Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
July-2020 Volume 20 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2020 Volume 20 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Natural skin‑whitening compounds for the treatment of melanogenesis (Review)

  • Authors:
    • Wenhui Qian
    • Wenya Liu
    • Dong Zhu
    • Yanli Cao
    • Anfu Tang
    • Guangming Gong
    • Hua Su
  • View Affiliations / Copyright

    Affiliations: Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210002, P.R. China
    Copyright: © Qian et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 173-185
    |
    Published online on: April 24, 2020
       https://doi.org/10.3892/etm.2020.8687
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Melanogenesis is the process for the production of melanin, which is the primary cause of human skin pigmentation. Skin‑whitening agents are commercially available for those who wish to have a lighter skin complexions. To date, although numerous natural compounds have been proposed to alleviate hyperpigmentation, insufficient attention has been focused on potential natural skin‑whitening agents and their mechanism of action from the perspective of compound classification. In the present article, the synthetic process of melanogenesis and associated core signaling pathways are summarized. An overview of the list of natural skin‑lightening agents, along with their compound classifications, is also presented, where their efficacy based on their respective mechanisms of action on melanogenesis is discussed.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Pillaiyar T, Manickam M and Namasivayam V: Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem. 32:403–425. 2017.PubMed/NCBI View Article : Google Scholar

2 

Videira IF, Moura DF and Magina S: Mechanisms regulating melanogenesis. An Bras Dermatol. 88:76–83. 2013.PubMed/NCBI View Article : Google Scholar

3 

D'Mello SA, Finlay GJ, Baguley BC and Askarian-Amiri ME: Signaling pathways in melanogenesis. Int J Mol Sci. 17(pii: E1144)2016.PubMed/NCBI View Article : Google Scholar

4 

Gillbro JM and Olsson MJ: The melanogenesis and mechanisms of skin-lightening agents--existing and new approaches. Int J Cosmet Sci. 33:210–221. 2011.PubMed/NCBI View Article : Google Scholar

5 

Desmedt B, Courselle P, De Beer JO, Rogiers V, Grosber M, Deconinck E and De Paepe K: Overview of skin whitening agents with an insight into the illegal cosmetic market in Europe. J Eur Acad Dermatol Venereol. 30:943–950. 2016.PubMed/NCBI View Article : Google Scholar

6 

Costin GE and Hearing VJ: Human skin pigmentation: Melanocytes modulate skin color in response to stress. Faseb J. 21:976–994. 2007.PubMed/NCBI View Article : Google Scholar

7 

Takizawa T, Imai T, Onose J, Ueda M, Tamura T, Mitsumori K, Izumi K and Hirose M: Enhancement of hepatocarcinogenesis by kojic acid in rat two-stage models after initiation with N-bis (2-hydroxypropyl)nitrosamine or N-diethylnitrosamine. Toxicol Sci. 81:43–49. 2004.PubMed/NCBI View Article : Google Scholar

8 

García-Gavín J, González-Vilas D, Fernández-Redondo V and Toribio J: Pigmented contact dermatitis due to kojic acid. A paradoxical side effect of a skin lightener. Contact Dermatitis. 62:63–64. 2010.PubMed/NCBI View Article : Google Scholar

9 

Chung KW, Jeong HO, Jang EJ, Choi YJ, Kim DH, Kim SR, Lee KJ, Lee HJ, Chun P, Byun Y, et al: Characterization of a small molecule inhibitor of melanogenesis that inhibits tyrosinase activity and scavenges nitric oxide (NO). Biochim Biophys Acta. 1830:4752–4761. 2013. View Article : Google Scholar

10 

Hong YH, Jung EY, Noh DO and Suh HJ: Physiological effects of formulation containing tannase-converted green tea extract on skin care: Physical stability, collagenase, elastase and tyrosinase activities. Integr Med Res. 3:25–33. 2014.PubMed/NCBI View Article : Google Scholar

11 

Chiang HM, Chien YC, Wu CH, Kuo YH, Wu WC, Pan YY, Su YH and Wen KC: Hydroalcoholic extract of Rhodiola rosea L. (Crassulaceae) and its hydrolysate inhibit melanogenesis in B16F0 cells by regulating the CREB/MITF/tyrosinase pathway. Food Chem Toxicol. 65:129–139. 2014.PubMed/NCBI View Article : Google Scholar

12 

Lajis AFB and Ariff AB: Discovery of new depigmenting compounds and their efficacy to treat hyperpigmentation: Evidence from in vitro study. J Cosmet Dermatol. 18:703–727. 2019.PubMed/NCBI View Article : Google Scholar

13 

Ito S and Wakamatsu K: Quantitative analysis of eumelanin and pheomelanin in humans, mice and other animals: A comparative review. Pigment Cell Res. 16:523–531. 2003.PubMed/NCBI View Article : Google Scholar

14 

Slominski A, Tobin DJ, Shibahara S and Wortsman J: Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev. 84:1155–1228. 2004.PubMed/NCBI View Article : Google Scholar

15 

Schiaffino MV: Signaling pathways in melanosome biogenesis and pathology. Int J Biochem Cell Biol. 42:1094–1104. 2010.PubMed/NCBI View Article : Google Scholar

16 

Pillaiyar T, Manickam M and Jung SH: Inhibitors of melanogenesis: A patent review (2009-2014). Expert Opin Ther Pat. 25:775–788. 2015.PubMed/NCBI View Article : Google Scholar

17 

Hearing VJ and Jiménez M: Mammalian tyrosinase-the critical regulatory control point in melanocyte pigmentation. Int J Biochem. 19:1141–1147. 1987.PubMed/NCBI View Article : Google Scholar

18 

Halaban R, Patton RS, Cheng E, Svedine S, Trombetta ES, Wahl ML, Ariyan S and Hebert DN: Abnormal acidification of melanoma cells induces tyrosinase retention in the early secretory pathway. J Biol Chem. 277:14821–14828. 2002.PubMed/NCBI View Article : Google Scholar

19 

Hou L, Panthier JJ and Arnheiter H: Signaling and transcriptional regulation in the neural crest-derived melanocyte lineage: Interactions between KIT and MITF. Development. 127:5379–5389. 2000.PubMed/NCBI

20 

Ryu S, Johnson A, Park Y, Kim B, Norris D, Armstrong CA and Song PI: The alpha-melanocyte-stimulating hormone suppresses TLR2-mediated functional responses through IRAK-M in normal human keratinocytes. PLoS One. 10(e0136887)2015.PubMed/NCBI View Article : Google Scholar

21 

Edelman AM, Blumenthal DK and Krebs EG: Protein serine/threonine kinases. Annu Rev Biochem. 56:567–613. 1987.PubMed/NCBI View Article : Google Scholar

22 

Yasumoto K, Yokoyama K, Shibata K, Tomita Y and Shibahara S: Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol Cell Biol. 14:8058–8070. 1994.PubMed/NCBI View Article : Google Scholar

23 

Bertolotto C, Abbe P, Hemesath TJ, Bille K, Fisher DE, Ortonne JP and Ballotti R: Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol. 142:827–835. 1998.PubMed/NCBI View Article : Google Scholar

24 

Zhu PY, Yin WH, Wang MR, Dang YY and Ye XY: Andrographolide suppresses melanin synthesis through Akt/GSK3β/β-catenin signal pathway. J Dermatol Sci. 79:74–83. 2015.PubMed/NCBI View Article : Google Scholar

25 

Hwang I, Park JH, Park HS, Choi KA, Seol KC, Oh SI, Kang S and Hong S: Neural stem cells inhibit melanin production by activation of Wnt inhibitors. J Dermatol Sci. 72:274–283. 2013.PubMed/NCBI View Article : Google Scholar

26 

Steingrimsson E, Copeland NG and Jenkins NA: Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet. 38:365–411. 2004.PubMed/NCBI View Article : Google Scholar

27 

Takeda K, Yasumoto K, Takada R, Takada S, Watanabe K, Udono T, Saito H, Takahashi K and Shibahara S: Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J Biol Chem. 275:14013–14016. 2000.PubMed/NCBI View Article : Google Scholar

28 

Widlund HR, Horstmann MA, Price ER, Cui J, Lessnick SL, Wu M, He X and Fisher DE: Beta-catenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor. J Cell Biol. 158:1079–1087. 2002.PubMed/NCBI View Article : Google Scholar

29 

Martinez-Anton A, Gras D, Bourdin A, Dubreuil P and Chanez P: KIT as a therapeutic target for non-oncological diseases. Pharmacol Ther. 197:11–37. 2019.PubMed/NCBI View Article : Google Scholar

30 

Niwano T, Terazawa S, Nakajima H and Imokawa G: The stem cell factor-stimulated melanogenesis in human melanocytes can be abrogated by interrupting the phosphorylation of MSK1: Evidence for involvement of the p38/MSK1/CREB/MITF axis. Arch Dermatol Res. 310:187–196. 2018.PubMed/NCBI View Article : Google Scholar

31 

Li PH, Liu LH, Chang CC, Gao R, Leung CH, Ma DL and David Wang HM: Silencing stem cell factor gene in fibroblasts to regulate paracrine factor productions and enhance c-Kit expression in melanocytes on melanogenesis. Int J Mol Sci. 19(pii: E1475)2018.PubMed/NCBI View Article : Google Scholar

32 

Flaherty KT, Hodi FS and Fisher DE: From genes to drugs: Targeted strategies for melanoma. Nat Rev Cancer. 12:349–361. 2012.PubMed/NCBI View Article : Google Scholar

33 

Bonaventure J, Domingues MJ and Larue L: Cellular and molecular mechanisms controlling the migration of melanocytes and melanoma cells. Pigment Cell Melanoma Res. 26:316–325. 2013.PubMed/NCBI View Article : Google Scholar

34 

Ahn JH, Jin SH and Kang HY: LPS induces melanogenesis through p38 MAPK activation in human melanocytes. Arch Dermatol Res. 300:325–329. 2008.PubMed/NCBI View Article : Google Scholar

35 

Kim JY, Lee EJ, Ahn Y, Park S, Kim SH and Oh SH: A chemical compound from fruit extract of Juglans mandshurica inhibits melanogenesis through p-ERK-associated MITF degradation. Phytomedicine. 57:57–64. 2019.PubMed/NCBI View Article : Google Scholar

36 

Hwang E, Lee TH, Lee WJ, Shim WS, Yeo EJ, Kim S and Kim SY: A novel synthetic Piper amide derivative NED-180 inhibits hyperpigmentation by activating the PI3K and ERK pathways and by regulating Ca2+ influx via TRPM1 channels. Pigment Cell Melanoma Res. 29:81–91. 2016.PubMed/NCBI View Article : Google Scholar

37 

Vance KW and Goding CR: The transcription network regulating melanocyte development and melanoma. Pigment Cell Res. 17:318–325. 2004.PubMed/NCBI View Article : Google Scholar

38 

Seberg HE, Van Otterloo E and Cornell RA: Beyond MITF: Multiple transcription factors directly regulate the cellular phenotype in melanocytes and melanoma. Pigment Cell Melanoma Res. 30:454–466. 2017.PubMed/NCBI View Article : Google Scholar

39 

Price ER, Horstmann MA, Wells AG, Weilbaecher KN, Takemoto CM, Landis MW and Fisher DE: alpha-Melanocyte-stimulating hormone signaling regulates expression of microphthalmia, a gene deficient in Waardenburg syndrome. J Biol Chem. 273:33042–33047. 1998.PubMed/NCBI View Article : Google Scholar

40 

Bondurand N, Pingault V, Goerich DE, Lemort N, Sock E, Le Caignec C, Wegner M and Goossens M: Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum Mol Genet. 9:1907–1917. 2000.PubMed/NCBI View Article : Google Scholar

41 

Jacquemin P, Lannoy VJ, O'Sullivan J, Read A, Lemaigre FP and Rousseau GG: The transcription factor onecut-2 controls the microphthalmia-associated transcription factor gene. Biochem Biophys Res Commun. 285:1200–1205. 2001.PubMed/NCBI View Article : Google Scholar

42 

Saito H, Yasumoto K, Takeda K, Takahashi K, Fukuzaki A, Orikasa S and Shibahara S: Melanocyte-specific microphthalmia-associated transcription factor isoform activates its own gene promoter through physical interaction with lymphoid-enhancing factor 1. J Biol Chem. 277:28787–28794. 2002.PubMed/NCBI View Article : Google Scholar

43 

Hsiao JJ and Fisher DE: The roles of microphthalmia-associated transcription factor and pigmentation in melanoma. Arch Biochem Biophys. 563:28–34. 2014.PubMed/NCBI View Article : Google Scholar

44 

Hasegawa T, Takano F, Takata T, Niiyama M and Ohta T: Bioactive monoterpene glycosides conjugated with gallic acid from the leaves of Eucalyptus globulus. Phytochemistry. 69:747–753. 2008.PubMed/NCBI View Article : Google Scholar

45 

Choi MH, Jo HG, Yang JH, Ki SH and Shin HJ: Antioxidative and anti-melanogenic activities of bamboo stems (Phyllostachys nigra variety henosis) via PKA/CREB-mediated MITF downregulation in B16F10 melanoma cells. Int J Mol Sci. 19(pii: E409)2018.PubMed/NCBI View Article : Google Scholar

46 

Yasumoto K, Yokoyama K, Takahashi K, Tomita Y and Shibahara S: Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J Biol Chem. 272:503–509. 1997.PubMed/NCBI View Article : Google Scholar

47 

Tachibana M: MITF: A stream flowing for pigment cells. Pigment Cell Res. 13:230–240. 2000.PubMed/NCBI View Article : Google Scholar

48 

Fang D, Tsuji Y and Setaluri V: Selective down-regulation of tyrosinase family gene TYRP1 by inhibition of the activity of melanocyte transcription factor, MITF. Nucleic Acids Res. 30:3096–3106. 2002.PubMed/NCBI View Article : Google Scholar

49 

Huang HC, Chang SJ, Wu CY, Ke HJ and Chang TM: [6]-Shogaol inhibits α-MSH-induced melanogenesis through the acceleration of ERK and PI3K/Akt-mediated MITF degradation. Biomed Res Int. 2014(842569)2014.PubMed/NCBI View Article : Google Scholar

50 

Alam MB, Seo BJ, Zhao P and Lee SH: Anti-melanogenic activities of heracleum moellendorffii via ERK1/2-mediated MITF downregulation. Int J Mol Sci. 17(pii: E1844)2016.PubMed/NCBI View Article : Google Scholar

51 

Zhao P, Alam MB, An H, Choi HJ, Cha YH, Yoo CY, Kim HH and Lee SH: Antimelanogenic effect of an oroxylum indicum seed extract by suppression of MITF expression through activation of MAPK signaling protein. Int J Mol Sci. 19(pii: E760)2018.PubMed/NCBI View Article : Google Scholar

52 

Wu PY, You YJ, Liu YJ, Hou CW, Wu CS, Wen KC, Lin CY and Chiang HM: Sesamol inhibited melanogenesis by regulating melanin-related signal transduction in B16F10 cells. Int J Mol Sci. 19(pii: E1108)2018.PubMed/NCBI View Article : Google Scholar

53 

Truong XT, Park SH, Lee YG, Jeong HY, Moon JH and Jeon TI: Protocatechuic acid from pear inhibits melanogenesis in melanoma cells. Int J Mol Sci. 18(pii: E1809)2017.PubMed/NCBI View Article : Google Scholar

54 

Sun L, Guo Y, Zhang Y and Zhuang Y: Antioxidant and Anti-tyrosinase activities of phenolic extracts from rape bee pollen and inhibitory melanogenesis by cAMP/MITF/TYR pathway in B16 mouse melanoma cells. Front Pharmacol. 8(104)2017.PubMed/NCBI View Article : Google Scholar

55 

Chen YS, Lee SM, Lin CC and Liu CY: Hispolon decreases melanin production and induces apoptosis in melanoma cells through the downregulation of tyrosinase and microphthalmia-associated transcription factor (MITF) expressions and the activation of caspase-3, -8 and -9. Int J Mol Sci. 15:1201–1215. 2014.PubMed/NCBI View Article : Google Scholar

56 

Wu QY, Wong ZC, Wang C, Fung AH, Wong EO, Chan GK, Dong TT, Chen Y and Tsim KW: Isoorientin derived from Gentiana veitchiorum Hemsl. flowers inhibits melanogenesis by down-regulating MITF-induced tyrosinase expression. Phytomedicine. 57:129–136. 2019. View Article : Google Scholar

57 

Seong ZK, Lee SY, Poudel A, Oh SR and Lee HK: Constituents of cryptotaenia japonica inhibit melanogenesis via CREB- and MAPK-associated signaling pathways in murine B16 melanoma cells. Molecules. 21(pii: E1296)2016.PubMed/NCBI View Article : Google Scholar

58 

Kang SJ, Choi BR, Lee EK, Kim SH, Yi HY, Park HR, Song CH, Lee YJ and Ku SK: Inhibitory effect of dried pomegranate concentration powder on melanogenesis in B16F10 melanoma cells; involvement of p38 and PKA signaling pathways. Int J Mol Sci. 16:24219–24242. 2015.PubMed/NCBI View Article : Google Scholar

59 

Lee HJ, Lee WJ, Chang SE and Lee GY: Hesperidin, A popular antioxidant inhibits melanogenesis via Erk1/2 Mediated MITF degradation. Int J Mol Sci. 16:18384–18395. 2015.PubMed/NCBI View Article : Google Scholar

60 

Chae JK, Subedi L, Jeong M, Park YU, Kim CY, Kim H and Kim SY: Gomisin N inhibits melanogenesis through regulating the PI3K/Akt and MAPK/ERK signaling pathways in melanocytes. Int J Mol Sci. 18(pii: E471)2017.PubMed/NCBI View Article : Google Scholar

61 

Su TR, Lin JJ, Tsai CC, Huang TK, Yang ZY, Wu MO, Zheng YQ, Su CC and Wu YJ: Inhibition of melanogenesis by gallic acid: Possible involvement of the PI3K/Akt, MEK/ERK and Wnt/β-catenin signaling pathways in B16F10 cells. Int J Mol Sci. 14:20443–20458. 2013.PubMed/NCBI View Article : Google Scholar

62 

Lee DH, Ahn SS, Kim JB, Lim Y, Lee YH and Shin SY: Downregulation of α-melanocyte-stimulating hormone-induced activation of the Pax3-MITF-tyrosinase axis by sorghum ethanolic extract in B16F10 melanoma cells. Int J Mol Sci. 19(pii: E1640)2018.PubMed/NCBI View Article : Google Scholar

63 

Tsao YT, Huang YF, Kuo CY, Lin YC, Chiang WC, Wang WK, Hsu CW and Lee CH: Hinokitiol inhibits melanogenesis via AKT/mTOR signaling in B16F10 mouse melanoma cells. Int J Mol Sci. 17(248)2016.PubMed/NCBI View Article : Google Scholar

64 

Ko GA, Shrestha S and Kim Cho S: Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3β signaling pathway. Nutr Res Pract. 12:3–12. 2018.PubMed/NCBI View Article : Google Scholar

65 

Lee SJ, Lee WJ, Chang SE and Lee GY: Antimelanogenic effect of ginsenoside Rg3 through extracellular signal-regulated kinase-mediated inhibition of microphthalmia-associated transcription factor. J Ginseng Res. 39:238–242. 2015.PubMed/NCBI View Article : Google Scholar

66 

Cho BR, Jun HJ, Thach TT, Wu C and Lee SJ: Betaine reduces cellular melanin content via suppression of microphthalmia-associated transcription factor in B16-F1 murine melanocytes. Food Sci Biotechnol. 26:1391–1397. 2017.PubMed/NCBI View Article : Google Scholar

67 

Alam MB, Bajpai VK, Lee J, Zhao P, Byeon JH, Ra JS, Majumder R, Lee JS, Yoon JI, Rather IA, et al: Inhibition of melanogenesis by jineol from Scolopendra subspinipes mutilans via MAP-Kinase mediated MITF downregulation and the proteasomal degradation of tyrosinase. Sci Rep. 7(45858)2017. View Article : Google Scholar

68 

Hu S, Huang J, Pei S, Ouyang Y, Ding Y, Jiang L, Lu J, Kang L, Huang L, Xiang H, et al: Ganoderma lucidum polysaccharide inhibits UVB-induced melanogenesis by antagonizing cAMP/PKA and ROS/MAPK signaling pathways. J Cell Physiol. 234:7330–7340. 2019.PubMed/NCBI View Article : Google Scholar

69 

Oh CT, Kwon TR, Jang YJ, Yoo KH, Kim BJ and Kim H: Inhibitory effects of Stichopus japonicus extract on melanogenesis of mouse cells via ERK phosphorylation. Mol Med Rep. 16:1079–1086. 2017.PubMed/NCBI View Article : Google Scholar

70 

Huang HC, Wei CM, Siao JH, Tsai TC, Ko WP, Chang KJ, Hii CH and Chang TM: Supercritical fluid extract of spent coffee grounds attenuates melanogenesis through downregulation of the PKA, PI3K/Akt and MAPK signaling pathways. Evid Based Complement Alternat Med. 2016(5860296)2016. View Article : Google Scholar

71 

Kim JW, Kim HI, Kim JH, Kwon OC, Son ES, Lee CS and Park YJ: Effects of ganodermanondiol, a new melanogenesis inhibitor from the medicinal mushroom ganoderma lucidum. Int J Mol Sci. 17(pii: E1798)2016.PubMed/NCBI View Article : Google Scholar

72 

Oh TI, Jung HJ, Lee YM, Lee S, Kim GH, Kan SY, Kang H, Oh T, Ko HM, Kwak KC, et al: Zerumbone, a tropical ginger sesquiterpene of zingiber officinale roscoe, attenuates α-MSH-induced melanogenesis in B16F10 cells. Int J Mol Sci. 19(pii: E3149)2018.PubMed/NCBI View Article : Google Scholar

73 

Chang TS: Natural melanogenesis inhibitors acting through the down-regulation of tyrosinase activity. Materials (Basel). 5:1661–1685. 2012. View Article : Google Scholar

74 

Sánchez-Ferrer A, Rodríguez-López JN, García-Cánovas F and García-Carmona F: Tyrosinase: A comprehensive review of its mechanism. Biochim Biophys Acta. 1247:1–11. 1995.PubMed/NCBI View Article : Google Scholar

75 

Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H and Sugiyama M: Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J Biol Chem. 281:8981–8990. 2006.PubMed/NCBI View Article : Google Scholar

76 

Menter JM, Etemadi AA, Chapman W, Hollins TD and Willis I: In vivo depigmentation by hydroxybenzene derivatives. Melanoma Res. 3:443–449. 1993.PubMed/NCBI View Article : Google Scholar

77 

Briganti S, Camera E and Picardo M: Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res. 16:101–110. 2003.PubMed/NCBI View Article : Google Scholar

78 

Kang WH, Chun SC and Lee S: Intermittent therapy for melasma in Asian patients with combined topical agents (retinoic acid, hydroquinone and hydrocortisone): Clinical and histological studies. J Dermatol. 25:587–596. 1998.PubMed/NCBI View Article : Google Scholar

79 

Guevara IL and Pandya AG: Melasma treated with hydroquinone, tretinoin and a fluorinated steroid. Int J Dermatol. 40:212–215. 2001.PubMed/NCBI View Article : Google Scholar

80 

Badreshia-Bansal S and Draelos ZD: Insight into skin lightening cosmeceuticals for women of color. J Drugs Dermatol. 6:32–39. 2007.PubMed/NCBI

81 

Parvez S, Kang M, Chung HS, Cho C, Hong MC, Shin MK and Bae H: Survey and mechanism of skin depigmenting and lightening agents. Phytother Res. 20:921–934. 2006.PubMed/NCBI View Article : Google Scholar

82 

Haddad AL, Matos LF, Brunstein F, Ferreira LM and Silva A and Costa D Jr: A clinical, prospective, randomized, double-blind trial comparing skin whitening complex with hydroquinone vs. placebo in the treatment of melasma. Int J Dermatol. 42:153–156. 2003.PubMed/NCBI View Article : Google Scholar

83 

Gupta AK, Gover MD, Nouri K and Taylor S: The treatment of melasma: A review of clinical trials. J Am Acad Dermatol. 55:1048–1065. 2006.PubMed/NCBI View Article : Google Scholar

84 

Kim DS, Park SH, Kwon SB, Li K, Youn SW and Park KC: (-)-Epigallocatechin-3-gallate and hinokitiol reduce melanin synthesis via decreased MITF production. Arch Pharm Res. 27:334–339. 2004.PubMed/NCBI View Article : Google Scholar

85 

Fan M, Zhang G, Hu X, Xu X and Gong D: Quercetin as a tyrosinase inhibitor: Inhibitory activity, conformational change and mechanism. Food Res Int. 100:226–233. 2017.PubMed/NCBI View Article : Google Scholar

86 

Jones K, Hughes J, Hong M, Jia Q and Orndorff S: Modulation of melanogenesis by aloesin: A competitive inhibitor of tyrosinase. Pigment Cell Res. 15:335–340. 2002.PubMed/NCBI View Article : Google Scholar

87 

Jin YH, Lee SJ, Chung MH, Park JH, Park YI, Cho TH and Lee SK: Aloesin and arbutin inhibit tyrosinase activity in a synergistic manner via a different action mechanism. Arch Pharm Res. 22:232–236. 1999.PubMed/NCBI View Article : Google Scholar

88 

Solano F, Briganti S, Picardo M and Ghanem G: Hypopigmenting agents: An updated review on biological, chemical and clinical aspects. Pigment Cell Res. 19:550–571. 2006.PubMed/NCBI View Article : Google Scholar

89 

Satooka H and Kubo I: Resveratrol as a kcat type inhibitor for tyrosinase: Potentiated melanogenesis inhibitor. Bioorg Med Chem. 20:1090–1099. 2012.PubMed/NCBI View Article : Google Scholar

90 

Lee TH, Seo JO, Baek SH and Kim SY: Inhibitory effects of resveratrol on melanin synthesis in ultraviolet B-induced pigmentation in Guinea pig skin. Biomol Ther (Seoul). 22:35–40. 2014.PubMed/NCBI View Article : Google Scholar

91 

Chen J, Yu X and Huang Y: Inhibitory mechanisms of glabridin on tyrosinase. Spectrochim Acta A Mol Biomol Spectrosc. 168:111–117. 2016.PubMed/NCBI View Article : Google Scholar

92 

Lin Y, Kuang Y, Li K, Wang S, Song W, Qiao X, Sabir G and Ye M: Screening for bioactive natural products from a 67-compound library of Glycyrrhiza inflata. Bioorg Med Chem. 25:3706–3713. 2017.PubMed/NCBI View Article : Google Scholar

93 

Fu B, Li H, Wang X, Lee FS and Cui S: Isolation and identification of flavonoids in licorice and a study of their inhibitory effects on tyrosinase. J Agric Food Chem. 53:7408–7414. 2005.PubMed/NCBI View Article : Google Scholar

94 

Nerya O, Vaya J, Musa R, Izrael S, Ben-Arie R and Tamir S: Glabrene and isoliquiritigenin as tyrosinase inhibitors from licorice roots. J Agric Food Chem. 51:1201–1207. 2003.PubMed/NCBI View Article : Google Scholar

95 

Yang SH, Tsatsakis AM, Tzanakakis G, Kim HS, Le B, Sifaki M, Spandidos DA, Tsukamoto C, Golokhvast KS, Izotov BN, et al: Soyasaponin Ag inhibits αMSHinduced melanogenesis in B16F10 melanoma cells via the downregulation of TRP2. Int J Mol Med. 40:631–636. 2017.PubMed/NCBI View Article : Google Scholar

96 

Wang Y, Curtis-Long MJ, Lee BW, Yuk HJ, Kim DW and Tan XF and Park KH: Inhibition of tyrosinase activity by polyphenol compounds from Flemingia philippinensis roots. Bioorg Med Chem. 22:1115–1120. 2014.PubMed/NCBI View Article : Google Scholar

97 

Takahashi M, Takara K, Toyozato T and Wada K: A novel bioactive chalcone of Morus australis inhibits tyrosinase activity and melanin biosynthesis in B16 melanoma cells. J Oleo Sci. 61:585–592. 2012.PubMed/NCBI View Article : Google Scholar

98 

Roh JS, Han JY, Kim JH and Hwang JK: Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius L.) seeds for melanogenesis. Biol Pharm Bull. 27:1976–1978. 2004.PubMed/NCBI View Article : Google Scholar

99 

Liang CP, Chang CH, Liang CC, Hung KY and Hsieh CW: In vitro antioxidant activities, free radical scavenging capacity and tyrosinase inhibitory of flavonoid compounds and ferulic acid from Spiranthes sinensis (Pers.) Ames. Molecules. 19:4681–4694. 2014.PubMed/NCBI View Article : Google Scholar

100 

Jhan JK, Chung YC, Chen GH, Chang CH, Lu YC and Hsu CK: Anthocyanin contents in the seed coat of black soya bean and their anti-human tyrosinase activity and antioxidative activity. Int J Cosmet Sci. 38:319–324. 2016.PubMed/NCBI View Article : Google Scholar

101 

Jeong HS, Gu GE, Jo AR, Bang JS, Yun HY, Baek KJ, Kwon NS, Park KC and Kim DS: Baicalin-induced Akt activation decreases melanogenesis through downregulation of microphthalmia-associated transcription factor and tyrosinase. Eur J Pharmacol. 761:19–27. 2015.PubMed/NCBI View Article : Google Scholar

102 

Hwang JA, Park NH, Na YJ, Lee HK, Lee JH, Kim YJ and Lee CS: Coumestrol down-regulates melanin production in melan-a murine melanocytes through degradation of tyrosinase. Biol Pharm Bull. 40:535–539. 2017.PubMed/NCBI View Article : Google Scholar

103 

de Freitas MM, Fontes PR, Souza PM, William Fagg C, Neves Silva Guerra E, de Medeiros Nóbrega YK, Silveira D, Fonseca-Bazzo Y, Simeoni LA, Homem-de-Mello M, et al: Extracts of Morus nigra L. leaves standardized in chlorogenic acid, rutin and isoquercitrin: Tyrosinase inhibition and cytotoxicity. PLoS One. 11(e0163130)2016.PubMed/NCBI View Article : Google Scholar

104 

Chen YS, Lee SM, Lin CC, Liu CY, Wu MC and Shi WL: Kinetic study on the tyrosinase and melanin formation inhibitory activities of carthamus yellow isolated from Carthamus tinctorius L. J Biosci Bioeng. 115:242–245. 2013.PubMed/NCBI View Article : Google Scholar

105 

Nihei KI and Kubo I: Substituent effect of benzaldehydes on tyrosinase inhibition. Plant Physiol Biochem. 112:278–282. 2017.PubMed/NCBI View Article : Google Scholar

106 

Moghrovyan A, Sahakyan N, Babayan A, Chichoyan N, Petrosyan M and Trchounian A: Essential oil and ethanol extract of oregano (Origanum vulgare L.) from Armenian flora as a natural source of terpenes, flavonoids and other phytochemicals with antiradical, antioxidant, metal chelating, tyrosinase inhibitory and antibacterial activity. Curr Pharm Des. 25:1809–1816. 2019.PubMed/NCBI View Article : Google Scholar

107 

Park HJ, Cho JH, Hong SH, Kim DH, Jung HY, Kang IK and Cho YJ: Whitening and anti-wrinkle activities of ferulic acid isolated from Tetragonia tetragonioides in B16F10 melanoma and CCD-986sk fibroblast cells. J Nat Med. 72:127–135. 2018.PubMed/NCBI View Article : Google Scholar

108 

Rao AR, Sindhuja HN, Dharmesh SM, Sankar KU, Sarada R and Ravishankar GA: Effective inhibition of skin cancer, tyrosinase and antioxidative properties by astaxanthin and astaxanthin esters from the green alga Haematococcus pluvialis. J Agric Food Chem. 61:3842–3851. 2013.PubMed/NCBI View Article : Google Scholar

109 

Niwano T, Terazawa S, Nakajima H, Wakabayashi Y and Imokawa G: Astaxanthin and withaferin A block paracrine cytokine interactions between UVB-exposed human keratinocytes and human melanocytes via the attenuation of endothelin-1 secretion and its downstream intracellular signaling. Cytokine. 73:184–197. 2015.PubMed/NCBI View Article : Google Scholar

110 

Tu CX, Lin M, Lu SS, Qi XY, Zhang RX and Zhang YY: Curcumin inhibits melanogenesis in human melanocytes. Phytother Res. 26:174–179. 2012.PubMed/NCBI View Article : Google Scholar

111 

Cabanes J, Chazarra S and Garcia-Carmona F: Kojic acid, a cosmetic skin whitening agent, is a slow-binding inhibitor of catecholase activity of tyrosinase. J Pharm Pharmacol. 46:982–985. 1994.PubMed/NCBI View Article : Google Scholar

112 

Picardo M and Carrera M: New and experimental treatments of cloasma and other hypermelanoses. Dermatol Clin. 25353–362. (ix)2007.PubMed/NCBI View Article : Google Scholar

113 

Dooley TP, Gadwood RC, Kilgore K and Thomasco LM: Development of an in vitro primary screen for skin depigmentation and antimelanoma agents. Skin Pharmacol. 7:188–200. 1994.PubMed/NCBI View Article : Google Scholar

114 

Curto EV, Kwong C, Hermersdörfer H, Glatt H, Santis C, Virador V and Hearing VJ Jr and Dooley TP: Inhibitors of mammalian melanocyte tyrosinase: In vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors. Biochem Pharmacol. 57:663–672. 1999.PubMed/NCBI View Article : Google Scholar

115 

Hsu KD, Chen HJ, Wang CS, Lum CC, Wu SP, Lin SP and Cheng KC: Extract of ganoderma formosanum mycelium as a highly potent tyrosinase inhibitor. Sci Rep. 6(32854)2016.PubMed/NCBI View Article : Google Scholar

116 

Peng CC, Sun HT, Lin IP, Kuo PC and Li JC: The functional property of royal jelly 10-hydroxy-2-decenoic acid as a melanogenesis inhibitor. BMC Complement Altern Med. 17(392)2017.PubMed/NCBI View Article : Google Scholar

117 

Chen WC, Tseng TS, Hsiao NW, Lin YL, Wen ZH, Tsai CC, Lee YC, Lin HH and Tsai KC: Discovery of highly potent tyrosinase inhibitor, T1, with significant anti-melanogenesis ability by zebrafish in vivo assay and computational molecular modeling. Sci Rep. 5(7995)2015.PubMed/NCBI View Article : Google Scholar

118 

Chang TS and Chen CT: Inhibitory effect of homochlorcyclizine on melanogenesis in α-melanocyte stimulating hormone-stimulated mouse B16 melanoma cells. Arch Pharm Res. 35:119–127. 2012.PubMed/NCBI View Article : Google Scholar

119 

Newton RA, Cook AL, Roberts DW, Leonard JH and Sturm RA: Post-transcriptional regulation of melanin biosynthetic enzymes by cAMP and resveratrol in human melanocytes. J Invest Dermatol. 127:2216–2227. 2007.PubMed/NCBI View Article : Google Scholar

120 

Ando H, Wen ZM, Kim HY, Valencia JC, Costin GE, Watabe H, Yasumoto K, Niki Y, Kondoh H, Ichihashi M, et al: Intracellular composition of fatty acid affects the processing and function of tyrosinase through the ubiquitin-proteasome pathway. Biochem J. 394:43–50. 2006.PubMed/NCBI View Article : Google Scholar

121 

Park SH, Kim DS, Kim WG, Ryoo IJ, Lee DH, Huh CH, Youn SW, Yoo ID and Park KC: Terre in: A new melanogenesis inhibitor and its mechanism. Cell Mol Life Sci. 61:2878–2885. 2004.PubMed/NCBI View Article : Google Scholar

122 

Lee S, Kim WG, Kim E, Ryoo IJ, Lee HK, Kim JN, Jung SH and Yoo ID: Synthesis and melanin biosynthesis inhibitory activity of (+/-)-terrein produced by Penicillium sp. 20135. Bioorg Med Chem Lett. 15:471–473. 2005.PubMed/NCBI View Article : Google Scholar

123 

Cheung FW, Guo J, Ling YH, Che CT and Liu WK: Anti-melanogenic property of geoditin A in murine B16 melanoma cells. Mar Drugs. 10:465–476. 2012.PubMed/NCBI View Article : Google Scholar

124 

Minwalla L, Zhao Y, Cornelius J, Babcock GF, Wickett RR, Le Poole IC and Boissy RE: Inhibition of melanosome transfer from melanocytes to keratinocytes by lectins and neoglycoproteins in an in vitro model system. Pigment Cell Res. 14:185–194. 2001.PubMed/NCBI View Article : Google Scholar

125 

Seiberg M: Keratinocyte-melanocyte interactions during melanosome transfer. Pigment Cell Res. 14:236–242. 2001.PubMed/NCBI View Article : Google Scholar

126 

Hakozaki T, Minwalla L, Zhuang J, Chhoa M, Matsubara A, Miyamoto K, Greatens A, Hillebrand GG, Bissett DL and Boissy RE: The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. Br J Dermatol. 147:20–31. 2002.PubMed/NCBI View Article : Google Scholar

127 

Paine C, Sharlow E, Liebel F, Eisinger M, Shapiro S and Seiberg M: An alternative approach to depigmentation by soybean extracts via inhibition of the PAR-2 pathway. J Invest Dermatol. 116:587–595. 2001.PubMed/NCBI View Article : Google Scholar

128 

Wallo W, Nebus J and Leyden JJ: Efficacy of a soy moisturizer in photoaging: A double-blind, vehicle-controlled, 12 week study. J Drugs Dermatol. 6:917–922. 2007.PubMed/NCBI

129 

Lee CS, Nam G, Bae IH and Park J: Whitening efficacy of ginsenoside F1 through inhibition of melanin transfer in cocultured human melanocytes-keratinocytes and three-dimensional human skin equivalent. J Ginseng Res. 43:300–304. 2019.PubMed/NCBI View Article : Google Scholar

130 

Kuroda TS and Fukuda M: Rab27A-binding protein Slp2-a is required for peripheral melanosome distribution and elongated cell shape in melanocytes. Nat Cell Biol. 6:1195–1203. 2004.PubMed/NCBI View Article : Google Scholar

131 

Wu XS, Rao K, Zhang H, Wang F, Sellers JR, Matesic LE, Copeland NG, Jenkins NA and Hammer JA III: Identification of an organelle receptor for myosin-Va. Nat Cell Biol. 4:271–278. 2002.PubMed/NCBI View Article : Google Scholar

132 

Kudo M, Kobayashi-Nakamura K and Tsuji-Naito K: Bifunctional effects of O-methylated flavones from Scutellaria baicalensis Georgi on melanocytes: Inhibition of melanin production and intracellular melanosome transport. PLoS One. 12(e0171513)2017.PubMed/NCBI View Article : Google Scholar

133 

Lee HY, Jang EJ, Bae SY, Jeon JE, Park HJ, Shin J and Lee SK: Anti-melanogenic activity of gagunin D, a Highly Oxygenated Diterpenoid from the Marine Sponge Phorbas sp., via Modulating Tyrosinase Expression and Degradation. Mar Drugs. 14(pii: E212)2016.PubMed/NCBI View Article : Google Scholar

134 

Ando H, Ryu A, Hashimoto A, Oka M and Ichihashi M: Linoleic acid and alpha-linolenic acid lightens ultraviolet-induced hyperpigmentation of the skin. Arch Dermatol Res. 290:375–381. 1998.PubMed/NCBI View Article : Google Scholar

135 

Yoshimura K, Tsukamoto K, Okazaki M, Virador VM, Lei TC, Suzuki Y, Uchida G, Kitano Y and Harii K: Effects of all-trans retinoic acid on melanogenesis in pigmented skin equivalents and monolayer culture of melanocytes. J Dermatol Sci. 27((Suppl 1): S68-S75)2001.PubMed/NCBI View Article : Google Scholar

136 

Yoshimura K, Harii K, Aoyama T, Shibuya F and Iga T: A new bleaching protocol for hyperpigmented skin lesions with a high concentration of all-trans retinoic acid aqueous gel. Aesthetic Plast Surg. 23:285–291. 1999.PubMed/NCBI View Article : Google Scholar

137 

Ramos-e-Silva M, Hexsel DM, Rutowitsch MS and Zechmeister M: Hydroxy acids and retinoids in cosmetics. Clin Dermatol. 19:460–466. 2001.PubMed/NCBI View Article : Google Scholar

138 

Gupta AK, Gover MD, Nouri K and Taylor S: The treatment of melasma: A review of clinical trials. J Am Acad Dermatol. 55:1048–1065. 2006.PubMed/NCBI View Article : Google Scholar

139 

Amer M and Metwalli M: Topical liquiritin improves melasma. Int J Dermatol. 39:299–301. 2000.PubMed/NCBI View Article : Google Scholar

140 

Virador VM, Kobayashi N, Matsunaga J and Hearing VJ: A standardized protocol for assessing regulators of pigmentation. Anal Biochem. 270:207–219. 1999.PubMed/NCBI View Article : Google Scholar

141 

Lei TC, Virador VM, Vieira WD and Hearing VJ: A melanocyte-keratinocyte coculture model to assess regulators of pigmentation in vitro. Anal Biochem. 305:260–268. 2002.PubMed/NCBI View Article : Google Scholar

142 

Hermanns JF, Petit L, Piérard-Franchimont C, Paquet P and Piérard GE: Assessment of topical hypopigmenting agents on solar lentigines of asian women. Dermatology. 204:281–286. 2002.PubMed/NCBI View Article : Google Scholar

143 

Tengamnuay P, Pengrungruangwong K, Pheansri I and Likhitwitayawuid K: Artocarpus lakoocha heartwood extract as a novel cosmetic ingredient: Evaluation of the in vitro anti-tyrosinase and in vivo skin whitening activities. Int J Cosmet Sci. 28:269–276. 2006.PubMed/NCBI View Article : Google Scholar

144 

Alexis AF and Blackcloud P: Natural ingredients for darker skin types: Growing options for hyperpigmentation. J Drugs Dermatol. 12((9 Suppl): s123-s127)2013.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Qian W, Liu W, Zhu D, Cao Y, Tang A, Gong G and Su H: Natural skin‑whitening compounds for the treatment of melanogenesis (Review). Exp Ther Med 20: 173-185, 2020.
APA
Qian, W., Liu, W., Zhu, D., Cao, Y., Tang, A., Gong, G., & Su, H. (2020). Natural skin‑whitening compounds for the treatment of melanogenesis (Review). Experimental and Therapeutic Medicine, 20, 173-185. https://doi.org/10.3892/etm.2020.8687
MLA
Qian, W., Liu, W., Zhu, D., Cao, Y., Tang, A., Gong, G., Su, H."Natural skin‑whitening compounds for the treatment of melanogenesis (Review)". Experimental and Therapeutic Medicine 20.1 (2020): 173-185.
Chicago
Qian, W., Liu, W., Zhu, D., Cao, Y., Tang, A., Gong, G., Su, H."Natural skin‑whitening compounds for the treatment of melanogenesis (Review)". Experimental and Therapeutic Medicine 20, no. 1 (2020): 173-185. https://doi.org/10.3892/etm.2020.8687
Copy and paste a formatted citation
x
Spandidos Publications style
Qian W, Liu W, Zhu D, Cao Y, Tang A, Gong G and Su H: Natural skin‑whitening compounds for the treatment of melanogenesis (Review). Exp Ther Med 20: 173-185, 2020.
APA
Qian, W., Liu, W., Zhu, D., Cao, Y., Tang, A., Gong, G., & Su, H. (2020). Natural skin‑whitening compounds for the treatment of melanogenesis (Review). Experimental and Therapeutic Medicine, 20, 173-185. https://doi.org/10.3892/etm.2020.8687
MLA
Qian, W., Liu, W., Zhu, D., Cao, Y., Tang, A., Gong, G., Su, H."Natural skin‑whitening compounds for the treatment of melanogenesis (Review)". Experimental and Therapeutic Medicine 20.1 (2020): 173-185.
Chicago
Qian, W., Liu, W., Zhu, D., Cao, Y., Tang, A., Gong, G., Su, H."Natural skin‑whitening compounds for the treatment of melanogenesis (Review)". Experimental and Therapeutic Medicine 20, no. 1 (2020): 173-185. https://doi.org/10.3892/etm.2020.8687
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team