xu, X."T lymphocytes in IgA nephropathy (Review)". Experimental and Therapeutic Medicine 20, no. 1 (2020): 186-194. https://doi.org/10.3892/etm.2020.8673
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team