|
1
|
Staub F and Bogousslavsky J: Post-stroke
depression or fatigue. Eur Neurol. 45:3–5. 2001.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Gaete JM and Bogousslavsky J: Post-stroke
depression. Expert Rev Neurother. 8:75–92. 2008.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Paolucci S, Iosa M, Coiro P, Venturiero V,
Savo A, De Angelis D and Morone G: Post-stroke depression increases
disability more than 15% in ischemic stroke survivors: A
case-control study. Front Neurol. 10(926)2019.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Ayerbe L, Ayis S, Wolfe CD and Rudd AG:
Natural history, predictors and outcomes of depression after
stroke: Systematic review and meta-analysis. Br J Psychiatry.
202:14–21. 2013.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Sibolt G, Curtze S, Melkas S, Pohjasvaara
T, Kaste M, Karhunen PJ, Oksala NK, Vataja R and Erkinjuntti T:
Post-stroke depression and depression-executive dysfunction
syndrome are associated with recurrence of ischaemic stroke.
Cerebrovasc Dis. 36:336–343. 2013.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Leonard B and Maes M: Mechanistic
explanations how cell-mediated immune activation, inflammation and
oxidative and nitrosative stress pathways and their sequels and
concomitants play a role in the pathophysiology of unipolar
depression. Neurosci Biobehav Rev. 36:764–785. 2012.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Woelfer M, Kasties V, Kahlfuss S and
Walter M: The role of depressive subtypes within the
neuroinflammation hypothesis of major depressive disorder.
Neuroscience. 403:93–110. 2019.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Maes M: A review on the acute phase
response in major depression. Rev Neurosci. 4:407–416.
1993.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Murray PJ, Allen JE, Biswas SK, Fisher EA,
Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence
T, et al: Macrophage activation and polarization: Nomenclature and
experimental guidelines. Immunity. 41:14–20. 2014.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Robinson RG and Jorge RE: Post-stroke
depression: A review. Am J Psychiatry. 173:221–231. 2016.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Folstein MF, Maiberger R and McHugh PR:
Mood disorder as a specific complication of stroke. J Neurol
Neurosurg Psychiatry. 40:1018–1020. 1977.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Narushima K, Kosier JT and Robinson RG: A
reappraisal of poststroke depression, intra- and inter-hemispheric
lesion location using meta-analysis. J Neuropsychiatry Clin
Neurosci. 15:422–430. 2003.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Spalletta G, Bossù P, Ciaramella A, Bria
P, Caltagirone C and Robinson RG: The etiology of poststroke
depression: A review of the literature and a new hypothesis
involving inflammatory cytokines. Mol Psychiatry. 11:984–991.
2006.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Carson AJ, MacHale S, Allen K, Lawrie SM,
Dennis M, House A and Sharpe M: Depression after stroke and lesion
location: A systematic review. Lancet. 356:122–126. 2000.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Kutlubaev MA and Hackett ML: Part II:
predictors of depression after stroke and impact of depression on
stroke outcome: an updated systematic review of observational
studies. Int J Stroke. 9:1026–1036. 2014.PubMed/NCBI View Article : Google Scholar
|
|
16
|
MacHale SM, O'Rourke SJ, Wardlaw JM and
Dennis MS: Depression and its relation to lesion location after
stroke. J Neurol Neurosurg Psychiatry. 64:371–374. 1998.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Nys GM, van Zandvoort MJ, van der Worp HB,
de Haan EH, de Kort PL and Kappelle LJ: Early depressive symptoms
after stroke: Neuropsychological correlates and lesion
characteristics. J Neurol Sci. 228:27–33. 2005.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Terroni L, Amaro E Jr, Iosifescu DV,
Tinone G, Sato JR, Leite CC, Sobreiro MF, Lucia MC, Scaff M and
Fráguas R: Stroke lesion in cortical neural circuits and
post-stroke incidence of major depressive episode: A 4-month
prospective study. World J Biol Psychiatry. 12:539–548.
2011.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Morris PL, Robinson RG, de Carvalho ML,
Albert P, Wells JC, Samuels JF, Eden-Fetzer D and Price TR: Lesion
characteristics and depressed mood in the stroke data bank study. J
Neuropsychiatry Clin Neurosci. 8:153–159. 1996.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Kim NY, Lee SC, Shin JC, Park JE and Kim
YW: Voxel-based lesion symptom mapping analysis of depressive mood
in patients with isolated cerebellar stroke: A pilot study.
Neuroimage Clin. 13:39–45. 2017.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Nishiyama Y, Komaba Y, Ueda M, Nagayama H,
Amemiya S and Katayama Y: Early depressive symptoms after ischemic
stroke are associated with a left lenticulocapsular area lesion. J
Stroke Cerebrovasc Dis. 19:184–189. 2010.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Zhang T, Jing X, Zhao X, Wang C, Liu Z,
Zhou Y and Wang Y and Wang Y: A prospective cohort study of lesion
location and its relation to post-stroke depression among Chinese
patients. J Affect Disord. 136:e83–e87. 2012.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Gozzi SA, Wood AG, Chen J, Vaddadi K and
Phan TG: Imaging predictors of poststroke depression:
Methodological factors in voxel-based analysis. BMJ Open.
4(e004948)2014.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Grajny K, Pyata H, Spiegel K, Lacey EH,
Xing S, Brophy C and Turkeltaub PE: depression symptoms in chronic
left hemisphere stroke are related to dorsolateral prefrontal
cortex damage. J Neuropsychiatry Clin Neurosci. 28:292–298.
2016.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Shi YZ, Xiang YT, Yang Y, Zhang N, Wang S,
Ungvari GS, Chiu HF, Tang WK, Wang YL, Zhao XQ, et al: Depression
after minor stroke: The association with disability and quality of
life - a 1-year follow-up study. Int J Geriatr Psychiatry.
31:421–427. 2016.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Yu H and Chen ZY: The role of BDNF in
depression on the basis of its location in the neural circuitry.
Acta Pharmacol Sin. 32:3–11. 2011.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Elkabes S, DiCicco-Bloom EM and Black IB:
Brain microglia/macrophages express neurotrophins that selectively
regulate microglial proliferation and function. J Neurosci.
16:2508–2521. 1996.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Knott C, Stern G, Kingsbury A, Welcher AA
and Wilkin GP: Elevated glial brain-derived neurotrophic factor in
Parkinson's diseased nigra. Parkinsonism Relat Disord. 8:329–341.
2002.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Stadelmann C, Kerschensteiner M, Misgeld
T, Brück W, Hohlfeld R and Lassmann H: BDNF and gp145trkB in
multiple sclerosis brain lesions: Neuroprotective interactions
between immune and neuronal cells? Brain. 125:75–85.
2002.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Trang T, Beggs S, Wan X and Salter MW:
P2X4-receptor-mediated synthesis and release of brain-derived
neurotrophic factor in microglia is dependent on calcium and
p38-mitogen-activated protein kinase activation. J Neurosci.
29:3518–3528. 2009.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Song X, Zhou B, Zhang P, Lei D, Wang Y,
Yao G, Hayashi T, Xia M, Tashiro S, Onodera S, et al: Protective
effect of silibinin on learning and memory impairment in
LPS-treated rats via ROS-BDNF-TrkB pathway. Neurochem Res.
41:1662–1672. 2016.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Smith MA, Makino S, Kvetnansky R and Post
RM: Stress and glucocorticoids affect the expression of
brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the
hippocampus. J Neurosci. 15:1768–1777. 1995.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Lang UE, Hellweg R, Kalus P, Bajbouj M,
Lenzen KP, Sander T, Kunz D and Gallinat J: Association of a
functional BDNF polymorphism and anxiety-related personality
traits. Psychopharmacology (Berl). 180:95–99. 2005.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Monteggia LM, Luikart B, Barrot M,
Theobold D, Malkovska I, Nef S, Parada LF and Nestler EJ:
Brain-derived neurotrophic factor conditional knockouts show gender
differences in depression-related behaviors. Biol Psychiatry.
61:187–197. 2007.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Duman RS: Pathophysiology of depression:
The concept of synaptic plasticity. Eur Psychiatry. 17 (Suppl
3):306–310. 2002.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Fujimura H, Altar CA, Chen R, Nakamura T,
Nakahashi T, Kambayashi J, Sun B and Tandon NN: Brain-derived
neurotrophic factor is stored in human platelets and released by
agonist stimulation. Thromb Haemost. 87:728–734. 2002.PubMed/NCBI
|
|
37
|
Lee BH and Kim YK: The roles of BDNF in
the pathophysiology of major depression and in antidepressant
treatment. Psychiatry Investig. 7:231–235. 2010.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Pan W, Banks WA, Fasold MB, Bluth J and
Kastin AJ: Transport of brain-derived neurotrophic factor across
the blood-brain barrier. Neuropharmacology. 37:1553–1561.
1998.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Gonul AS, Akdeniz F, Taneli F, Donat O,
Eker C and Vahip S: Effect of treatment on serum brain-derived
neurotrophic factor levels in depressed patients. Eur Arch
Psychiatry Clin Neurosci. 255:381–386. 2005.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Chaudhury D, Liu H and Han MH: Neuronal
correlates of depression. Cell Mol Life Sci. 72:4825–4848.
2015.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Jin Y, Sun LH, Yang W, Cui RJ and Xu SB:
The role of BDNF in the neuroimmune axis regulation of mood
disorders. Front Neurol. 10(515)2019.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Jiang MQ, Zhao YY, Cao W, Wei ZZ, Gu X,
Wei L and Yu SP: Long-term survival and regeneration of neuronal
and vasculature cells inside the core region after ischemic stroke
in adult mice. Brain Pathol. 27:480–498. 2017.PubMed/NCBI View Article : Google Scholar
|
|
43
|
North RA and Jarvis MF: P2X receptors as
drug targets. Mol Pharmacol. 83:759–769. 2013.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Vázquez-Villoldo N, Domercq M, Martín A,
Llop J, Gómez-Vallejo V and Matute C: P2X4 receptors control the
fate and survival of activated microglia. Glia. 62:171–184.
2014.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Verma R, Cronin CG, Hudobenko J, Venna VR,
McCullough LD and Liang BT: Deletion of the P2X4 receptor is
neuroprotective acutely, but induces a depressive phenotype during
recovery from ischemic stroke. Brain Behav Immun. 66:302–312.
2017.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Bravo-Alegria J, McCullough LD and Liu F:
Sex differences in stroke across the lifespan: The role of T
lymphocytes. Neurochem Int. 107:127–137. 2017.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Xu S, Lu J, Shao A, Zhang JH and Zhang J:
Glial cells: Role of the immune response in ischemic stroke. Front
Immunol. 11(294)2020.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Zera KA and Buckwalter MS: The Local and
peripheral immune responses to stroke: Implications for therapeutic
development. Neurotherapeutics: Mar 19, 2020 (Epub ahead of print).
doi: 10.1007/s13311-020-00844-3.
|
|
49
|
Zamanian JL, Xu L, Foo LC, Nouri N, Zhou
L, Giffard RG and Barres BA: Genomic analysis of reactive
astrogliosis. J Neurosci. 32:6391–6410. 2012.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Zhao X, Wang H, Sun G, Zhang J, Edwards NJ
and Aronowski J: Neuronal interleukin-4 as a modulator of
microglial pathways and ischemic brain damage. J Neurosci.
35:11281–11291. 2015.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Lee GA, Lin TN, Chen CY, Mau SY, Huang WZ,
Kao YC, Ma RY and Liao NS: Interleukin 15 blockade protects the
brain from cerebral ischemia-reperfusion injury. Brain Behav Immun.
73:562–570. 2018.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Dolati S, Ahmadi M, Khalili M, Taheraghdam
AA, Siahmansouri H, Babaloo Z, Aghebati-Maleki L, Jadidi-Niaragh F,
Younesi V and Yousefi M: Peripheral Th17/Treg imbalance in elderly
patients with ischemic stroke. Neurol Sci. 39:647–654.
2018.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Santamaría-Cadavid M, Rodríguez-Castro E,
Rodríguez-Yáñez M, Arias-Rivas S, López-Dequidt I, Pérez-Mato M,
Rodríguez-Pérez M, López-Loureiro I, Hervella P, Campos F, et al:
Regulatory T cells participate in the recovery of ischemic stroke
patients. BMC Neurol. 20(68)2020.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Stubbe T, Ebner F, Richter D, Engel O,
Klehmet J, Royl G, Meisel A, Nitsch R, Meisel C and Brandt C:
Regulatory T cells accumulate and proliferate in the ischemic
hemisphere for up to 30 days after MCAO. J Cereb Blood Flow Metab.
33:37–47. 2013.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Liesz A, Zhou W, Mracskó É, Karcher S,
Bauer H, Schwarting S, Sun L, Bruder D, Stegemann S, Cerwenka A, et
al: Inhibition of lymphocyte trafficking shields the brain against
deleterious neuroinflammation after stroke. Brain. 134:704–720.
2011.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Doyle KP, Quach LN, Solé M, Axtell RC,
Nguyen TV, Soler-Llavina GJ, Jurado S, Han J, Steinman L, Longo FM,
et al: B-lymphocyte-mediated delayed cognitive impairment following
stroke. J Neurosci. 35:2133–2145. 2015.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Rayasam A, Hsu M, Hernández G, Kijak J,
Lindstedt A, Gerhart C, Sandor M and Fabry Z: Contrasting roles of
immune cells in tissue injury and repair in stroke: The dark and
bright side of immunity in the brain. Neurochem Int. 107:104–116.
2017.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Nakamura K and Shichita T: Cellular and
molecular mechanisms of sterile inflammation in ischaemic stroke. J
Biochem. 165:459–464. 2019.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Szepesi Z, Manouchehrian O, Bachiller S
and Deierborg T: Bidirectional microglia-neuron communication in
health and disease. Front Cell Neurosci. 12(323)2018.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Sharp FR, Zhan X and Liu DZ: Heat shock
proteins in the bra in: Role of Hsp70, Hsp 27, and HO-1 (Hsp32) and
their therapeutic potential. Transl Stroke Res. 4:685–692.
2013.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Nitti M, Piras S, Brondolo L, Marinari UM,
Pronzato MA and Furfaro AL: Heme Oxygenase 1 in the nervous system:
Does it favor neuronal cell survival or induce neurodegeneration?
Int J Mol Sci. 19(E2260)2018.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Hermann DM, Kleinschnitz C and Gunzer M:
Role of polymorphonuclear neutrophils in the reperfused ischemic
brain: Insights from cell-type-specific immunodepletion and
fluorescence microscopy studies. Ther Adv Neurol Disord.
11(1756286418798607)2018.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Bennett ML, Bennett FC, Liddelow SA, Ajami
B, Zamanian JL, Fernhoff NB, Mulinyawe SB, Bohlen CJ, Adil A,
Tucker A, et al: New tools for studying microglia in the mouse and
human CNS. Proc Natl Acad Sci USA. 113:E1738–E1746. 2016.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Zarruk JG, Greenhalgh AD and David S:
Microglia and macrophages differ in their inflammatory profile
after permanent brain ischemia. Exp Neurol. 301:120–132.
2018.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Shichita T, Ito M, Morita R, Komai K,
Noguchi Y, Ooboshi H, Koshida R, Takahashi S, Kodama T and
Yoshimura A: MAFB prevents excess inflammation after ischemic
stroke by accelerating clearance of damage signals through MSR1.
Nat Med. 23:723–732. 2017.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Xia CY, Zhang S, Gao Y, Wang ZZ and Chen
NH: Selective modulation of microglia polarization to M2 phenotype
for stroke treatment. Int Immunopharmacol. 25:377–382.
2015.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Taj HS, Kho W, Riou A, Wiedermann D and
Hoehn M: MiRNA-124 induces neuroprotection and functional
improvement after focal cerebral ischemia. Biomaterials.
91:151–165. 2016.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Liu X, Liu J, Zhao S, Zhang H, Cai W, Cai
M, Ji X, Leak RK, Gao Y, Chen J, et al: Interleukin-4 is essential
for microglia/macrophage M2 polarization and long-term recovery
after cerebral ischemia. Stroke. 47:498–504. 2016.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Zhou K, Zhong Q, Wang YC, Xiong XY, Meng
ZY, Zhao T, Zhu WY, Liao MF, Wu LR, Yang YR, et al: Regulatory T
cells ameliorate intracerebral hemorrhage-induced inflammatory
injury by modulating microglia/macrophage polarization through the
IL-10/GSK3β/PTEN axis. J Cereb Blood Flow Metab. 37:967–979.
2017.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Titova EM, Ghosh N, Valadez ZG, Zhang JH,
Bellinger DL and Obenaus A: The late phase of post-stroke
neurorepair in aged rats is reflected by MRI-based measures.
Neuroscience. 283:231–244. 2014.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Ongür D, Drevets WC and Price JL: Glial
reduction in the subgenual prefrontal cortex in mood disorders.
Proc Natl Acad Sci USA. 95:13290–13295. 1998.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Nimmerjahn A, Kirchhoff F and Helmchen F:
Resting microglial cells are highly dynamic surveillants of brain
parenchyma in vivo. Science. 308:1314–1318. 2005.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Smith RS: The macrophage theory of
depression. Med Hypotheses. 35:298–306. 1991.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Dey A and Hankey Giblin PA: Insights into
macrophage heterogeneity and cytokine-induced neuroinflammation in
major Ddepressive disorder. Pharmaceuticals (Basel).
11(E64)2018.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Xue J, Schmidt SV, Sander J, Draffehn A,
Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L,
et al: Transcriptome-based network analysis reveals a spectrum
model of human macrophage activation. Immunity. 40:274–288.
2014.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Orecchioni M, Ghosheh Y, Pramod AB and Ley
K: Macrophage polarization: Different gene signatures in M1(LPS+)
vs. classically and M2(LPS-) vs. alternatively activated
macrophages. Front Immunol. 10(1084)2019.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Ransohoff RM: A polarizing question: Do M1
and M2 microglia exist? Nat Neurosci. 19:987–991. 2016.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Eyo UB and Wu LJ: Bidirectional
microglia-neuron communication in the healthy brain. Neural Plast.
2013(456857)2013.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Hayakawa K, Wang X and Lo EH: CD200
increases alternatively activated macrophages through cAMP-response
element binding protein-C/EBP-beta signaling. J Neurochem.
136:900–906. 2016.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Xu T, Pu S, Ni Y, Gao M, Li X and Zeng X:
Elevated plasma macrophage migration inhibitor factor as a risk
factor for the development of post-stroke depression in ischemic
stroke. J Neuroimmunol. 320:58–63. 2018.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Yang DB, Yu WH, Dong XQ, Zhang ZY, Du Q,
Zhu Q, Che ZH, Wang H, Shen YF and Jiang L: Serum macrophage
migration inhibitory factor concentrations correlate with prognosis
of traumatic brain injury. Clin Chim Acta. 469:99–104.
2017.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Leyton-Jaimes MF, Kahn J and Israelson A:
Macrophage migration inhibitory factor: A multifaceted cytokine
implicated in multiple neurological diseases. Exp Neurol.
301:83–91. 2018.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Chen H, Li X, Liu S, Gu L and Zhou X:
MircroRNA-19a promotes vascular inflammation and foam cell
formation by targeting HBP-1 in atherogenesis. Sci Rep.
7(12089)2017.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Ritzel RM, Patel AR, Grenier JM, Crapser
J, Verma R, Jellison ER and McCullough LD: Functional differences
between microglia and monocytes after ischemic stroke. J
Neuroinflammation. 12(106)2015.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Meng HL, Li XX, Chen YT, Yu LJ, Zhang H,
Lao JM, Zhang X and Xu Y: Neuronal soluble Fas ligand drives
M1-Microglia polarization after cerebral ischemia. CNS Neurosci
Ther. 22:771–781. 2016.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Wattananit S, Tornero D, Graubardt N,
Memanishvili T, Monni E, Tatarishvili J, Miskinyte G, Ge R,
Ahlenius H, Lindvall O, et al: Monocyte-derived macrophages
contribute to spontaneous long-term functional recovery after
stroke in mice. J Neurosci. 36:4182–4195. 2016.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Horváth E, Huțanu A, Chiriac L, Dobreanu
M, Orădan A and Nagy EE: Ischemic damage and early inflammatory
infiltration are different in the core and penumbra lesions of rat
brain after transient focal cerebral ischemia. J Neuroimmunol.
324:35–42. 2018.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Brites D and Fernandes A:
Neuroinflammation and depression: Microglia activation,
extracellular microvesicles and microRNA dysregulation. Front Cell
Neurosci. 9(476)2015.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Mezentsev A, Merks RM, O'Riordan E, Chen
J, Mendelev N, Goligorsky MS and Brodsky SV: Endothelial
microparticles affect angiogenesis in vitro: Role of oxidative
stress. Am J Physiol Heart Circ Physiol. 289:H1106–H1114.
2005.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Leroyer AS, Ebrahimian TG, Cochain C,
Récalde A, Blanc-Brude O, Mees B, Vilar J, Tedgui A, Levy BI,
Chimini G, et al: Microparticles from ischemic muscle promotes
postnatal vasculogenesis. Circulation. 119:2808–2817.
2009.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Garzetti L, Menon R, Finardi A, Bergami A,
Sica A, Martino G, Comi G, Verderio C, Farina C and Furlan R:
Activated macrophages release microvesicles containing polarized M1
or M2 mRNAs. J Leukoc Biol. 95:817–825. 2014.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Bianco F, Pravettoni E, Colombo A, Schenk
U, Möller T, Matteoli M and Verderio C: Astrocyte-derived ATP
induces vesicle shedding and IL-1 beta release from microglia. J
Immunol. 174:7268–7277. 2005.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Viviani B, Gardoni F, Bartesaghi S,
Corsini E, Facchi A, Galli CL, Di Luca M and Marinovich M:
Interleukin-1 beta released by gp120 drives neural death through
tyrosine phosphorylation and trafficking of NMDA receptors. J Biol
Chem. 281:30212–30222. 2006.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Allan SM and Rothwell NJ: Inflammation in
central nervous system injury. Philos Trans R Soc Lond B Biol Sci.
358:1669–1677. 2003.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Grønhøj MH, Clausen BH, Fenger CD,
Lambertsen KL and Finsen B: Beneficial potential of intravenously
administered IL-6 in improving outcome after murine experimental
stroke. Brain Behav Immun. 65:296–311. 2017.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Anderson G, Kubera M, Duda W, Lasoń W,
Berk M and Maes M: Increased IL-6 trans-signaling in depression:
Focus on the tryptophan catabolite pathway, melatonin and
neuroprogression. Pharmacol Rep. 65:1647–1654. 2013.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Zou JY and Crews FT: TNF alpha potentiates
glutamate neurotoxicity by inhibiting glutamate uptake in
organotypic brain slice cultures: Neuroprotection by NF kappa B
inhibition. Brain Res. 1034:11–24. 2005.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Zeng L, Wang Y, Liu J, Wang L, Weng S,
Chen K, Domino EF and Yang GY: Pro-inflammatory cytokine network in
peripheral inflammation response to cerebral ischemia. Neurosci
Lett. 548:4–9. 2013.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Kaminska B: MAPK signalling pathways as
molecular targets for anti-inflammatory therapy - from molecular
mechanisms to therapeutic benefits. Biochim Biophys Acta.
1754:253–262. 2005.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Hetman M and Gozdz A: Role of
extracellular signal regulated kinases 1 and 2 in neuronal
survival. Eur J Biochem. 271:2050–2055. 2004.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Subramaniam S and Unsicker K: ERK and cell
death: ERK1/2 in neuronal death. FEBS J. 277:22–29. 2010.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Wendeln AC, Degenhardt K, Kaurani L,
Gertig M, Ulas T, Jain G, Wagner J, Häsler LM, Wild K, Skodras A,
et al: Innate immune memory in the brain shapes neurological
disease hallmarks. Nature. 556:332–338. 2018.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Schiepers OJG, Wichers MC and Maes M:
Cytokines and major depression. Prog Neuropsychopharmacol Biol
Psychiatry. 29:201–217. 2005.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Dowlati Y, Herrmann N, Swardfager W, Liu
H, Sham L, Reim EK and Lanctôt KL: A meta-analysis of cytokines in
major depression. Biol Psychiatry. 67:446–457. 2010.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Liu Y, Ho RCM and Mak A: The role of
interleukin (IL)-17 in anxiety and depression of patients with
rheumatoid arthritis. Int J Rheum Dis. 15:183–187. 2012.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Su JA, Chou SY, Tsai CS and Hung TH:
Cytokine changes in the pathophysiology of poststroke depression.
Gen Hosp Psychiatry. 34:35–39. 2012.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Yirmiya R, Rimmerman N and Reshef R:
Depression as a microglial disease. Trends Neurosci. 38:637–658.
2015.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Myint AM, Kim YK, Verkerk R, Scharpé S,
Steinbusch H and Leonard B: Kynurenine pathway in major depression:
Evidence of impaired neuroprotection. J Affect Disord. 98:143–151.
2007.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Tilleux S and Hermans E: Neuroinflammation
and regulation of glial glutamate uptake in neurological disorders.
J Neurosci Res. 85:2059–2070. 2007.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Tavares RG, Tasca CI, Santos CE, Alves LB,
Porciúncula LO, Emanuelli T and Souza DO: Quinolinic acid
stimulates synaptosomal glutamate release and inhibits glutamate
uptake into astrocytes. Neurochem Int. 40:621–627. 2002.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Miller AH, Maletic V and Raison CL:
Inflammation and its discontents: The role of cytokines in the
pathophysiology of major depression. Biol Psychiatry. 65:732–741.
2009.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Salazar-Colocho P, Del Río J and Frechilla
D: Neuroprotective effects of serotonin 5-HT 1A receptor activation
against ischemic cell damage in gerbil hippocampus: Involvement of
NMDA receptor NR1 subunit and BDNF. Brain Res. 1199:159–166.
2008.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Davami MH, Baharlou R, Ahmadi Vasmehjani
A, Ghanizadeh A, Keshtkar M, Dezhkam I and Atashzar MR: Elevated
IL-17 and TGF-β serum levels: A positive correlation between
T-helper 17 cell-related pro-inflammatory responses with major
depressive disorder. Basic Clin Neurosci. 7:137–142.
2016.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Beurel E, Harrington LE and Jope RS:
Inflammatory T helper 17 cells promote depression-like behavior in
mice. Biol Psychiatry. 73:622–630. 2013.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Li HL, Kostulas N, Huang YM, Xiao BG, van
der Meide P, Kostulas V, Giedraitas V and Link H: IL-17 and
IFN-gamma mRNA expression is increased in the brain and
systemically after permanent middle cerebral artery occlusion in
the rat. J Neuroimmunol. 116:5–14. 2001.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Zhang J, Mao X, Zhou T, Cheng X and Lin Y:
IL-17A contributes to brain ischemia reperfusion injury through
calpain-TRPC6 pathway in mice. Neuroscience. 274:419–428.
2014.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Kichev A, Rousset CI, Baburamani AA,
Levison SW, Wood TL, Gressens P, Thornton C and Hagberg H: Tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling
and cell death in the immature central nervous system after
hypoxia-ischemia and inflammation. J Biol Chem. 289:9430–9439.
2014.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Heymann MF, Herisson F, Davaine JM,
Charrier C, Battaglia S, Passuti N, Lambert G, Gouëffic Y and
Heymann D: Role of the OPG/RANK/RANKL triad in calcifications of
the atheromatous plaques: Comparison between carotid and femoral
beds. Cytokine. 58:300–306. 2012.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Nagy EE, Varga-Fekete T, Puskas A, Kelemen
P, Brassai Z, Szekeres-Csiki K, Gombos T, Csanyi MC and Harsfalvi
J: High circulating osteoprotegerin levels are associated with
non-zero blood groups. BMC Cardiovasc Disord.
16(106)2016.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Shimamura M, Nakagami H, Osako MK,
Kurinami H, Koriyama H, Zhengda P, Tomioka H, Tenma A, Wakayama K
and Morishita R: OPG/RANKL/RANK axis is a critical inflammatory
signaling system in ischemic brain in mice. Proc Natl Acad Sci USA.
111:8191–8196. 2014.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Kim HY and Han SH: Matrix
metalloproteinases in cerebral ischemia. J Clin Neurol. 2:163–170.
2006.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Anuncibay-Soto B, Pérez-Rodriguez D,
Santos-Galdiano M, Font-Belmonte E, Ugidos IF, Gonzalez-Rodriguez
P, Regueiro-Purriños M and Fernández-López A: Salubrinal and
robenacoxib treatment after global cerebral ischemia. Exploring the
interactions between ER stress and inflammation. Biochem Pharmacol.
151:26–37. 2018.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Ugidos IF, Santos-Galdiano M,
Pérez-Rodríguez D, Anuncibay-Soto B, Font-Belmonte E, López DJ,
Ibarguren M, Busquets X and Fernández-López A: Neuroprotective
effect of 2-hydroxy arachidonic acid in a rat model of transient
middle cerebral artery occlusion. Biochim Biophys Acta Biomembr.
1859:1648–1656. 2017.PubMed/NCBI View Article : Google Scholar
|
|
124
|
De los Reyes LM and Céspedes AE:
Atorvastatin-meloxicam association inhibits neuroinflammation and
attenuates the cellular damage in cerebral ischemia by arterial
embolism. Biomedica. 34:366–378. 2014.PubMed/NCBI View Article : Google Scholar : (In Spanish).
|
|
125
|
Llorente IL, Landucci E,
Pellegrini-Giampietro DE and Fernández-López A: Glutamate receptor
and transporter modifications in rat organotypic hippocampal slice
cultures exposed to oxygen-glucose deprivation: The contribution of
cyclooxygenase-2. Neuroscience. 292:118–128. 2015.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Nagy E, Vajda E, Vari C, Sipka S, Fárr AM
and Horváth E: Meloxicam ameliorates the cartilage and subchondral
bone deterioration in monoiodoacetate-induced rat osteoarthritis.
PeerJ. 5(e3185)2017.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Arafa HM, Abdel-Wahab MH, El-Shafeey MF,
Badary OA and Hamada FM: Anti-fibrotic effect of meloxicam in a
murine lung fibrosis model. Eur J Pharmacol. 564:181–189.
2007.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Hassan MH and Ghobara MM: Antifibrotic
effect of meloxicam in rat liver: Role of nuclear factor kappa B,
proinflammatory cytokines, and oxidative stress. Naunyn
Schmiedebergs Arch Pharmacol. 389:971–983. 2016.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Honma S, Shinohara M, Takahashi N,
Nakamura K, Hamano S, Mitazaki S, Abe S and Yoshida M: Effect of
cyclooxygenase (COX)-2 inhibition on mouse renal interstitial
fibrosis. Eur J Pharmacol. 740:578–583. 2014.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Csifo E, Nagy EE, Horvath E, Farr A and
Muntean DL: Mid-term effects of meloxicam on collagen type II
degradation in a rat osteoarthritis model induced by iodoacetate.
Farmacia. 63:556–560. 2015.
|
|
131
|
Sabogal-Guáqueta AM, Posada-Duque R,
Cortes NC, Arias-Londoño JD and Cardona-Gómez GP: Changes in the
hippocampal and peripheral phospholipid profiles are associated
with neurodegeneration hallmarks in a long-term global cerebral
ischemia model: Attenuation by Linalool. Neuropharmacology.
135:555–571. 2018.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Horváth E, Oradan A and Chiriac L:
Dobreanu M, Nagy EE, Voidăzan S, Berei R, Muntean DL and Hutanu A:
Fish-oil preconditioning upregulates expression of splenic Arg1
positive M2 type macrophags and the Arg1/iNos2 ratio after
experimental induced transient cerebral ischemia. Farmacia.
67:820–829. 2019.
|
|
133
|
Horvath E, Hutanu A, Oradan A, Chiriac L,
Muntean DL, Nagy EE and Dobreanu M: N-3 polyunsaturated fatty acids
induce granulopoiesis and early monocyte polarization in the bone
marrow of a tMCAO rat model. Rev Rom Med Lab. 27:51–61. 2019.
|
|
134
|
Pentón-Rol G, Marín-Prida J and
Falcón-Cama V: C-phycocyanin and phycocyanobilin as remyelination
therapies for enhancing recovery in multiple sclerosis and ischemic
stroke: A preclinical perspective. Behav Sci (Basel).
8(E158)2018.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Alawieh A, Elvington A, Zhu H, Yu J, Kindy
MS, Atkinson C and Tomlinson S: Modulation of post-stroke
degenerative and regenerative processes and subacute protection by
site-targeted inhibition of the alternative pathway of complement.
J Neuroinflammation. 12(247)2015.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Kopschina Feltes P, Doorduin J, Klein HC,
Juárez-Orozco LE, Dierckx RA, Moriguchi-Jeckel CM and de Vries EF:
Anti-inflammatory treatment for major depressive disorder:
Implications for patients with an elevated immune profile and
non-responders to standard antidepressant therapy. J
Psychopharmacol. 31:1149–1165. 2017.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Akhondzadeh S, Jafari S, Raisi F, Nasehi
AA, Ghoreishi A, Salehi B, Mohebbi-Rasa S, Raznahan M and
Kamalipour A: Clinical trial of adjunctive celecoxib treatment in
patients with major depression: A double blind and placebo
controlled trial. Depress Anxiety. 26:607–611. 2009.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Abbasi SH, Hosseini F, Modabbernia A,
Ashrafi M and Akhondzadeh S: Effect of celecoxib add-on treatment
on symptoms and serum IL-6 concentrations in patients with major
depressive disorder: Randomized double-blind placebo-controlled
study. J Affect Disord. 141:308–314. 2012.PubMed/NCBI View Article : Google Scholar
|
|
139
|
Tyring S, Gottlieb A, Papp K, Gordon K,
Leonardi C, Wang A, Lalla D, Woolley M, Jahreis A, Zitnik R, et al:
Etanercept and clinical outcomes, fatigue, and depression in
psoriasis: Double-blind placebo-controlled randomised phase III
trial. Lancet. 367:29–35. 2006.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Nemeth CL, Glasper ER, Harrell CS, Malviya
SA, Otis JS and Neigh GN: Meloxicam blocks neuroinflammation, but
not depressive-like behaviors, in HIV-1 transgenic female rats.
PLoS One. 9(e108399)2014.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Liu J, Nolte K, Brook G, Liebenstund L,
Weinandy A, Höllig A, Veldeman M, Willuweit A, Langen KJ, Rossaint
R, et al: Post-stroke treatment with argon attenuated brain injury,
reduced brain inflammation and enhanced M2 microglia/macrophage
polarization: A randomized controlled animal study. Crit Care.
23(198)2019.PubMed/NCBI View Article : Google Scholar
|