|
1
|
Isvoranu G: The Memory Activation of NK
Cells: New Methods in Cancer Immunotherapy. In:
Immunotherapy-Myths, Reality, Ideas, Future. InTech, Rijeka,
pp201-219, 2017.
|
|
2
|
McCune JS: Rapid advances in immunotherapy
to treat cancer. Clin Pharmacol Ther. 103:540–544. 2018.PubMed/NCBI View
Article : Google Scholar
|
|
3
|
Palmer AC and Sorger PK: Combination
cancer therapy can confer benefit via patient-to-patient
variability without drug additivity or synergy. Cell.
171:1678–1691. 2017.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Marcu D, Spinu D, Mischianu D, Sorcea B,
Oprea I and Bratu O: Oncological follow-up after radical
prostatectomy. Rom J Mil Med. 120:39–42. 2017.
|
|
5
|
Popescu R, Bratu O, Spinu D, Marcu D,
Farcas C, Dinu M and Mischianu D: Neuroendocrine differentiation in
prostate cancer-a review. Rom J Mil Med. 118:16–19. 2015.
|
|
6
|
Tormoen GW, Crittenden MR and Gough MJ:
Role of the immunosuppressive microenvironment in immunotherapy.
Adv Radiant Oncol. 3:520–526. 2018.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Zhang Y and Zhang Z: The history and
advances in cancer immunotherapy: Understanding the characteristics
of tumor-infiltrating immune cells and their therapeutic
implications. Cell Mol Immunol. 17:807–821. 2020.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Berraondo P, Sanmamed MF, Ochoa MC,
Etxeberria I, Aznar MA, Pérez-Gracia JL, Rodríguez-Ruiz ME,
Ponz-Sarvise M, Castañón E and Melero I: Cytokines in clinical
cancer immunotherapy. Br J Cancer. 120:6–15. 2019.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Lee S and Margolin K: Cytokines in cancer
immunotherapy. Cancers (Basel). 3:3856–3893. 2011.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Imai K, Matsuyama S, Miyake S, Suga K and
Nakachi K: Natural cytotoxic activity of peripheral-blood
lymphocytes and cancer incidence: An 11-year follow-up study of a
general population. Lancet. 356:795–1799. 2000.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Thommen DS and Schumacher TN: T cell
dysfunction in cancer. Cancer Cell. 33:547–562. 2018.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Isvoranu G, Surcel M, Huică RI, Munteanu
AN, Pîrvu IR, Ciotaru D, Constantin C, Bratu O, Neagu M and
Ursaciuc C: Natural killer cell monitoring in cutaneous
melanoma-new dynamic biomarker. Oncol Lett. 17:4197–206.
2019.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Wrangle JM, Patterson A, Johnson CB,
Neitzke DJ, Mehrotra S, Denlinger CE, Paulos CM, Li Z, Cole DJ and
Rubinstein MP: IL-2 and beyond in cancer immunotherapy. J
Interferon Cytokine Res. 38:45–68. 2018.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Farhood B, Najafi M and Mortezaee K:
CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A
review. J Cell Physio. 234:8509–8521. 2019.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Floros T and Tarhini AA: Anticancer
Cytokines: Biology and clinical effects of interferon-α2,
interleukin (IL)-2, IL-15, IL-21, and IL-12. Semin Oncol.
42:539–548. 2015.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Chulpanova DS, Kitaeva KV, Green AR,
Rizvanov AA and Solovyeva VV: Molecular aspects and future
perspectives of cytokine-based anti-cancer immunotherapy. Front
Cell Dev Biol. 8(402)2020.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Cheever MA: Twelve immunotherapy drugs
that could cure cancers. Immunol Rev. 222:357–368. 2008.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Waldmann TA, Miljkovic MD and Conlon KC:
Interleukin-15 (dys)regulation of lymphoid homeostasis:
Implications for therapy of autoimmunity and cancer. J Exp Med.
217(e20191062)2020.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Burton JD, Bamford RN, Peters C, Grant AJ,
Kurys G, Goldman CK, Brennan J, Roessler E and Waldmann TA: A
lymphokine, provisionally designated interleukin T and produced by
a human adult T-cell leukemia line, stimulates T-cell proliferation
and the induction of lymphokine-activated killer cells. Proc Natl
Acad Sci USA. 91:4935–4939. 1994.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Grabstein KH, Eisenman J, Shanebeck K,
Rauch C, Srinivasan S, Fung V, Beers C, Richardson J, Schoenborn
MA, Ahdieh M, et al: Cloning of a T Cell growth factor that
interacts with the beta chain of the interleukin-2 receptor.
Science. 264:965–968. 1994.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Steel JC, Waldmann TA and Morris JC:
Interleukin-15 biology and its therapeutic implications in cancer.
Trends Pharmacol Sci. 33:35–41. 2012.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Budagian V, Bulanova E, Paus R and
Bulfone-Paus S: IL-15/IL-15 receptor biology: A guided tour through
an expanding universe. Cytokine Growth Factor Rev. 17:259–280.
2006.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Mishra A, Sullivan L and Caligiuri MA:
Molecular pathways: Interleukin-15 signaling in health and in
cancer. Clin Cancer Res. 20:2044–2050. 2014.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Waldmann TA: The shared and contrasting
roles of interleukin-2 (IL-2) and IL-15 in the life and death of
normal and neoplastic lymphocytes: Implications for cancer therapy.
Cancer Immunol Res. 3:219–227. 2015.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Ahmadzadeh M and Rosenberg SA: IL-2
administration increases CD4+ CD25(hi) Foxp3+
regulatory T cells in cancer patients. Blood. 107:2409–2414.
2006.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Waldmann TA: Targeting the
interleukin-15/interleukin-15 receptor system in inflammatory
autoimmune diseases. Arthritis Res Ther. 6:174–177. 2004.PubMed/NCBI View
Article : Google Scholar
|
|
27
|
Kirman I and Nielsen OH: Increased numbers
of interleukin-15-expressing cells in active ulcerative colitis. Am
J Gastroenterol. 91:1789–1794. 1996.PubMed/NCBI
|
|
28
|
Liu Z, Geboes K, Colpaert S, D'Haens GR,
Rutgeerts P and Ceuppens JL: IL-15 is highly expressed in
inflammatory bowel disease and regulates local t cell-dependent
cytokine production. J Immunol. 164:3608–3615. 2000.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Baslund B, Tvede N, Danneskiold-Samsoe B,
Larsson P, Panayi G, Petersen J, Petersen LJ, Beurskens FJ,
Schuurman J, van de Winkel JG, et al: Targeting interleukin-15 in
patients with rheumatoid arthritis: A proof-of-concept study.
Arthritis Rheum. 52:2686–2692. 2005.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Iftimie G, Stanescu A, Iancu M, Stoian A,
Hainarosie R, Socea B, Isvoranu G, Marcu D, Neagu TP and Diaconu
CC: The importance of early arthritis in patients with rheumatoid
arthritis. J Mind Med Sci. 5:176–183. 2018.
|
|
31
|
Kivisäkk P, Matusevicius D, He B,
Söderström M, Fredrikson S and Link H: IL-15 mRNA expression is
up-regulated in blood and cerebrospinal fluid mononuclear cells in
multiple sclerosis (MS). Clin Exp Immunol. 111:193–197.
1998.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Rentzos M, Cambouri C, Rombos A, Nikolaou
C, Anagnostouli M, Tsoutsou A, Dimitrakopoulos A, Triantafyllou N
and Vassilopoulos D: IL-15 is elevated in serum and cerebrospinal
fluid of patients with multiple sclerosis. J Neurol Sci. 241:25–29.
2006.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Robinson TO and Schluns KS: The potential
and promise of IL-15 in immuno-oncogenic therapies. Immunol Lett.
190:159–168. 2017.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Waldmann TA: Interleukin-15 in the
treatment of cancer. Expert Rev Clin Immunol. 10:1689–1701.
2014.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Zhang X, Sun S, Hwang I, Tough DF and
Sprent J: Potent and selective stimulation of memory-phenotype
CD8+ T Cells in vivo by IL-15. Immunity. 8:591–599.
1998.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Waldmann TA, Lugli E, Roederer M, Perera
LP, Smedley JV, Macallister RP, Goldman CK, Bryant BR, Decker JM,
Fleisher TA, et al: Safety (toxicity), pharmacokinetics,
immunogenicity, and impact on elements of the normal immune system
of recombinant human IL-15 in rhesus macaques. Blood.
117:4787–4795. 2011.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Stoklasek TA, Schluns KS and Lefrançois L:
Combined IL-15/IL-15Ralpha immunotherapy maximizes IL-15 activity
in vivo. J Immunol. 177:6072–6080. 2006.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Isvoranu G, Marinescu B, Surcel M,
Ursaciuc C and Manda G: Immunotherapy in cancer-in vivo study of
the antitumor activity of the IL-15/IL-15R alfa combination in an
experimental model of melanoma. Farmacia. 63:631–636. 2015.
|
|
39
|
Zeng R, Spolski R, Finkelstein SE, Oh S,
Kovanen PE, Hinrichs CS, Pise-Masison CA, Radonovich MF, Brady JN,
Restifo NP, et al: Synergy of IL-21 and IL-15 in regulating
CD8+ T cell expansion and function. J Exp Med.
201:139–148. 2005.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Romee R, Rosario M, Berrien-Elliott MM,
Wagner JA, Jewell BA, Schappe T, Leong JW, Abdel-Latif S, Schneider
SE, Willey S, et al: Cytokine-induced memory-like natural killer
cells exhibit enhanced responses against myeloid leukemia. Sci
Transl Med. 8(357ra123)2016.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Zhang M, Wen B, Anton OM, Yao Z, Dubois S,
Ju W, Sato N, DiLillo DJ, Bamford RN, Ravetch JV and Waldmann TA:
IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by
NK cells and macrophages. Proc Natl Acad Sci USA.
115:E10915–E10924. 2018.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Robert H: Vonderheide: CD40 agonist
antibodies in cancer Immunotherapy. Annu Rev Med. 71:47–58.
2020.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Winograd R, Byrne KT, Evans RA, Odorizzi
PM, Meyer AR, Bajor DL, Clendenin C, Stanger BZ, Furth EE, Wherry
EJ and Vonderheide RH: Induction of T-cell immunity overcomes
complete resistance to PD-1 and CTLA-4 blockade and improves
survival in pancreatic carcinoma. Cancer Immunol Res. 3:399–411.
2015.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Byrne KT and Vonderheide RH: CD40
Stimulation obviates innate sensors and drives T cell immunity in
cancer. Cell Rep. 15:2719–2732. 2016.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Li DK and Wang W: Characteristics and
clinical trial results of agonistic anti-CD40 antibodies in the
treatment of malignancies. Oncol Lett. 20(176)2020.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Van Audenaerde JR, Marcq E, von Scheidt B,
Davey AS, Oliver AJ, De Waele J, Quatannens D, Van Loenhout J,
Pauwels P, Roeyen G, et al: Novel combination immunotherapy for
pancreatic cancer: Potent anti-tumor effects with CD40 agonist and
interleukin-15 treatment. Clin Transl Immunology.
9(e1165)2020.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Zhang M, Ju W, Yao Z, Yu P, Wei BR,
Simpson RM, Waitz R, Fassò M, Allison JP and Waldmann TA: Augmented
interleukin IL-15Rα expression by CD40 activation is critical in
synergistic CD8 T-cell mediated antitumor activity of anti-CD40
antibody with IL-15 in TRAMP-C2 tumors in mice. J Immunol.
188:6156–6164. 2012.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Perez CR and De Palma M: Engineering
dendritic cell vaccines to improve cancer immunotherapy. Nat
Commun. 10(5408)2019.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Palucka K and Banchereau J: Dendritic
cell-based cancer therapeutic vaccines. Immunity. 39:38–48.
2013.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Anguille S, Lion E, Van den Bergh J, Van
Acker HH, Willemen Y, Smits EL, Van Tendeloo VF and Berneman ZN:
Interleukin-15 dendritic cells as vaccine candidates for cancer
immunotherapy. Hum Vaccines Immunother. 9:1956–1961.
2013.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Van Acker HH, Anguille S, De Reu H,
Berneman ZN, Smits EL and Van Tendeloo VF: Interleukin-15-cultured
dendritic cells enhance anti-tumor gamma delta T cell functions
through IL-15 Secretion. Front Immunol. 9(658)2018.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Zhu X, Marcus WD, Xu W, Hi L, Han K, Egan
JO, Yovandich JL, Rhode PR and Wong HC: Novel human Interleukin15
agonists. J Immunol. 183:3598–3607. 2009.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Xu W, Jones M, Liu B, Zhu X, Johnson CB,
Edwards AC, Kong L, Jeng EK, Han K, Marcus WD, et al: Efficacy and
mechanism-of-action of a novel superagonist interleukin-15:
Interleukin-15 receptor αSu/fc fusion complex in syngeneic murine
models of multiple myeloma. Cancer Res. 73:3075–3086.
2013.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Hu Q, Ye X, Qu X, Cui D, Zang L, Xu Z, Wan
H, Zhang L and Tao W: Discovery of a novel IL-15 based protein with
improved developability and efficacy for cancer immunotherapy. Sci
Rep. 8(7675)2018.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Rhode PR, Egan JO, Xu W, Hong H, Webb GM,
Chen X, Liu B, Zhu X, Wen J, You L, et al: Comparison of the
superagonist complex, ALT-803, to IL15 as cancer immunotherapeutics
in animal models. Cancer Immunol Res. 4:49–60. 2016.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Margolin K, Morishima C, Velcheti V,
Miller JS, Lee SM, Silk AW, Holtan SG, Lacroix AM, Fling SP, Kaiser
JC, et al: Phase I trial of ALT-803, a novel recombinant
Interleukin-15 complex, in patients with advanced solid tumors.
Clin Cancer Res. 24:5552–5561. 2018.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Romee R, Cooley S, Berrien-Elliott MM,
Westervelt P, Verneris MR, Wagner JE, Weisdorf DJ, Blazar BR, Ustun
C, DeFor TE, et al: First-in-human phase 1 clinical study of the
IL-15 superagonist complex ALT-803 to treat relapse after
transplantation. Blood. 131:2515–2527. 2018.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Knudson KM, James W, Hodge JW, Schlom J
and Gameiro SR: Rationale for IL-15 superagonists in cancer
immunotherapy. Expert Opin Biol Ther. 20:705–709. 2020.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Waldmann TA, Dubois S, Miljkovic MD and
Conlon KC: IL-15 in the combination immunotherapy of cancer. Front
Immunol. 11(868)2020.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Mortier E, Quemener A, Vusio P, Lorenzen
I, Boublink Y, Grötzinger J, Plet A and Jacques Y: Soluble
interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective
and potent agonist of IL-15 action through IL-15R beta/gamma.
Hyperagonist IL-15 x IL-15R alpha fusion proteins. J Biol Chem.
281:1612–1619. 2006.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Desbois M, Le Vu P, Coutzac C, Marcheteau
E, Béal C, Terme M, Gey A, Morisseau S, Teppaz G, Boselli L, et al:
IL-15 trans-signaling with the superagonist RLI promotes
Effector/Memory CD8+ T cell responses and enhances antitumor
activity of PD-1 antagonists. J Immunol. 197:168–178.
2016.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Gajewski TF, Schreiber H and Fu YX: Innate
and adaptive immune cells in the tumor microenvironment. Nat
Immunol. 14:1014–1022. 2013.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Qing Y, Li Q, Ren T, Xia W, Peng Y, Liu
GL, Luo H, Yang YX, Dai XY, Zhou SF and Wang D: Upregulation of
PD-L1 and APE1 is associated with tumorigenesis and poor prognosis
of gastric cancer. Drug Des Devel Ther. 9:901–909. 2015.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Postow MA, Callahan MK and Wolchok JD:
Immune checkpoint blockade in cancer therapy. J Clin Oncol.
33:1974–1982. 2015.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Robert C, Schachter J, Long GV, Arance A,
Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M, et al:
Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med.
372:2521–2532. 2015.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Carbone DP, Reck M, Paz-Ares L, Creelan B,
Horn L, Steins M, Felip E, van den Heuvel MM, Ciuleanu TE, Badin F,
et al: First-line nivolumab in stage IV or recurrent non-small-cell
lung cancer. New Eng J Med. 376:2415–2426. 2017.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Bellmunt J, de Wit R, Vaughn DJ, Fradet Y,
Lee JL, Fong L, Vogelzang NJ, Climent MA, Petrylak DP, Choueiri TK,
et al: Pembrolizumab as second-line therapy for advanced urothelial
carcinoma. New Eng J Med. 376:1015–1026. 2017.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Mathios D, Park CK, Marcus WD, Alter S,
Rhode PR, Jeng EK, Wong HC, Pardoll DM and Lim M: Therapeutic
administration of IL-15 superagonist complex ALT-803 leads to
long-term survival and durable antitumor immune response in a
murine glioblastoma model. Int J Cancer. 138:187–194.
2016.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Kim PS, Kwilas AR, Xu W, Alter S, Jeng EK,
Wong HC, Scholm J and Hodge JW: IL-15 superagonist/IL-15RαSushi-fc
fusion complex (IL-15SA/IL-15RαSu-Fc; ALT-803) markedly enhances
specific subpopulations of NK and memory CD8+ T cells,
and mediates potent anti-tumor activity against murine breast and
colon carcinomas. Oncotarget. 7:16130–16145. 2016.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Knudson KM, Hicks KC, Alter S, Schlomand J
and Gameiro SR: Mechanisms involved in IL-15 superagonist
enhancement of anti-PD-L1 therapy. J Immunother Cancer.
7(82)2019.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Bartlett DL, Liu Z, Sathaiah M,
Ravindranathan R, Guo Z, He Y and Guo ZS: Oncolytic viruses as
therapeutic cancer vaccines. Mol Cancer. 12(103)2013.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Stephenson KB, Barra NG, Davies E, Ashkar
AA and Lichty BD: Expressing human interleukin-15 from oncolytic
vesicular stomatitis virus improves survival in a murine metastatic
colon adenocarcinoma model through the enhancement of anti-tumor
immunity. Cancer Gene Ther. 19:238–246. 2012.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Tosic V, Thomas DL, Kranz DM, Liu J,
McFadden G, Shisler JL, MacNeill AL and Roy EJ: Myxoma virus
expressing a fusion protein of interleukin-15 (IL-15) and IL-15
receptor alpha has enhanced antitumor activity. PLoS One.
9(e109801)2014.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Kowalsky SJ, Liu Z, Feist M, Berkey SE, Ma
C, Ravindranathan R, Dai E, Roy EJ, Guo ZS and Bartlett DL:
Superagonist IL-15-armed oncolytic virus elicits potent antitumor
immunity and therapy that are enhanced with PD-1 blockade. Mol
Ther. 26:2476–2486. 2018.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Rosenberg SA, Yang JC, White DE and
Steinberg SM: Durability of complete responses in patients with
metastatic cancer treated with high-dose interleukin-2:
Identification of the antigens mediating response. Ann Surg.
228:307–319. 1998.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Schwartz RN, Stover L and Dutcher JP:
Managing toxicities of high-dose interleukin-2. Oncology. 16:11–20.
2002.PubMed/NCBI
|
|
77
|
Berger C, Berger M, Hackman RC, Gough M,
Elliott C, Jensen MC and Riddell SR: Safety and immunologic effects
of IL-15 administration in nonhuman primates. Blood. 114:2417–2426.
2009.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Conlon KC, Potter EL, Pittaluga S, Lee CR,
Miljkovic MD, Fleisher TA, Dubois S, Bryant BR, Petrus MN, Perera
LP, et al: IL15 by Continuous intravenous infusion to adult
patients with solid tumors in a phase I trial induced dramatic
NK-cell subset expansion. Clin Cancer Res. 25:4945–4954.
2019.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Conlon KC, Lugli E, Welles HC, Rosenberg
SA, Fojo AT, Morris JC, Fleisher TA, Dubois SP, Perera LP, Stewart
DM, et al: Redistribution, hyperproliferation, activation of
natural killer cells and CD8 T cells, and cytokine production
during first-in-human clinical trial of recombinant human
Interleukin-15 in patients with cancer. J Clin Oncol. 33:74–82.
2015.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Wrangle JM, Velcheti V, Patel MR,
Garrett-Mayer E, Hill EG, Ravenel JG, Miller JS, Farhad M, Anderton
K, Lindsey K, et al: ALT-803, an IL-15 superagonist, in combination
with nivolumab in patients with metastatic non-small cell lung
cancer: A non-randomised, open-label, phase 1b trial. Lancet Oncol.
19:694–704. 2018.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Huang J, Schisler J, Wong HC, Rosser CJ
and Sterbis J: Intravesical ALT-803 for BCG-unresponsive bladder
cancer-A Case Report. Uro Case Rep. 14:15–17. 2017.PubMed/NCBI View Article : Google Scholar
|
|
82
|
ImmunityBio granted FDA Breakthrough
therapy designation for N-803 Il-15 superagonist in non-muscle
invasive bladder cancer. News release. BioSpace. December 4, 2019.
http://bit.ly/2ZgGAvM.
|
|
83
|
Desbois M, Béal C, Charrier M, Besse B,
Meurice G, Cagnard N, Jacques Y, Béchard D, Cassard L and Chaput N:
IL-15 superagonist RLI has potent immunostimulatory properties on
NK cells: Implications for antimetastatic treatment. J Immunother
Cancer. 8(e000632)2020.PubMed/NCBI View Article : Google Scholar
|