|
1
|
Skrzynia C, Berg JS, Willis MS and Jensen
BC: Genetics and heart failure: A concise guide for the clinician.
Curr Cardiol Rev. 11:10–17. 2015.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Albuquerque FN, Brandão AA, Silva DA,
Mourilhe-Rocha R, Duque GS, Gondar AF, Neves LM, Bittencourt MI,
Pozzan R and Albuquerque DC: Angiotensin-converting enzyme genetic
polymorphism: Its impact on cardiac remodeling. Arq Bras Cardiol.
102:70–79. 2014.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Guo M, Guo G and Ji X: Genetic
polymorphisms associated with heart failure: A literature review. J
Int Med Res. 44:15–29. 2016.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Oni-Orisan A and Lanfear DE:
Pharmacogenomics in heart failure: Where are we now and how can we
reach clinical application? Cardiol Rev. 22:193–198.
2014.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Smith JG, Felix JF, Morrison AC,
Kalogeropoulos A, Trompet S, Wilk JB, Gidölf O, Wang X, Morley M,
Mendelson M, et al: Discovery of genetic variation on chromosome
5q22 associated with mortality in heart failure. PLoS Genet.
12(e1006034)2016.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Iyngkaran P, Thomas MC, Johnson R, French
J, Ilton M, McDonald P, Hare DL and Fatkin D: Contextualizing
genetics for regional heart failure care. Curr Cardiol Rev.
12:231–242. 2016.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Beber AR, Polina ER, Biolo A, Santos BL,
Gomes DC, La Porta VL, Olsen V, Clausell N, Rohde IE and Santos KG:
Matrix metalloproteinase-2 polymorphisms in chronic heart failure:
Relationship with susceptibility and long-term survival. PLoS One.
11(e0161666)2016.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Taylor MR, Sun AY, Davis G, Fiuzat M,
Liggett SB and Bristow MR: Race, common genetic variation, and
therapeutic response disparities in heart failure. JACC Heart Fail.
2:561–572. 2014.PubMed/NCBI View Article : Google Scholar
|
|
9
|
MacRae CA: The genetics of congestive
heart failure. Heart Fail Clin. 6:223–230. 2010.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Lindgren MP, Smith JG, Li X, Sundquist J,
Sundquist K and Zoller B: Familial mortality risks in patients with
heart failure-A Swedish Sibling Study. J Am Heart Assoc.
7(e010181)2018.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Patel VB, Zhong JC, Grant MB and Oudit GY:
Role of the ACE2/Angiotensin 1-7 axis of the renin-angiotensin
system in heart failure. Circ Res. 118:1313–1326. 2016.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Hannah-Shmouni F, Seidelmann SB, Sirrs S,
Mani A and Jacoby D: The genetic challenges and opportunities in
advanced heart failure. Can J Cardiol. 31:1338–1350.
2015.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Chamsi-Pasha MA, Shao Z and Tang WH:
Angiotensin-converting enzyme 2 as a therapeutic target for heart
failure. Curr Heart Fail Rep. 11:58–63. 2014.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Dadarlat A, Pop D, Procopciuc L and
Buzoianu A: Links between Renin-angiotensin system genetic
polymorphisms and leptin secretion in obese heart failure patients.
Acta Endocrinol (Buchar). 14:274–279. 2018.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Santos RAS, Sampaio WO, Alzamora AC,
Motta-Santos D, Alenina N, Bader M and Campagnole-Santos MJ: The
ACE2/Angiotensin-(1-7)/MAS Axis of the renin-angiotensin system:
Focus on Angiotensin-(1-7). Physiol Rev. 98:505–553.
2018.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Yang J, Feng X, Zhou Q, Cheng W, Shang C,
Han P, Lin CH, Chen HS, Quertermos T and Chang CP: Pathological
Ace2-to-Ace enzyme switch in the stressed heart is
transcriptionally controlled by the endothelial Brg1-FoxM1 complex.
Proc Natl Acad Sci USA. 113:E5628–E5635. 2016.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Brodehl A, Ebbinghaus H, Deutsch MA,
Gummert J, Gartner A, Ratnavadivel S and Milting H: Human induced
pluripotent stem-cell-derived cardiomyocytes as models for genetic
cardiomyopathies. Int J Mol Sci. 20(4381)2019.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Husková Z, Kopkan L, Červenková L,
Doleželová Š, Vaňourková Z, Škaroupková P, Nishiyama A,
Kompanowska-Jezierska E, Sadowski J, Kramer HJ and Červenka L:
Intrarenal alterations of the angiotensin-converting enzyme type
2/angiotensin 1-7 complex of the renin-angiotensin system do not
alter the course of malignant hypertension in Cyp1a1-Ren-2
transgenic rats. Clin Exp Pharmacol Physiol. 43:438–449.
2016.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Úri K, Fagyas M, Mányiné Siket I, Kertész
A, Csanádi Z, Sándorfi G, Clemens M, Fedor R, Papp Z, Édes I, et
al: New perspectives in the renin-angiotensin-aldosterone system
(RAAS) IV: Circulating ACE2 as a biomarker of systolic dysfunction
in human hypertension and heart failure. PLoS One.
9(e87845)2014.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Luo Y, Liu C, Guan T, Li Y, Lai Y, Li F,
Zhao M, Maimaiti T and Zeyaweiding A: Association of ACE2 genetic
polymorphisms with hypertension-related target organ damages in
south Xinjiang. Hypertens Res. 42:681–689. 2019.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Pan Y, Wang T, Li Y, Guan T, Lai Y, Shen
Y, Zeyaweiding A, Maimaiti T, Li F, Zhao H and Liu C: Association
of ACE2 polymorphisms with susceptibility to essential hypertension
and dyslipidemia in Xinjiang, China. Lipids Health Dis.
17(241)2018.PubMed/NCBI View Article : Google Scholar
|
|
22
|
He Y, Yang W, Liu S, Gan L, Zhang F, Mu C,
Wang J, Qu L, Wang R, Deng J, et al: Interactions between
angiotensin-converting enzyme-2 polymorphisms and high salt intake
increase the risk of hypertension in the Chinese Wa population. Int
J Clin Exp Pathol. 10:11159–11168. 2017.PubMed/NCBI
|
|
23
|
Bosso M, Thanaraj TA, Abu-Farha M,
Alanbaei M, Abubaker J and Al-Mulla F: The two faces of ACE2: The
role of ACE2 receptor and its polymorphisms in hypertension and
COVID-19. Mol Ther Methods Clin Dev. 18:321–327. 2020.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Liu D, Chen Y, Zhang P, Zhong J, Jin L,
Zhang C, Liu S, Wu S and Yu H: Association between circulating
levels of ACE2-Ang-(1-7)-MAS axis and ACE2 gene polymorphisms in
hypertensive patients. Medicine (Baltimore).
95(e3876)2016.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Patel SK, Velkoska E, Freeman M, Wai B,
Lancefield TF and Burrell LM: From gene to protein-experimental and
clinical studies of ACE2 in blood pressure control and arterial
hypertension. Front Physiol. 5(227)2014.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Liu C, Li Y, Guan T, Lai Y, Shen Y,
Zeyaweiding A, Zhao H, Li F and Maimaiti T: ACE2 polymorphisms
associated with cardiovascular risk in Uygurs with type 2 diabetes
mellitus. Cardiovasc Diabetol. 17(127)2018.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Vašků A, Bienertová-Vašků J, Pařenica J,
Goldbergová MP, Lipková J, Zlámal F, Kala P and Spinar J: ACE2 gene
polymorphisms and invasively measured central pulse pressure in
cardiac patients indicated for coronarography. J Renin Angiotensin
Aldosterone Syst. 14:220–226. 2013.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Patel SK, Wai B, Ord M, MacIsaac RJ, Grant
S, Velkoska E, Panagiotopoulos S, Jerums G, Srivastava PM and
Burrell LM: Association of ACE2 genetic variants with blood
pressure, left ventricular mass, and cardiac function in Caucasians
with type 2 diabetes. Am J Hypertens. 25:216–222. 2012.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Lieb W, Graf J, Götz A, König IR, Mayer B,
Fischer M, Stritzke J, Hengstenberg C, Holmer SR, Döring A, et al:
Association of angiotensin-converting enzyme 2 (ACE2) gene
polymorphisms with parameters of left ventricular hypertrophy in
men. Results of the MONICA Augsburg echocardiographic substudy. J
Mol Med (Berl). 84:88–96. 2006.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Niu J, Azfer A, Deucher MF,
Goldschmidt-Clermont PJ and Kolattukudy PE: Targeted cardiac
expression of soluble Fas prevents the development of heart failure
in mice with cardiac-specific expression of MCP-1. J Mol Cell
Cardiol. 40:810–820. 2006.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Matsuda S, Umemoto S, Yoshimura K, Itoh S,
Murata T, Fukai T and Matsuzaki M: Angiotensin activates MCP-1 and
induces cardiac hypertrophy and dysfunction via toll-like receptor
4. J Atheroscler Thromb. 22:833–844. 2015.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Piotrowski P, Lianeri M, Gasik R, Roszak
A, Olesińska M and Jagodziński PP: Monocyte chemoattractant
protein-1-2518 A/G single nucleotide polymorphism might be
associated with renal disease and thrombocytopenia of SLE. J Biomed
Biotechnol. 2010(130265)2010.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Kaur R, Matharoo K, Arora P and Bhanwer
AJ: Association of -2518A>G promoter polymorphism in the
monocyte chemoattractant protein-1 (MCP-1) gene with type 2
diabetes and coronary artery disease. Genet Test Mol Biomarkers.
17:750–755. 2013.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Penz P, Bucova M, Lietava J, Blazicek P,
Paulovicova E, Mrazek F, Bernadic M, Buckingham TA and Petrek M:
MCP-1-2518 A/G gene polymorphism is associated with blood pressure
in ischemic heart disease asymptomatic subjects. Bratisl Lek Listy.
111:420–425. 2010.PubMed/NCBI
|
|
35
|
Cai G, Zhang B, Weng W, Shi G and Huang Z:
The associations between the MCP-1-2518 A/G polymorphism and
ischemic heart disease and ischemic stroke: A meta-analysis of 28
research studies involving 21,524 individuals. Mol Biol Rep.
42:997–1012. 2015.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Lang RM, Badano LP, Mor-Avi V, Afilalo J,
Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA,
Kuznetsova T, et al: Recommendations for cardiac chamber
quantification by echocardiography in adults: An update from the
American Society of Echocardiography and the European Association
of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging.
16:233–270. 2015.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Ponikowski P, Voors AA, Anker SD, Bueno H,
Cleland JG, Coats AJ, Falk V, González-Juanatey JR, Harjola VP,
Jankowska EA, et al: 2016 ESC Guidelines for the diagnosis and
treatment of acute and chronic heart failure: The Task Force for
the diagnosis and treatment of acute and chronic heart failure of
the European Society of Cardiology (ESC)Developed with the special
contribution of the Heart Failure Association (HFA) of the ESC. Eur
Heart J. 37:2129–2200. 2016.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Takano H, Hasegawa H, Nagai T and Komuro
I: Implication of cardiac remodeling in heart failure: Mechanisms
and therapeutic strategies. Intern Med. 42:465–469. 2003.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Konstam MA, Kronenberg MW, Rousseau MF,
Udelson JE, Melin J, Stewart D, Dolan N, Edens TR, Ahn S, Kinan D,
et al: Effects of the angiotensin converting enzyme inhibitor
enalapril on the long-term progression of left ventricular
dilatation in patients with asymptomatic systolic dysfunction.
SOLVD (Studies of Left Ventricular Dysfunction) Investigators.
Circulation. 88:2277–2283. 1993.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Doughty RN, Whalley GA, Gamble G, MacMahon
S and Sharpe N: Effects of carvedilol on left ventricular regional
wall motion in patients with heart failure caused by ischemic heart
disease. Australia-New Zealand Heart Failure Research Collaborative
Group. J Card Fail. 6:11–18. 2000.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Colucci WS, Kolias TJ, Adams KF, Armstrong
WF, Ghali JK, Gottlieb SS, Greenberg B, Kilbaner MI, Kukin ML and
Sugg JE: REVERT Study Group. Metoprolol reverses left ventricular
remodeling in patients with asymptomatic systolic dysfunction: The
REversal of VEntricular Remodeling with Toprol-XL (REVERT) trial.
Circulation. 116:49–56. 2007.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Waagstein F, Strömblad O, Andersson B,
Böhm M, Darius M, Delius W, Goss F, Osterziel KJ, Sigmund M,
Trenkwalder SP and Wahlqvist I: Increased exercise ejection
fraction and reversed remodeling after long-term treatment with
metoprolol in congestive heart failure: A randomized, stratified,
double-blind, placebo-controlled trial in mild to moderate heart
failure due to ischemic or idiopathic dilated cardiomyopathy. Eur J
Heart Fail. 5:679–691. 2003.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Cohn JN, Ferrari R and Sharpe N: Cardiac
remodeling-concepts and clinical implications: A consensus paper
from an international forum on cardiac remodeling. Behalf of an
International Forum on Cardiac Remodeling. J Am Coll Cardiol.
35:569–582. 2000.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Ferrario CM: Cardiac remodelling and RAS
inhibition. Ther Adv Cardiovasc Dis. 10:162–171. 2016.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Bauters C, Dubois E, Porouchani S, Saloux
E, Fertin M, de Groote P, Lamblin N and Pinet F: Long-term
prognostic impact of left ventricular remodeling after a first
myocardial infarction in modern clinical practice. PLoS One.
12(e0188884)2017.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Ortlepp JR, Vesper K, Mevissen V, Schmitz
F, Janssens U, Franke A, Hanrath P, Weber C, Zerres K and Hoffmann
R: Chemokine receptor (CCR2) genotype is associated with myocardial
infarction and heart failure in patients under 65 years of age. J
Mol Med (Berl). 81:363–367. 2003.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Szalai C, Duba J, Prohászka Z, Kalina A,
Szabó T, Nagy B, Horváth L and Császár A: Involvement of
polymorphisms in the chemokine system in the susceptibility for
coronary artery disease (CAD). Coincidence of elevated Lp(a) and
MCP-1-2518 G/G genotype in CAD patients. Atherosclerosis.
158:233–239. 2001.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Nyquist PA, Winkler CA, McKenzie LM, Yanek
LR, Becker LC and Becker DM: Single nucleotide polymorphisms in
monocyte chemoattractant protein-1 and its receptor act
synergistically to increase the risk of carotid atherosclerosis.
Cerebrovasc Dis. 28:124–130. 2009.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Kerget B, Araz O, Erdem HB and Akgün M:
The frequency of monocyte chemoattractant protein-1 gene
polymorphism in obstructive sleep apnea syndrome. Lung.
197:585–592. 2019.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Sardana M, Lessard D, Tsao CW, Parikh NI,
Barton BA, Nah G, Thomas RC, Cheng S, Schiller NB, Aragam JR, et
al: Association of left atrial function index with atrial
fibrillation and cardiovascular disease: The Framingham Offspring
Study. Journal of the American Heart Association 7, 2018.
|
|
51
|
Froehlich L, Meyre P, Aeschbacher S, Blum
S, Djokic D, Kuehne M, Osswald S, Kaufmann BA and Conen D: Left
atrial dimension and cardiovascular outcomes in patients with and
without atrial fibrillation: A systematic review and meta-analysis.
Heart. 105:1884–1891. 2019.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Vaziri SM, Larson MG, Lauer MS, Benjamin
EJ and Levy D: Influence of blood pressure on left atrial size. The
Framingham Heart Study. Hypertension. 25:1155–1160. 1995.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Rusinaru D, Tribouilloy C, Grigioni F,
Avierinos JF, Suri RM, Barbieri A, Szymanski C, Ferlito M,
Michelena H, Tafanelli L, et al: Left atrial size is a potent
predictor of mortality in mitral regurgitation due to flail
leaflets: Results from a large international multicenter study.
Circ Cardiovasc Imaging. 4:473–481. 2011.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Shenasa M and Shenasa H: Hypertension,
left ventricular hypertrophy, and sudden cardiac death. Int J
Cardiol. 237:60–63. 2017.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Stewart MH, Lavie CJ, Shah S, Englert J,
Gilliland Y, Qamruddin S, Dinshaw H, Cash M, Ventura H and Milani
R: Prognostic implications of left ventricular hypertrophy. Prog
Cardiovasc Dis. 61:446–455. 2018.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Thomas MC, Pickering RJ, Tsorotes D,
Koitka A, Sheehy K, Bernardi S, Toffoli B, Nguyen-Huu TC, Head GA,
Fu Y, et al: Genetic Ace2 deficiency accentuates vascular
inflammation and atherosclerosis in the ApoE knockout mouse. Circ
Res. 107:888–897. 2010.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Alghamri MS, Weir NM, Anstadt MP, Elased
KM, Gurley SB and Morris M: Enhanced angiotensin II-induced cardiac
and aortic remodeling in ACE2 knockout mice. J Cardiovasc Pharmacol
Ther. 18:138–151. 2013.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Goulter AB, Goddard MJ, Allen JC and Clark
KL: ACE2 gene expression is up-regulated in the human failing
heart. BMC Med. 2(19)2004.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Burrell LM, Risvanis J, Kubota E, Dean RG,
MacDonald PS, Lu S, Tikellis C, Grant SL, Lew RA, Smith AI, et al:
Myocardial infarction increases ACE2 expression in rat and humans.
Eur Heart J. 26:369–375; discussion 22-24. 2005.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Epelman S, Tang WH, Chen SY, Van Lente F,
Francis GS and Sen S: Detection of soluble angiotensin-converting
enzyme 2 in heart failure: Insights into the endogenous
counter-regulatory pathway of the renin-angiotensin-aldosterone
system. J Am Coll Cardiol. 52:750–754. 2008.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Blackwood EM and Kadonaga JT: Going the
distance: A current view of enhancer action. Science. 281:60–63.
1998.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Horikawa Y, Oda N, Cox NJ, Li X,
Orho-Melander M, Hara M, Hinokio Y, Lindner TH, Mashima H, Schwarz
PE, et al: Genetic variation in the gene encoding calpain-10 is
associated with type 2 diabetes mellitus. Nat Genet. 26:163–175.
2000.PubMed/NCBI View
Article : Google Scholar
|
|
63
|
Tokuhiro S, Yamada R, Chang X, Suzuki A,
Kochi Y, Sawada T, Suzuki M, Nagasaki M, Ohtsuki M, Ono M, et al:
An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an
organic cation transporter, is associated with rheumatoid
arthritis. Nat Genet. 35:341–348. 2003.PubMed/NCBI View
Article : Google Scholar
|
|
64
|
Zhao Q, Gu D, Kelly TN, Hixson JE, Rao DC,
Jaquish CE, Chen J, Huang J, Chen CS, Gu CC, et al: Association of
genetic variants in the apelin-APJ system and ACE2 with blood
pressure responses to potassium supplementation: The GenSalt study.
Am J Hypertens. 23:606–613. 2010.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Fan X, Wang Y, Sun K, Zhang W, Yang X,
Wang S, Zhen Y, Wang J, Li W, Han Y, et al: Polymorphisms of ACE2
gene are associated with essential hypertension and
antihypertensive effects of Captopril in women. Clin Pharmacol
Ther. 82:187–196. 2007.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Chen YY, Liu D, Zhang P, Zhong JC, Zhang
CJ, Wu SL, Zhang YQ, Liu GZ, He M, Jin LJ and Yu HM: Impact of ACE2
gene polymorphism on antihypertensive efficacy of ACE inhibitors. J
Hum Hypertens. 30:766–771. 2016.PubMed/NCBI View Article : Google Scholar
|