Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
September-2020 Volume 20 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2020 Volume 20 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Neuroinflammation and microglia/macrophage phenotype modulate the molecular background of post-stroke depression: A literature review

  • Authors:
    • Előd Ernő Nagy
    • Attila Frigy
    • József Attila Szász
    • Emőke Horváth
  • View Affiliations / Copyright

    Affiliations: Department of Biochemistry and Environmental Chemistry, ‘George Emil Palade’ University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania, Department of Internal Medicine IV, ‘George Emil Palade’ University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540103 Targu Mures, Romania, Neurology Clinic II, ‘George Emil Palade’ University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania, Department of Pathology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
    Copyright: © Nagy et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2510-2523
    |
    Published online on: June 24, 2020
       https://doi.org/10.3892/etm.2020.8933
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Increasing evidence hints to the central role of neuroinflammation in the development of post‑stroke depression. Danger signals released in the acute phase of ischemia trigger microglial activation, along with the infiltration of neutrophils and macrophages. The increased secretion of proinflammatory cytokines interleukin (IL)‑1β, IL‑6, IL‑8, and tumor necrosis factor α (TNFα) provokes neuronal degeneration and apoptosis, whereas IL‑6, interferon γ (IFNγ), and TNFα induce aberrant tryptophane degradation with the accumulation of the end‑product quinolinic acid in resident glial cells. This promotes glutamate excitotoxicity via hyperexcitation of N‑methyl‑D‑aspartate receptors and antagonizes 5‑hydroxy‑tryptamine, reducing synaptic plasticity and neuronal survival, thus favoring depression. In the post‑stroke period, CX3CL1 and the CD200‑CD200R interaction mediates the activation of glial cells, whereas CCL‑2 attracts infiltrating macrophages. CD206 positive cells grant the removal of excessive danger signals; the high number of regulatory T cells, IL‑4, IL‑10, transforming growth factor β (TGFβ), and intracellular signaling via cAMP response element‑binding protein (CREB) support the M2 type differentiation. In favorable conditions, these cells may exert efficient clearance, mediate tissue repair, and might be essential players in the downregulation of molecular pathways that promote post‑stroke depression.
View Figures

Figure 1

Figure 2

View References

1 

Staub F and Bogousslavsky J: Post-stroke depression or fatigue. Eur Neurol. 45:3–5. 2001.PubMed/NCBI View Article : Google Scholar

2 

Gaete JM and Bogousslavsky J: Post-stroke depression. Expert Rev Neurother. 8:75–92. 2008.PubMed/NCBI View Article : Google Scholar

3 

Paolucci S, Iosa M, Coiro P, Venturiero V, Savo A, De Angelis D and Morone G: Post-stroke depression increases disability more than 15% in ischemic stroke survivors: A case-control study. Front Neurol. 10(926)2019.PubMed/NCBI View Article : Google Scholar

4 

Ayerbe L, Ayis S, Wolfe CD and Rudd AG: Natural history, predictors and outcomes of depression after stroke: Systematic review and meta-analysis. Br J Psychiatry. 202:14–21. 2013.PubMed/NCBI View Article : Google Scholar

5 

Sibolt G, Curtze S, Melkas S, Pohjasvaara T, Kaste M, Karhunen PJ, Oksala NK, Vataja R and Erkinjuntti T: Post-stroke depression and depression-executive dysfunction syndrome are associated with recurrence of ischaemic stroke. Cerebrovasc Dis. 36:336–343. 2013.PubMed/NCBI View Article : Google Scholar

6 

Leonard B and Maes M: Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev. 36:764–785. 2012.PubMed/NCBI View Article : Google Scholar

7 

Woelfer M, Kasties V, Kahlfuss S and Walter M: The role of depressive subtypes within the neuroinflammation hypothesis of major depressive disorder. Neuroscience. 403:93–110. 2019.PubMed/NCBI View Article : Google Scholar

8 

Maes M: A review on the acute phase response in major depression. Rev Neurosci. 4:407–416. 1993.PubMed/NCBI View Article : Google Scholar

9 

Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, et al: Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity. 41:14–20. 2014.PubMed/NCBI View Article : Google Scholar

10 

Robinson RG and Jorge RE: Post-stroke depression: A review. Am J Psychiatry. 173:221–231. 2016.PubMed/NCBI View Article : Google Scholar

11 

Folstein MF, Maiberger R and McHugh PR: Mood disorder as a specific complication of stroke. J Neurol Neurosurg Psychiatry. 40:1018–1020. 1977.PubMed/NCBI View Article : Google Scholar

12 

Narushima K, Kosier JT and Robinson RG: A reappraisal of poststroke depression, intra- and inter-hemispheric lesion location using meta-analysis. J Neuropsychiatry Clin Neurosci. 15:422–430. 2003.PubMed/NCBI View Article : Google Scholar

13 

Spalletta G, Bossù P, Ciaramella A, Bria P, Caltagirone C and Robinson RG: The etiology of poststroke depression: A review of the literature and a new hypothesis involving inflammatory cytokines. Mol Psychiatry. 11:984–991. 2006.PubMed/NCBI View Article : Google Scholar

14 

Carson AJ, MacHale S, Allen K, Lawrie SM, Dennis M, House A and Sharpe M: Depression after stroke and lesion location: A systematic review. Lancet. 356:122–126. 2000.PubMed/NCBI View Article : Google Scholar

15 

Kutlubaev MA and Hackett ML: Part II: predictors of depression after stroke and impact of depression on stroke outcome: an updated systematic review of observational studies. Int J Stroke. 9:1026–1036. 2014.PubMed/NCBI View Article : Google Scholar

16 

MacHale SM, O'Rourke SJ, Wardlaw JM and Dennis MS: Depression and its relation to lesion location after stroke. J Neurol Neurosurg Psychiatry. 64:371–374. 1998.PubMed/NCBI View Article : Google Scholar

17 

Nys GM, van Zandvoort MJ, van der Worp HB, de Haan EH, de Kort PL and Kappelle LJ: Early depressive symptoms after stroke: Neuropsychological correlates and lesion characteristics. J Neurol Sci. 228:27–33. 2005.PubMed/NCBI View Article : Google Scholar

18 

Terroni L, Amaro E Jr, Iosifescu DV, Tinone G, Sato JR, Leite CC, Sobreiro MF, Lucia MC, Scaff M and Fráguas R: Stroke lesion in cortical neural circuits and post-stroke incidence of major depressive episode: A 4-month prospective study. World J Biol Psychiatry. 12:539–548. 2011.PubMed/NCBI View Article : Google Scholar

19 

Morris PL, Robinson RG, de Carvalho ML, Albert P, Wells JC, Samuels JF, Eden-Fetzer D and Price TR: Lesion characteristics and depressed mood in the stroke data bank study. J Neuropsychiatry Clin Neurosci. 8:153–159. 1996.PubMed/NCBI View Article : Google Scholar

20 

Kim NY, Lee SC, Shin JC, Park JE and Kim YW: Voxel-based lesion symptom mapping analysis of depressive mood in patients with isolated cerebellar stroke: A pilot study. Neuroimage Clin. 13:39–45. 2017.PubMed/NCBI View Article : Google Scholar

21 

Nishiyama Y, Komaba Y, Ueda M, Nagayama H, Amemiya S and Katayama Y: Early depressive symptoms after ischemic stroke are associated with a left lenticulocapsular area lesion. J Stroke Cerebrovasc Dis. 19:184–189. 2010.PubMed/NCBI View Article : Google Scholar

22 

Zhang T, Jing X, Zhao X, Wang C, Liu Z, Zhou Y and Wang Y and Wang Y: A prospective cohort study of lesion location and its relation to post-stroke depression among Chinese patients. J Affect Disord. 136:e83–e87. 2012.PubMed/NCBI View Article : Google Scholar

23 

Gozzi SA, Wood AG, Chen J, Vaddadi K and Phan TG: Imaging predictors of poststroke depression: Methodological factors in voxel-based analysis. BMJ Open. 4(e004948)2014.PubMed/NCBI View Article : Google Scholar

24 

Grajny K, Pyata H, Spiegel K, Lacey EH, Xing S, Brophy C and Turkeltaub PE: depression symptoms in chronic left hemisphere stroke are related to dorsolateral prefrontal cortex damage. J Neuropsychiatry Clin Neurosci. 28:292–298. 2016.PubMed/NCBI View Article : Google Scholar

25 

Shi YZ, Xiang YT, Yang Y, Zhang N, Wang S, Ungvari GS, Chiu HF, Tang WK, Wang YL, Zhao XQ, et al: Depression after minor stroke: The association with disability and quality of life - a 1-year follow-up study. Int J Geriatr Psychiatry. 31:421–427. 2016.PubMed/NCBI View Article : Google Scholar

26 

Yu H and Chen ZY: The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol Sin. 32:3–11. 2011.PubMed/NCBI View Article : Google Scholar

27 

Elkabes S, DiCicco-Bloom EM and Black IB: Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci. 16:2508–2521. 1996.PubMed/NCBI View Article : Google Scholar

28 

Knott C, Stern G, Kingsbury A, Welcher AA and Wilkin GP: Elevated glial brain-derived neurotrophic factor in Parkinson's diseased nigra. Parkinsonism Relat Disord. 8:329–341. 2002.PubMed/NCBI View Article : Google Scholar

29 

Stadelmann C, Kerschensteiner M, Misgeld T, Brück W, Hohlfeld R and Lassmann H: BDNF and gp145trkB in multiple sclerosis brain lesions: Neuroprotective interactions between immune and neuronal cells? Brain. 125:75–85. 2002.PubMed/NCBI View Article : Google Scholar

30 

Trang T, Beggs S, Wan X and Salter MW: P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J Neurosci. 29:3518–3528. 2009.PubMed/NCBI View Article : Google Scholar

31 

Song X, Zhou B, Zhang P, Lei D, Wang Y, Yao G, Hayashi T, Xia M, Tashiro S, Onodera S, et al: Protective effect of silibinin on learning and memory impairment in LPS-treated rats via ROS-BDNF-TrkB pathway. Neurochem Res. 41:1662–1672. 2016.PubMed/NCBI View Article : Google Scholar

32 

Smith MA, Makino S, Kvetnansky R and Post RM: Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci. 15:1768–1777. 1995.PubMed/NCBI View Article : Google Scholar

33 

Lang UE, Hellweg R, Kalus P, Bajbouj M, Lenzen KP, Sander T, Kunz D and Gallinat J: Association of a functional BDNF polymorphism and anxiety-related personality traits. Psychopharmacology (Berl). 180:95–99. 2005.PubMed/NCBI View Article : Google Scholar

34 

Monteggia LM, Luikart B, Barrot M, Theobold D, Malkovska I, Nef S, Parada LF and Nestler EJ: Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors. Biol Psychiatry. 61:187–197. 2007.PubMed/NCBI View Article : Google Scholar

35 

Duman RS: Pathophysiology of depression: The concept of synaptic plasticity. Eur Psychiatry. 17 (Suppl 3):306–310. 2002.PubMed/NCBI View Article : Google Scholar

36 

Fujimura H, Altar CA, Chen R, Nakamura T, Nakahashi T, Kambayashi J, Sun B and Tandon NN: Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb Haemost. 87:728–734. 2002.PubMed/NCBI

37 

Lee BH and Kim YK: The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig. 7:231–235. 2010.PubMed/NCBI View Article : Google Scholar

38 

Pan W, Banks WA, Fasold MB, Bluth J and Kastin AJ: Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology. 37:1553–1561. 1998.PubMed/NCBI View Article : Google Scholar

39 

Gonul AS, Akdeniz F, Taneli F, Donat O, Eker C and Vahip S: Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients. Eur Arch Psychiatry Clin Neurosci. 255:381–386. 2005.PubMed/NCBI View Article : Google Scholar

40 

Chaudhury D, Liu H and Han MH: Neuronal correlates of depression. Cell Mol Life Sci. 72:4825–4848. 2015.PubMed/NCBI View Article : Google Scholar

41 

Jin Y, Sun LH, Yang W, Cui RJ and Xu SB: The role of BDNF in the neuroimmune axis regulation of mood disorders. Front Neurol. 10(515)2019.PubMed/NCBI View Article : Google Scholar

42 

Jiang MQ, Zhao YY, Cao W, Wei ZZ, Gu X, Wei L and Yu SP: Long-term survival and regeneration of neuronal and vasculature cells inside the core region after ischemic stroke in adult mice. Brain Pathol. 27:480–498. 2017.PubMed/NCBI View Article : Google Scholar

43 

North RA and Jarvis MF: P2X receptors as drug targets. Mol Pharmacol. 83:759–769. 2013.PubMed/NCBI View Article : Google Scholar

44 

Vázquez-Villoldo N, Domercq M, Martín A, Llop J, Gómez-Vallejo V and Matute C: P2X4 receptors control the fate and survival of activated microglia. Glia. 62:171–184. 2014.PubMed/NCBI View Article : Google Scholar

45 

Verma R, Cronin CG, Hudobenko J, Venna VR, McCullough LD and Liang BT: Deletion of the P2X4 receptor is neuroprotective acutely, but induces a depressive phenotype during recovery from ischemic stroke. Brain Behav Immun. 66:302–312. 2017.PubMed/NCBI View Article : Google Scholar

46 

Bravo-Alegria J, McCullough LD and Liu F: Sex differences in stroke across the lifespan: The role of T lymphocytes. Neurochem Int. 107:127–137. 2017.PubMed/NCBI View Article : Google Scholar

47 

Xu S, Lu J, Shao A, Zhang JH and Zhang J: Glial cells: Role of the immune response in ischemic stroke. Front Immunol. 11(294)2020.PubMed/NCBI View Article : Google Scholar

48 

Zera KA and Buckwalter MS: The Local and peripheral immune responses to stroke: Implications for therapeutic development. Neurotherapeutics: Mar 19, 2020 (Epub ahead of print). doi: 10.1007/s13311-020-00844-3.

49 

Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG and Barres BA: Genomic analysis of reactive astrogliosis. J Neurosci. 32:6391–6410. 2012.PubMed/NCBI View Article : Google Scholar

50 

Zhao X, Wang H, Sun G, Zhang J, Edwards NJ and Aronowski J: Neuronal interleukin-4 as a modulator of microglial pathways and ischemic brain damage. J Neurosci. 35:11281–11291. 2015.PubMed/NCBI View Article : Google Scholar

51 

Lee GA, Lin TN, Chen CY, Mau SY, Huang WZ, Kao YC, Ma RY and Liao NS: Interleukin 15 blockade protects the brain from cerebral ischemia-reperfusion injury. Brain Behav Immun. 73:562–570. 2018.PubMed/NCBI View Article : Google Scholar

52 

Dolati S, Ahmadi M, Khalili M, Taheraghdam AA, Siahmansouri H, Babaloo Z, Aghebati-Maleki L, Jadidi-Niaragh F, Younesi V and Yousefi M: Peripheral Th17/Treg imbalance in elderly patients with ischemic stroke. Neurol Sci. 39:647–654. 2018.PubMed/NCBI View Article : Google Scholar

53 

Santamaría-Cadavid M, Rodríguez-Castro E, Rodríguez-Yáñez M, Arias-Rivas S, López-Dequidt I, Pérez-Mato M, Rodríguez-Pérez M, López-Loureiro I, Hervella P, Campos F, et al: Regulatory T cells participate in the recovery of ischemic stroke patients. BMC Neurol. 20(68)2020.PubMed/NCBI View Article : Google Scholar

54 

Stubbe T, Ebner F, Richter D, Engel O, Klehmet J, Royl G, Meisel A, Nitsch R, Meisel C and Brandt C: Regulatory T cells accumulate and proliferate in the ischemic hemisphere for up to 30 days after MCAO. J Cereb Blood Flow Metab. 33:37–47. 2013.PubMed/NCBI View Article : Google Scholar

55 

Liesz A, Zhou W, Mracskó É, Karcher S, Bauer H, Schwarting S, Sun L, Bruder D, Stegemann S, Cerwenka A, et al: Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain. 134:704–720. 2011.PubMed/NCBI View Article : Google Scholar

56 

Doyle KP, Quach LN, Solé M, Axtell RC, Nguyen TV, Soler-Llavina GJ, Jurado S, Han J, Steinman L, Longo FM, et al: B-lymphocyte-mediated delayed cognitive impairment following stroke. J Neurosci. 35:2133–2145. 2015.PubMed/NCBI View Article : Google Scholar

57 

Rayasam A, Hsu M, Hernández G, Kijak J, Lindstedt A, Gerhart C, Sandor M and Fabry Z: Contrasting roles of immune cells in tissue injury and repair in stroke: The dark and bright side of immunity in the brain. Neurochem Int. 107:104–116. 2017.PubMed/NCBI View Article : Google Scholar

58 

Nakamura K and Shichita T: Cellular and molecular mechanisms of sterile inflammation in ischaemic stroke. J Biochem. 165:459–464. 2019.PubMed/NCBI View Article : Google Scholar

59 

Szepesi Z, Manouchehrian O, Bachiller S and Deierborg T: Bidirectional microglia-neuron communication in health and disease. Front Cell Neurosci. 12(323)2018.PubMed/NCBI View Article : Google Scholar

60 

Sharp FR, Zhan X and Liu DZ: Heat shock proteins in the bra in: Role of Hsp70, Hsp 27, and HO-1 (Hsp32) and their therapeutic potential. Transl Stroke Res. 4:685–692. 2013.PubMed/NCBI View Article : Google Scholar

61 

Nitti M, Piras S, Brondolo L, Marinari UM, Pronzato MA and Furfaro AL: Heme Oxygenase 1 in the nervous system: Does it favor neuronal cell survival or induce neurodegeneration? Int J Mol Sci. 19(E2260)2018.PubMed/NCBI View Article : Google Scholar

62 

Hermann DM, Kleinschnitz C and Gunzer M: Role of polymorphonuclear neutrophils in the reperfused ischemic brain: Insights from cell-type-specific immunodepletion and fluorescence microscopy studies. Ther Adv Neurol Disord. 11(1756286418798607)2018.PubMed/NCBI View Article : Google Scholar

63 

Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB, Mulinyawe SB, Bohlen CJ, Adil A, Tucker A, et al: New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci USA. 113:E1738–E1746. 2016.PubMed/NCBI View Article : Google Scholar

64 

Zarruk JG, Greenhalgh AD and David S: Microglia and macrophages differ in their inflammatory profile after permanent brain ischemia. Exp Neurol. 301:120–132. 2018.PubMed/NCBI View Article : Google Scholar

65 

Shichita T, Ito M, Morita R, Komai K, Noguchi Y, Ooboshi H, Koshida R, Takahashi S, Kodama T and Yoshimura A: MAFB prevents excess inflammation after ischemic stroke by accelerating clearance of damage signals through MSR1. Nat Med. 23:723–732. 2017.PubMed/NCBI View Article : Google Scholar

66 

Xia CY, Zhang S, Gao Y, Wang ZZ and Chen NH: Selective modulation of microglia polarization to M2 phenotype for stroke treatment. Int Immunopharmacol. 25:377–382. 2015.PubMed/NCBI View Article : Google Scholar

67 

Taj HS, Kho W, Riou A, Wiedermann D and Hoehn M: MiRNA-124 induces neuroprotection and functional improvement after focal cerebral ischemia. Biomaterials. 91:151–165. 2016.PubMed/NCBI View Article : Google Scholar

68 

Liu X, Liu J, Zhao S, Zhang H, Cai W, Cai M, Ji X, Leak RK, Gao Y, Chen J, et al: Interleukin-4 is essential for microglia/macrophage M2 polarization and long-term recovery after cerebral ischemia. Stroke. 47:498–504. 2016.PubMed/NCBI View Article : Google Scholar

69 

Zhou K, Zhong Q, Wang YC, Xiong XY, Meng ZY, Zhao T, Zhu WY, Liao MF, Wu LR, Yang YR, et al: Regulatory T cells ameliorate intracerebral hemorrhage-induced inflammatory injury by modulating microglia/macrophage polarization through the IL-10/GSK3β/PTEN axis. J Cereb Blood Flow Metab. 37:967–979. 2017.PubMed/NCBI View Article : Google Scholar

70 

Titova EM, Ghosh N, Valadez ZG, Zhang JH, Bellinger DL and Obenaus A: The late phase of post-stroke neurorepair in aged rats is reflected by MRI-based measures. Neuroscience. 283:231–244. 2014.PubMed/NCBI View Article : Google Scholar

71 

Ongür D, Drevets WC and Price JL: Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA. 95:13290–13295. 1998.PubMed/NCBI View Article : Google Scholar

72 

Nimmerjahn A, Kirchhoff F and Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 308:1314–1318. 2005.PubMed/NCBI View Article : Google Scholar

73 

Smith RS: The macrophage theory of depression. Med Hypotheses. 35:298–306. 1991.PubMed/NCBI View Article : Google Scholar

74 

Dey A and Hankey Giblin PA: Insights into macrophage heterogeneity and cytokine-induced neuroinflammation in major Ddepressive disorder. Pharmaceuticals (Basel). 11(E64)2018.PubMed/NCBI View Article : Google Scholar

75 

Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, et al: Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity. 40:274–288. 2014.PubMed/NCBI View Article : Google Scholar

76 

Orecchioni M, Ghosheh Y, Pramod AB and Ley K: Macrophage polarization: Different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front Immunol. 10(1084)2019.PubMed/NCBI View Article : Google Scholar

77 

Ransohoff RM: A polarizing question: Do M1 and M2 microglia exist? Nat Neurosci. 19:987–991. 2016.PubMed/NCBI View Article : Google Scholar

78 

Eyo UB and Wu LJ: Bidirectional microglia-neuron communication in the healthy brain. Neural Plast. 2013(456857)2013.PubMed/NCBI View Article : Google Scholar

79 

Hayakawa K, Wang X and Lo EH: CD200 increases alternatively activated macrophages through cAMP-response element binding protein-C/EBP-beta signaling. J Neurochem. 136:900–906. 2016.PubMed/NCBI View Article : Google Scholar

80 

Xu T, Pu S, Ni Y, Gao M, Li X and Zeng X: Elevated plasma macrophage migration inhibitor factor as a risk factor for the development of post-stroke depression in ischemic stroke. J Neuroimmunol. 320:58–63. 2018.PubMed/NCBI View Article : Google Scholar

81 

Yang DB, Yu WH, Dong XQ, Zhang ZY, Du Q, Zhu Q, Che ZH, Wang H, Shen YF and Jiang L: Serum macrophage migration inhibitory factor concentrations correlate with prognosis of traumatic brain injury. Clin Chim Acta. 469:99–104. 2017.PubMed/NCBI View Article : Google Scholar

82 

Leyton-Jaimes MF, Kahn J and Israelson A: Macrophage migration inhibitory factor: A multifaceted cytokine implicated in multiple neurological diseases. Exp Neurol. 301:83–91. 2018.PubMed/NCBI View Article : Google Scholar

83 

Chen H, Li X, Liu S, Gu L and Zhou X: MircroRNA-19a promotes vascular inflammation and foam cell formation by targeting HBP-1 in atherogenesis. Sci Rep. 7(12089)2017.PubMed/NCBI View Article : Google Scholar

84 

Ritzel RM, Patel AR, Grenier JM, Crapser J, Verma R, Jellison ER and McCullough LD: Functional differences between microglia and monocytes after ischemic stroke. J Neuroinflammation. 12(106)2015.PubMed/NCBI View Article : Google Scholar

85 

Meng HL, Li XX, Chen YT, Yu LJ, Zhang H, Lao JM, Zhang X and Xu Y: Neuronal soluble Fas ligand drives M1-Microglia polarization after cerebral ischemia. CNS Neurosci Ther. 22:771–781. 2016.PubMed/NCBI View Article : Google Scholar

86 

Wattananit S, Tornero D, Graubardt N, Memanishvili T, Monni E, Tatarishvili J, Miskinyte G, Ge R, Ahlenius H, Lindvall O, et al: Monocyte-derived macrophages contribute to spontaneous long-term functional recovery after stroke in mice. J Neurosci. 36:4182–4195. 2016.PubMed/NCBI View Article : Google Scholar

87 

Horváth E, Huțanu A, Chiriac L, Dobreanu M, Orădan A and Nagy EE: Ischemic damage and early inflammatory infiltration are different in the core and penumbra lesions of rat brain after transient focal cerebral ischemia. J Neuroimmunol. 324:35–42. 2018.PubMed/NCBI View Article : Google Scholar

88 

Brites D and Fernandes A: Neuroinflammation and depression: Microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci. 9(476)2015.PubMed/NCBI View Article : Google Scholar

89 

Mezentsev A, Merks RM, O'Riordan E, Chen J, Mendelev N, Goligorsky MS and Brodsky SV: Endothelial microparticles affect angiogenesis in vitro: Role of oxidative stress. Am J Physiol Heart Circ Physiol. 289:H1106–H1114. 2005.PubMed/NCBI View Article : Google Scholar

90 

Leroyer AS, Ebrahimian TG, Cochain C, Récalde A, Blanc-Brude O, Mees B, Vilar J, Tedgui A, Levy BI, Chimini G, et al: Microparticles from ischemic muscle promotes postnatal vasculogenesis. Circulation. 119:2808–2817. 2009.PubMed/NCBI View Article : Google Scholar

91 

Garzetti L, Menon R, Finardi A, Bergami A, Sica A, Martino G, Comi G, Verderio C, Farina C and Furlan R: Activated macrophages release microvesicles containing polarized M1 or M2 mRNAs. J Leukoc Biol. 95:817–825. 2014.PubMed/NCBI View Article : Google Scholar

92 

Bianco F, Pravettoni E, Colombo A, Schenk U, Möller T, Matteoli M and Verderio C: Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia. J Immunol. 174:7268–7277. 2005.PubMed/NCBI View Article : Google Scholar

93 

Viviani B, Gardoni F, Bartesaghi S, Corsini E, Facchi A, Galli CL, Di Luca M and Marinovich M: Interleukin-1 beta released by gp120 drives neural death through tyrosine phosphorylation and trafficking of NMDA receptors. J Biol Chem. 281:30212–30222. 2006.PubMed/NCBI View Article : Google Scholar

94 

Allan SM and Rothwell NJ: Inflammation in central nervous system injury. Philos Trans R Soc Lond B Biol Sci. 358:1669–1677. 2003.PubMed/NCBI View Article : Google Scholar

95 

Grønhøj MH, Clausen BH, Fenger CD, Lambertsen KL and Finsen B: Beneficial potential of intravenously administered IL-6 in improving outcome after murine experimental stroke. Brain Behav Immun. 65:296–311. 2017.PubMed/NCBI View Article : Google Scholar

96 

Anderson G, Kubera M, Duda W, Lasoń W, Berk M and Maes M: Increased IL-6 trans-signaling in depression: Focus on the tryptophan catabolite pathway, melatonin and neuroprogression. Pharmacol Rep. 65:1647–1654. 2013.PubMed/NCBI View Article : Google Scholar

97 

Zou JY and Crews FT: TNF alpha potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: Neuroprotection by NF kappa B inhibition. Brain Res. 1034:11–24. 2005.PubMed/NCBI View Article : Google Scholar

98 

Zeng L, Wang Y, Liu J, Wang L, Weng S, Chen K, Domino EF and Yang GY: Pro-inflammatory cytokine network in peripheral inflammation response to cerebral ischemia. Neurosci Lett. 548:4–9. 2013.PubMed/NCBI View Article : Google Scholar

99 

Kaminska B: MAPK signalling pathways as molecular targets for anti-inflammatory therapy - from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta. 1754:253–262. 2005.PubMed/NCBI View Article : Google Scholar

100 

Hetman M and Gozdz A: Role of extracellular signal regulated kinases 1 and 2 in neuronal survival. Eur J Biochem. 271:2050–2055. 2004.PubMed/NCBI View Article : Google Scholar

101 

Subramaniam S and Unsicker K: ERK and cell death: ERK1/2 in neuronal death. FEBS J. 277:22–29. 2010.PubMed/NCBI View Article : Google Scholar

102 

Wendeln AC, Degenhardt K, Kaurani L, Gertig M, Ulas T, Jain G, Wagner J, Häsler LM, Wild K, Skodras A, et al: Innate immune memory in the brain shapes neurological disease hallmarks. Nature. 556:332–338. 2018.PubMed/NCBI View Article : Google Scholar

103 

Schiepers OJG, Wichers MC and Maes M: Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry. 29:201–217. 2005.PubMed/NCBI View Article : Google Scholar

104 

Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK and Lanctôt KL: A meta-analysis of cytokines in major depression. Biol Psychiatry. 67:446–457. 2010.PubMed/NCBI View Article : Google Scholar

105 

Liu Y, Ho RCM and Mak A: The role of interleukin (IL)-17 in anxiety and depression of patients with rheumatoid arthritis. Int J Rheum Dis. 15:183–187. 2012.PubMed/NCBI View Article : Google Scholar

106 

Su JA, Chou SY, Tsai CS and Hung TH: Cytokine changes in the pathophysiology of poststroke depression. Gen Hosp Psychiatry. 34:35–39. 2012.PubMed/NCBI View Article : Google Scholar

107 

Yirmiya R, Rimmerman N and Reshef R: Depression as a microglial disease. Trends Neurosci. 38:637–658. 2015.PubMed/NCBI View Article : Google Scholar

108 

Myint AM, Kim YK, Verkerk R, Scharpé S, Steinbusch H and Leonard B: Kynurenine pathway in major depression: Evidence of impaired neuroprotection. J Affect Disord. 98:143–151. 2007.PubMed/NCBI View Article : Google Scholar

109 

Tilleux S and Hermans E: Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res. 85:2059–2070. 2007.PubMed/NCBI View Article : Google Scholar

110 

Tavares RG, Tasca CI, Santos CE, Alves LB, Porciúncula LO, Emanuelli T and Souza DO: Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochem Int. 40:621–627. 2002.PubMed/NCBI View Article : Google Scholar

111 

Miller AH, Maletic V and Raison CL: Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 65:732–741. 2009.PubMed/NCBI View Article : Google Scholar

112 

Salazar-Colocho P, Del Río J and Frechilla D: Neuroprotective effects of serotonin 5-HT 1A receptor activation against ischemic cell damage in gerbil hippocampus: Involvement of NMDA receptor NR1 subunit and BDNF. Brain Res. 1199:159–166. 2008.PubMed/NCBI View Article : Google Scholar

113 

Davami MH, Baharlou R, Ahmadi Vasmehjani A, Ghanizadeh A, Keshtkar M, Dezhkam I and Atashzar MR: Elevated IL-17 and TGF-β serum levels: A positive correlation between T-helper 17 cell-related pro-inflammatory responses with major depressive disorder. Basic Clin Neurosci. 7:137–142. 2016.PubMed/NCBI View Article : Google Scholar

114 

Beurel E, Harrington LE and Jope RS: Inflammatory T helper 17 cells promote depression-like behavior in mice. Biol Psychiatry. 73:622–630. 2013.PubMed/NCBI View Article : Google Scholar

115 

Li HL, Kostulas N, Huang YM, Xiao BG, van der Meide P, Kostulas V, Giedraitas V and Link H: IL-17 and IFN-gamma mRNA expression is increased in the brain and systemically after permanent middle cerebral artery occlusion in the rat. J Neuroimmunol. 116:5–14. 2001.PubMed/NCBI View Article : Google Scholar

116 

Zhang J, Mao X, Zhou T, Cheng X and Lin Y: IL-17A contributes to brain ischemia reperfusion injury through calpain-TRPC6 pathway in mice. Neuroscience. 274:419–428. 2014.PubMed/NCBI View Article : Google Scholar

117 

Kichev A, Rousset CI, Baburamani AA, Levison SW, Wood TL, Gressens P, Thornton C and Hagberg H: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling and cell death in the immature central nervous system after hypoxia-ischemia and inflammation. J Biol Chem. 289:9430–9439. 2014.PubMed/NCBI View Article : Google Scholar

118 

Heymann MF, Herisson F, Davaine JM, Charrier C, Battaglia S, Passuti N, Lambert G, Gouëffic Y and Heymann D: Role of the OPG/RANK/RANKL triad in calcifications of the atheromatous plaques: Comparison between carotid and femoral beds. Cytokine. 58:300–306. 2012.PubMed/NCBI View Article : Google Scholar

119 

Nagy EE, Varga-Fekete T, Puskas A, Kelemen P, Brassai Z, Szekeres-Csiki K, Gombos T, Csanyi MC and Harsfalvi J: High circulating osteoprotegerin levels are associated with non-zero blood groups. BMC Cardiovasc Disord. 16(106)2016.PubMed/NCBI View Article : Google Scholar

120 

Shimamura M, Nakagami H, Osako MK, Kurinami H, Koriyama H, Zhengda P, Tomioka H, Tenma A, Wakayama K and Morishita R: OPG/RANKL/RANK axis is a critical inflammatory signaling system in ischemic brain in mice. Proc Natl Acad Sci USA. 111:8191–8196. 2014.PubMed/NCBI View Article : Google Scholar

121 

Kim HY and Han SH: Matrix metalloproteinases in cerebral ischemia. J Clin Neurol. 2:163–170. 2006.PubMed/NCBI View Article : Google Scholar

122 

Anuncibay-Soto B, Pérez-Rodriguez D, Santos-Galdiano M, Font-Belmonte E, Ugidos IF, Gonzalez-Rodriguez P, Regueiro-Purriños M and Fernández-López A: Salubrinal and robenacoxib treatment after global cerebral ischemia. Exploring the interactions between ER stress and inflammation. Biochem Pharmacol. 151:26–37. 2018.PubMed/NCBI View Article : Google Scholar

123 

Ugidos IF, Santos-Galdiano M, Pérez-Rodríguez D, Anuncibay-Soto B, Font-Belmonte E, López DJ, Ibarguren M, Busquets X and Fernández-López A: Neuroprotective effect of 2-hydroxy arachidonic acid in a rat model of transient middle cerebral artery occlusion. Biochim Biophys Acta Biomembr. 1859:1648–1656. 2017.PubMed/NCBI View Article : Google Scholar

124 

De los Reyes LM and Céspedes AE: Atorvastatin-meloxicam association inhibits neuroinflammation and attenuates the cellular damage in cerebral ischemia by arterial embolism. Biomedica. 34:366–378. 2014.PubMed/NCBI View Article : Google Scholar : (In Spanish).

125 

Llorente IL, Landucci E, Pellegrini-Giampietro DE and Fernández-López A: Glutamate receptor and transporter modifications in rat organotypic hippocampal slice cultures exposed to oxygen-glucose deprivation: The contribution of cyclooxygenase-2. Neuroscience. 292:118–128. 2015.PubMed/NCBI View Article : Google Scholar

126 

Nagy E, Vajda E, Vari C, Sipka S, Fárr AM and Horváth E: Meloxicam ameliorates the cartilage and subchondral bone deterioration in monoiodoacetate-induced rat osteoarthritis. PeerJ. 5(e3185)2017.PubMed/NCBI View Article : Google Scholar

127 

Arafa HM, Abdel-Wahab MH, El-Shafeey MF, Badary OA and Hamada FM: Anti-fibrotic effect of meloxicam in a murine lung fibrosis model. Eur J Pharmacol. 564:181–189. 2007.PubMed/NCBI View Article : Google Scholar

128 

Hassan MH and Ghobara MM: Antifibrotic effect of meloxicam in rat liver: Role of nuclear factor kappa B, proinflammatory cytokines, and oxidative stress. Naunyn Schmiedebergs Arch Pharmacol. 389:971–983. 2016.PubMed/NCBI View Article : Google Scholar

129 

Honma S, Shinohara M, Takahashi N, Nakamura K, Hamano S, Mitazaki S, Abe S and Yoshida M: Effect of cyclooxygenase (COX)-2 inhibition on mouse renal interstitial fibrosis. Eur J Pharmacol. 740:578–583. 2014.PubMed/NCBI View Article : Google Scholar

130 

Csifo E, Nagy EE, Horvath E, Farr A and Muntean DL: Mid-term effects of meloxicam on collagen type II degradation in a rat osteoarthritis model induced by iodoacetate. Farmacia. 63:556–560. 2015.

131 

Sabogal-Guáqueta AM, Posada-Duque R, Cortes NC, Arias-Londoño JD and Cardona-Gómez GP: Changes in the hippocampal and peripheral phospholipid profiles are associated with neurodegeneration hallmarks in a long-term global cerebral ischemia model: Attenuation by Linalool. Neuropharmacology. 135:555–571. 2018.PubMed/NCBI View Article : Google Scholar

132 

Horváth E, Oradan A and Chiriac L: Dobreanu M, Nagy EE, Voidăzan S, Berei R, Muntean DL and Hutanu A: Fish-oil preconditioning upregulates expression of splenic Arg1 positive M2 type macrophags and the Arg1/iNos2 ratio after experimental induced transient cerebral ischemia. Farmacia. 67:820–829. 2019.

133 

Horvath E, Hutanu A, Oradan A, Chiriac L, Muntean DL, Nagy EE and Dobreanu M: N-3 polyunsaturated fatty acids induce granulopoiesis and early monocyte polarization in the bone marrow of a tMCAO rat model. Rev Rom Med Lab. 27:51–61. 2019.

134 

Pentón-Rol G, Marín-Prida J and Falcón-Cama V: C-phycocyanin and phycocyanobilin as remyelination therapies for enhancing recovery in multiple sclerosis and ischemic stroke: A preclinical perspective. Behav Sci (Basel). 8(E158)2018.PubMed/NCBI View Article : Google Scholar

135 

Alawieh A, Elvington A, Zhu H, Yu J, Kindy MS, Atkinson C and Tomlinson S: Modulation of post-stroke degenerative and regenerative processes and subacute protection by site-targeted inhibition of the alternative pathway of complement. J Neuroinflammation. 12(247)2015.PubMed/NCBI View Article : Google Scholar

136 

Kopschina Feltes P, Doorduin J, Klein HC, Juárez-Orozco LE, Dierckx RA, Moriguchi-Jeckel CM and de Vries EF: Anti-inflammatory treatment for major depressive disorder: Implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy. J Psychopharmacol. 31:1149–1165. 2017.PubMed/NCBI View Article : Google Scholar

137 

Akhondzadeh S, Jafari S, Raisi F, Nasehi AA, Ghoreishi A, Salehi B, Mohebbi-Rasa S, Raznahan M and Kamalipour A: Clinical trial of adjunctive celecoxib treatment in patients with major depression: A double blind and placebo controlled trial. Depress Anxiety. 26:607–611. 2009.PubMed/NCBI View Article : Google Scholar

138 

Abbasi SH, Hosseini F, Modabbernia A, Ashrafi M and Akhondzadeh S: Effect of celecoxib add-on treatment on symptoms and serum IL-6 concentrations in patients with major depressive disorder: Randomized double-blind placebo-controlled study. J Affect Disord. 141:308–314. 2012.PubMed/NCBI View Article : Google Scholar

139 

Tyring S, Gottlieb A, Papp K, Gordon K, Leonardi C, Wang A, Lalla D, Woolley M, Jahreis A, Zitnik R, et al: Etanercept and clinical outcomes, fatigue, and depression in psoriasis: Double-blind placebo-controlled randomised phase III trial. Lancet. 367:29–35. 2006.PubMed/NCBI View Article : Google Scholar

140 

Nemeth CL, Glasper ER, Harrell CS, Malviya SA, Otis JS and Neigh GN: Meloxicam blocks neuroinflammation, but not depressive-like behaviors, in HIV-1 transgenic female rats. PLoS One. 9(e108399)2014.PubMed/NCBI View Article : Google Scholar

141 

Liu J, Nolte K, Brook G, Liebenstund L, Weinandy A, Höllig A, Veldeman M, Willuweit A, Langen KJ, Rossaint R, et al: Post-stroke treatment with argon attenuated brain injury, reduced brain inflammation and enhanced M2 microglia/macrophage polarization: A randomized controlled animal study. Crit Care. 23(198)2019.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Nagy EE, Frigy A, Szász JA and Horváth E: Neuroinflammation and microglia/macrophage phenotype modulate the molecular background of post-stroke depression: A literature review. Exp Ther Med 20: 2510-2523, 2020.
APA
Nagy, E.E., Frigy, A., Szász, J.A., & Horváth, E. (2020). Neuroinflammation and microglia/macrophage phenotype modulate the molecular background of post-stroke depression: A literature review. Experimental and Therapeutic Medicine, 20, 2510-2523. https://doi.org/10.3892/etm.2020.8933
MLA
Nagy, E. E., Frigy, A., Szász, J. A., Horváth, E."Neuroinflammation and microglia/macrophage phenotype modulate the molecular background of post-stroke depression: A literature review". Experimental and Therapeutic Medicine 20.3 (2020): 2510-2523.
Chicago
Nagy, E. E., Frigy, A., Szász, J. A., Horváth, E."Neuroinflammation and microglia/macrophage phenotype modulate the molecular background of post-stroke depression: A literature review". Experimental and Therapeutic Medicine 20, no. 3 (2020): 2510-2523. https://doi.org/10.3892/etm.2020.8933
Copy and paste a formatted citation
x
Spandidos Publications style
Nagy EE, Frigy A, Szász JA and Horváth E: Neuroinflammation and microglia/macrophage phenotype modulate the molecular background of post-stroke depression: A literature review. Exp Ther Med 20: 2510-2523, 2020.
APA
Nagy, E.E., Frigy, A., Szász, J.A., & Horváth, E. (2020). Neuroinflammation and microglia/macrophage phenotype modulate the molecular background of post-stroke depression: A literature review. Experimental and Therapeutic Medicine, 20, 2510-2523. https://doi.org/10.3892/etm.2020.8933
MLA
Nagy, E. E., Frigy, A., Szász, J. A., Horváth, E."Neuroinflammation and microglia/macrophage phenotype modulate the molecular background of post-stroke depression: A literature review". Experimental and Therapeutic Medicine 20.3 (2020): 2510-2523.
Chicago
Nagy, E. E., Frigy, A., Szász, J. A., Horváth, E."Neuroinflammation and microglia/macrophage phenotype modulate the molecular background of post-stroke depression: A literature review". Experimental and Therapeutic Medicine 20, no. 3 (2020): 2510-2523. https://doi.org/10.3892/etm.2020.8933
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team