Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
July-2021 Volume 22 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2021 Volume 22 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Analysis of therapeutic potential of preclinical models based on DR3/TL1A pathway modulation (Review)

  • Authors:
    • Yunhong Yu
    • Peng Jiang
    • Pan Sun
    • Na Su
    • Fangzhao Lin
  • View Affiliations / Copyright

    Affiliations: Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
    Copyright: © Yu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 693
    |
    Published online on: May 2, 2021
       https://doi.org/10.3892/etm.2021.10125
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Death receptor 3 (DR3) and its corresponding ligand, tumor necrosis factor‑like ligand 1A (TL1A), belong to the tumor necrosis factor superfamily. Signaling via this receptor‑ligand pair results in pro‑inflammatory and anti‑inflammatory effects. Effector lymphocytes can be activated to exert pro‑inflammatory activity by triggering the DR3/TL1A pathway. By contrast, DR3/TL1A signaling also induces expansion of the suppressive function of regulatory T cells, which serve an important role in exerting anti‑inflammatory functions and maintaining immune homeostasis. Preclinical evidence indicates that neutralizing and agonistic antibodies, as well as ligand‑based approaches targeting the DR3/TL1A pathway, may be used to treat diseases, including inflammatory and immune‑mediated diseases. Accumulating evidence has suggested that modulating the DR3/TL1A pathway is a promising therapeutic approach for patients with these diseases. This review discusses preclinical models to gauge the progress of therapeutic strategies for diseases involving the DR3/TL1A pathway to aid in drug development.
View Figures

Figure 1

View References

1 

Dostert C, Grusdat M, Letellier E and Brenner D: The TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond. Physiol Rev. 99:115–160. 2019.PubMed/NCBI View Article : Google Scholar

2 

Aggarwal BB, Gupta SC and Kim JH: Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood. 119:651–665. 2012.PubMed/NCBI View Article : Google Scholar

3 

Yang Y, Yeh SH, Madireddi S, Matochko WL, Gu C, Pacheco Sanchez P, Ultsch M, De Leon Boenig G, Harris SF, Leonard B, et al: Tetravalent biepitopic targeting enables intrinsic antibody agonism of tumor necrosis factor receptor superfamily members. MAbs. 11:996–1011. 2019.PubMed/NCBI View Article : Google Scholar

4 

Valatas V, Kolios G and Bamias G: TL1A (TNFSF15) and DR3 (TNFRSF25): A Co-stimulatory System of Cytokines With Diverse Functions in Gut Mucosal Immunity. Front Immunol. 10(583)2019.PubMed/NCBI View Article : Google Scholar

5 

Li L, Fu L, Zhou P, Lu Y, Zhang L, Wang W, Nie J, Zhang D, Liu Y, Wu B, et al: Effects of tumor necrosis factor-like ligand 1A (TL1A) on imiquimod-induced psoriasiform skin inflammation in mice. Arch Dermatol Res. 312:481–490. 2020.PubMed/NCBI View Article : Google Scholar

6 

Clarke AW, Poulton L, Shim D, Mabon D, Butt D, Pollard M, Pande V, Husten J, Lyons J, Tian C, et al: An anti-TL1A antibody for the treatment of asthma and inflammatory bowel disease. MAbs. 10:664–677. 2018.PubMed/NCBI View Article : Google Scholar

7 

Richard AC, Tan C, Hawley ET, Gomez-Rodriguez J, Goswami R, Yang XP, Cruz AC, Penumetcha P, Hayes ET, Pelletier M, et al: The TNF-family ligand TL1A and its receptor DR3 promote T cell-mediated allergic immunopathology by enhancing differentiation and pathogenicity of IL-9-producing T cells. J Immunol. 194:3567–3582. 2015.PubMed/NCBI View Article : Google Scholar

8 

Schreiber TH, Wolf D, Tsai MS, Chirinos J, Deyev VV, Gonzalez L, Malek TR, Levy RB and Podack ER: Therapeutic Treg expansion in mice by TNFRSF25 prevents allergic lung inflammation. J Clin Invest. 120:3629–3640. 2010.PubMed/NCBI View Article : Google Scholar

9 

Khan SQ, Tsai MS, Schreiber TH, Wolf D, Deyev VV and Podack ER: Cloning, expression, and functional characterization of TL1A-Ig. J Immunol. 190:1540–1550. 2013.PubMed/NCBI View Article : Google Scholar

10 

Mavers M, Simonetta F, Nishikii H, Ribado JV, Maas-Bauer K, Alvarez M, Hirai T, Turkoz M, Baker J and Negrin RS: Activation of the DR3-TL1A Axis in Donor Mice Leads to Regulatory T Cell Expansion and Activation With Reduction in Graft-Versus-Host Disease. Front Immunol. 10(1624)2019.PubMed/NCBI View Article : Google Scholar

11 

Chinnaiyan AM, O'Rourke K, Yu GL, Lyons RH, Garg M, Duan DR, Xing L, Gentz R, Ni J and Dixit VM: Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science. 274:990–992. 1996.PubMed/NCBI View Article : Google Scholar

12 

Perks WV, Singh RK, Jones GW, Twohig JP, Williams AS, Humphreys IR, Taylor PR, Jones SA and Wang ECY: Death Receptor 3 Promotes Chemokine-Directed Leukocyte Recruitment in Acute Resolving Inflammation and Is Essential for Pathological Development of Mesothelial Fibrosis in Chronic Disease. Am J Pathol. 186:2813–2823. 2016.PubMed/NCBI View Article : Google Scholar

13 

Wang EC, Kitson J, Thern A, Williamson J, Farrow SN and Owen MJ: Genomic structure, expression, and chromosome mapping of the mouse homologue for the WSL-1 (DR3, Apo3, TRAMP, LARD, TR3, TNFRSF12) gene. Immunogenetics. 53:59–63. 2001.PubMed/NCBI View Article : Google Scholar

14 

Screaton GR, Xu XN, Olsen AL, Cowper AE, Tan R, McMichael AJ and Bell JI: LARD: A new lymphoid-specific death domain containing receptor regulated by alternative pre-mRNA splicing. Proc Natl Acad Sci USA. 94:4615–4619. 1997.PubMed/NCBI View Article : Google Scholar

15 

Schreiber TH and Podack ER: Immunobiology of TNFSF15 and TNFRSF25. Immunol Res. 57:3–11. 2013.PubMed/NCBI View Article : Google Scholar

16 

Gout S, Morin C, Houle F and Huot J: Death receptor-3, a new E-Selectin counter-receptor that confers migration and survival advantages to colon carcinoma cells by triggering p38 and ERK MAPK activation. Cancer Res. 66:9117–9124. 2006.PubMed/NCBI View Article : Google Scholar

17 

Al-Lamki RS, Wang J, Thiru S, Pritchard NR, Bradley JA, Pober JS and Bradley JR: Expression of silencer of death domains and death-receptor-3 in normal human kidney and in rejecting renal transplants. Am J Pathol. 163:401–411. 2003.PubMed/NCBI View Article : Google Scholar

18 

Liu W, Vetreno RP and Crews FT: Hippocampal TNF-death receptors, caspase cell death cascades, and IL-8 in alcohol use disorder. Mol Psychiatry: Mar 5, 2020 (Epub ahead of print). doi: 10.1038/s41380-020-0698-4.

19 

Bittner S and Ehrenschwender M: Multifaceted death receptor 3 signaling-promoting survival and triggering death. FEBS Lett. 591:2543–2555. 2017.PubMed/NCBI View Article : Google Scholar

20 

Collins FL, Stone MD, Turton J, McCabe LR, Wang ECY and Williams AS: Oestrogen-deficiency induces bone loss by modulating CD14+ monocyte and CD4+ T cell DR3 expression and serum TL1A levels. BMC Musculoskelet Disord. 20(326)2019.PubMed/NCBI View Article : Google Scholar

21 

Della Bella S, Calcaterra F, Bacci M, Carenza C, Pandolfo C, Ferrazzi P, Uva P, Pagani M, Lodigiani C and Mavilio D: Pathologic up-regulation of TNFSF15-TNFRSF25 axis sustains endothelial dysfunction in unprovoked venous thromboembolism. Cardiovasc Res. 116:698–707. 2020.PubMed/NCBI View Article : Google Scholar

22 

Slebioda TJ, Bojarska-Junak A, Cyman M, Landowski P, Kaminska B, Celinski K and Kmiec Z: Expression of death receptor 3 on peripheral blood mononuclear cells differes in adult IBD patients and children with newly diagnosed IBD. Cytometry B Clin Cytom. 92:165–169. 2017.PubMed/NCBI View Article : Google Scholar

23 

Facco M, Cabrelle A, Calabrese F, Teramo A, Cinetto F, Carraro S, Martini V, Calzetti F, Tamassia N, Cassatella MA, et al: TL1A/DR3 axis involvement in the inflammatory cytokine network during pulmonary sarcoidosis. Clin Mol Allergy. 13(16)2015.PubMed/NCBI View Article : Google Scholar

24 

Li L, Lu Y, Fu L, Zhou P, Zhang L, Wang W, Nie J, Zhang D, Liu Y, Wu B, et al: Expression of death receptor 3 (DR3) on peripheral blood mononuclear cells of patients with psoriasis vulgaris. Postgrad Med J. 94:551–555. 2018.PubMed/NCBI View Article : Google Scholar

25 

Safaya S, Alfarhan M, Sulaiman A, Alsulaiman A and Al-Ali A: TNFSF/TNFRSF cytokine gene expression in sickle cell anemia: Up-regulated TNF-like cytokine 1A (TL1A) and its decoy receptor (DcR3) in peripheral blood mononuclear cells and plasma. Cytokine. 123(154744)2019.PubMed/NCBI View Article : Google Scholar

26 

Ślebioda TJ, Stanisławowski M, Cyman M, Wierzbicki PM, Żurawa-Janicka D, Kobiela J, Makarewicz W, Guzek M and Kmieć Z: Distinct Expression Patterns of Two Tumor Necrosis Factor Superfamily Member 15 Gene Isoforms in Human Colon Cancer. Dig Dis Sci. 64:1857–1867. 2019.PubMed/NCBI View Article : Google Scholar

27 

Bittner S, Knoll G, Füllsack S, Kurz M, Wajant H and Ehrenschwender M: Soluble TL1A is sufficient for activation of death receptor 3. FEBS J. 283:323–336. 2016.PubMed/NCBI View Article : Google Scholar

28 

Li Z, Buttó LF, Buela KA, Jia LG, Lam M, Ward JD, Pizarro TT and Cominelli F: Death Receptor 3 Signaling Controls the Balance between Regulatory and Effector Lymphocytes in SAMP1/YitFc Mice with Crohn's Disease-Like Ileitis. Front Immunol. 9(362)2018.PubMed/NCBI View Article : Google Scholar

29 

Nishikii H, Kim BS, Yokoyama Y, Chen Y, Baker J, Pierini A, Alvarez M, Mavers M, Maas-Bauer K, Pan Y, et al: DR3 signaling modulates the function of Foxp3+ regulatory T cells and the severity of acute graft-versus-host disease. Blood. 128:2846–2858. 2016.PubMed/NCBI View Article : Google Scholar

30 

Xu LX, Grimaldo S, Qi JW, Yang GL, Qin TT, Xiao HY, Xiang R, Xiao Z, Li LY and Zhang ZS: Death receptor 3 mediates TNFSF15- and TNFα-induced endothelial cell apoptosis. Int J Biochem Cell Biol. 55:109–118. 2014.PubMed/NCBI View Article : Google Scholar

31 

Buttó LF, Jia LG, Arseneau KO, Tamagawa H, Rodriguez-Palacios A, Li Z, De Salvo C, Pizarro TT, Bamias G and Cominelli F: Death-Domain-Receptor 3 Deletion Normalizes Inflammatory Gene Expression and Prevents Ileitis in Experimental Crohn's Disease. Inflamm Bowel Dis. 25:14–26. 2019.PubMed/NCBI View Article : Google Scholar

32 

Li J, Shi W, Sun H, Ji Y, Chen Y, Guo X, Sheng H, Shu J, Zhou L, Cai T, et al: Activation of DR3 signaling causes loss of ILC3s and exacerbates intestinal inflammation. Nat Commun. 10(3371)2019.PubMed/NCBI View Article : Google Scholar

33 

Castellanos JG, Woo V, Viladomiu M, Putzel G, Lima S, Diehl GE, Marderstein AR, Gandara J, Perez AR, Withers DR, et al: Microbiota-Induced TNF-like Ligand 1A Drives Group 3 Innate Lymphoid Cell-Mediated Barrier Protection and Intestinal T Cell Activation during Colitis. Immunity. 49:1077–1089.e5. 2018.PubMed/NCBI View Article : Google Scholar

34 

Karta MR, Broide DH and Doherty TA: Insights into Group 2 Innate Lymphoid Cells in Human Airway Disease. Curr Allergy Asthma Rep. 16(8)2016.PubMed/NCBI View Article : Google Scholar

35 

Singh RK, Perks WV, Twohig JP, Kidd EJ, Broadley K, Farrow SN, Williams AS, Taylor PR and Wang ECY: Death Receptor 3 regulates distinct pathological attributes of acute versus chronic murine allergic lung inflammation. Cell Immunol. 320:62–70. 2017.PubMed/NCBI View Article : Google Scholar

36 

Jin S, Chin J, Seeber S, Niewoehner J, Weiser B, Beaucamp N, Woods J, Murphy C, Fanning A, Shanahan F, et al: TL1A/TNFSF15 directly induces proinflammatory cytokines, including TNFα, from CD3+CD161+ T cells to exacerbate gut inflammation. Mucosal Immunol. 6:886–899. 2013.PubMed/NCBI View Article : Google Scholar

37 

Papadakis KA, Zhu D, Prehn JL, Landers C, Avanesyan A, Lafkas G and Targan SR: Dominant role for TL1A/DR3 pathway in IL-12 plus IL-18-induced IFN-gamma production by peripheral blood and mucosal CCR9+ T lymphocytes. J Immunol. 174:4985–4990. 2005.PubMed/NCBI View Article : Google Scholar

38 

Siakavellas SI and Bamias G: Tumor Necrosis Factor-like Cytokine TL1A and Its Receptors DR3 and DcR3: Important New Factors in Mucosal Homeostasis and Inflammation. Inflamm Bowel Dis. 21:2441–2452. 2015.PubMed/NCBI View Article : Google Scholar

39 

Fang L, Adkins B, Deyev V and Podack ER: Essential role of TNF receptor superfamily 25 (TNFRSF25) in the development of allergic lung inflammation. J Exp Med. 205:1037–1048. 2008.PubMed/NCBI View Article : Google Scholar

40 

Meylan F, Davidson TS, Kahle E, Kinder M, Acharya K, Jankovic D, Bundoc V, Hodges M, Shevach EM, Keane-Myers A, et al: The TNF-family receptor DR3 is essential for diverse T cell-mediated inflammatory diseases. Immunity. 29:79–89. 2008.PubMed/NCBI View Article : Google Scholar

41 

Basnyat P, Sumelahti ML, Lehtimäki T, Elovaara I and Hagman S: Gene expression profiles of TNF-like cytokine 1A (TL1A) and its receptors death receptor 3 (DR3) and decoy receptor 3 (DcR3) in multiple sclerosis. J Neuroimmunol. 335(577020)2019.PubMed/NCBI View Article : Google Scholar

42 

Jones GW, Stumhofer JS, Foster T, Twohig JP, Hertzog P, Topley N, Williams AS, Hunter CA, Jenkins BJ, Wang EC, et al: Naive and activated T cells display differential responsiveness to TL1A that affects Th17 generation, maintenance, and proliferation. FASEB J. 25:409–419. 2011.PubMed/NCBI View Article : Google Scholar

43 

Zhou M, Liu R, Su D, Feng X and Li X: TL1A increased the differentiation of peripheral Th17 in rheumatoid arthritis. Cytokine. 69:125–130. 2014.PubMed/NCBI View Article : Google Scholar

44 

Pappu BP, Borodovsky A, Zheng TS, Yang X, Wu P, Dong X, Weng S, Browning B, Scott ML, Ma L, et al: TL1A-DR3 interaction regulates Th17 cell function and Th17-mediated autoimmune disease. J Exp Med. 205:1049–1062. 2008.PubMed/NCBI View Article : Google Scholar

45 

Wang D, Li H, Duan YY, Han F, Luo YX, Wu MY, Yang MY, Zhan RR, Song J, Zhang H, et al: TL1A modulates the severity of colitis by promoting Th9 differentiation and IL-9 secretion. Life Sci. 231(116536)2019.PubMed/NCBI View Article : Google Scholar

46 

Tsuda M, Hamade H, Thomas LS, Salumbides BC, Potdar AA, Wong MH, Nunnelee JS, Stamps JT, Neutzsky-Wulff AV, Barrett RJ, et al: A role for BATF3 in TH9 differentiation and T-cell-driven mucosal pathologies. Mucosal Immunol. 12:644–655. 2019.PubMed/NCBI View Article : Google Scholar

47 

Meylan F, Hawley ET, Barron L, Barlow JL, Penumetcha P, Pelletier M, Sciumè G, Richard AC, Hayes ET, Gomez-Rodriguez J, et al: The TNF-family cytokine TL1A promotes allergic immunopathology through group 2 innate lymphoid cells. Mucosal Immunol. 7:958–968. 2014.PubMed/NCBI View Article : Google Scholar

48 

Castellanos JG and Longman RS: Innate lymphoid cells link gut microbes with mucosal T cell immunity. Gut Microbes. 11:231–236. 2020.PubMed/NCBI View Article : Google Scholar

49 

Bull MJ, Williams AS, Mecklenburgh Z, Calder CJ, Twohig JP, Elford C, Evans BA, Rowley TF, Slebioda TJ, Taraban VY, et al: The Death Receptor 3-TNF-like protein 1A pathway drives adverse bone pathology in inflammatory arthritis. J Exp Med. 205:2457–2464. 2008.PubMed/NCBI View Article : Google Scholar

50 

Tougaard P, Zervides KA, Skov S, Hansen AK and Pedersen AE: Biologics beyond TNF-α inhibitors and the effect of targeting the homologues TL1A-DR3 pathway in chronic inflammatory disorders. Immunopharmacol Immunotoxicol. 38:29–38. 2016.PubMed/NCBI View Article : Google Scholar

51 

Takedatsu H, Michelsen KS, Wei B, Landers CJ, Thomas LS, Dhall D, Braun J and Targan SR: TL1A (TNFSF15) regulates the development of chronic colitis by modulating both T-helper 1 and T-helper 17 activation. Gastroenterology. 135:552–567. 2008.PubMed/NCBI View Article : Google Scholar

52 

Meylan F, Song YJ, Fuss I, Villarreal S, Kahle E, Malm IJ, Acharya K, Ramos HL, Lo L, Mentink-Kane MM, et al: The TNF-family cytokine TL1A drives IL-13-dependent small intestinal inflammation. Mucosal Immunol. 4:172–185. 2011.PubMed/NCBI View Article : Google Scholar

53 

Shih DQ, Zheng L, Zhang X, Zhang H, Kanazawa Y, Ichikawa R, Wallace KL, Chen J, Pothoulakis C, Koon HW, et al: Inhibition of a novel fibrogenic factor Tl1a reverses established colonic fibrosis. Mucosal Immunol. 7:1492–1503. 2014.PubMed/NCBI View Article : Google Scholar

54 

Li H, Song J, Niu G, Zhang H, Guo J, Shih DQ, Targan SR and Zhang X: TL1A blocking ameliorates intestinal fibrosis in the T cell transfer model of chronic colitis in mice. Pathol Res Pract. 214:217–227. 2018.PubMed/NCBI View Article : Google Scholar

55 

Deng G, Song X and Greene MI: FoxP3 in Treg cell biology: A molecular and structural perspective. Clin Exp Immunol. 199:255–262. 2020.PubMed/NCBI View Article : Google Scholar

56 

Williams LM and Rudensky AY: Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol. 8:277–284. 2007.PubMed/NCBI View Article : Google Scholar

57 

Allos H, Al Dulaijan BS, Choi J and Azzi J: Regulatory T Cells for More Targeted Immunosuppressive Therapies. Clin Lab Med. 39:1–13. 2019.PubMed/NCBI View Article : Google Scholar

58 

Lubrano di Ricco M, Ronin E, Collares D, Divoux J, Grégoire S, Wajant H, Gomes T, Grinberg-Bleyer Y, Baud V, Marodon G, et al: Tumor necrosis factor receptor family costimulation increases regulatory T-cell activation and function via NF-κB. Eur J Immunol. 50:972–985. 2020.PubMed/NCBI View Article : Google Scholar

59 

Bittner S, Knoll G and Ehrenschwender M: Death receptor 3 signaling enhances proliferation of human regulatory T cells. FEBS Lett. 591:1187–1195. 2017.PubMed/NCBI View Article : Google Scholar

60 

Tran GT, Hodgkinson SJ, Carter N, Verma ND, Robinson CM, Plain KM, Nomura M and Hall BM: Autoantigen specific IL-2 activated CD4+CD25+T regulatory cells inhibit induction of experimental autoimmune neuritis. J Neuroimmunol. 341(577186)2020.PubMed/NCBI View Article : Google Scholar

61 

Zhang J, Czerpaniak K, Huang L, Liu X, Cloud ME, Unsinger J, Hotchkiss RS, Li D and Cao YQ: Low-dose interleukin-2 reverses behavioral sensitization in multiple mouse models of headache disorders. Pain. 161:1381–1398. 2020.PubMed/NCBI View Article : Google Scholar

62 

Scalapino KJ, Tang Q, Bluestone JA, Bonyhadi ML and Daikh DI: Suppression of disease in New Zealand Black/New Zealand White lupus-prone mice by adoptive transfer of ex vivo expanded regulatory T cells. J Immunol. 177:1451–1459. 2006.PubMed/NCBI View Article : Google Scholar

63 

Canavan JB, Scottà C, Vossenkämper A, Goldberg R, Elder MJ, Shoval I, Marks E, Stolarczyk E, Lo JW, Powell N, et al: Developing in vitro expanded CD45RA+ regulatory T cells as an adoptive cell therapy for Crohn's disease. Gut. 65:584–594. 2016.PubMed/NCBI View Article : Google Scholar

64 

Golshayan D, Jiang S, Tsang J, Garin MI, Mottet C and Lechler RI: In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance. Blood. 109:827–835. 2007.PubMed/NCBI View Article : Google Scholar

65 

Xia G, He J and Leventhal JR: Ex vivo-expanded natural CD4+CD25+ regulatory T cells synergize with host T-cell depletion to promote long-term survival of allografts. Am J Transplant. 8:298–306. 2008.PubMed/NCBI View Article : Google Scholar

66 

Matsuoka KI: Low-dose interleukin-2 as a modulator of Treg homeostasis after HSCT: Current understanding and future perspectives. Int J Hematol. 107:130–137. 2018.PubMed/NCBI View Article : Google Scholar

67 

Kapur R, Kim M, Aslam R, McVey MJ, Tabuchi A, Luo A, Liu J, Li Y, Shanmugabhavananthan S, Speck ER, et al: T regulatory cells and dendritic cells protect against transfusion-related acute lung injury via IL-10. Blood. 129:2557–2569. 2017.PubMed/NCBI View Article : Google Scholar

68 

He R, Li L, Kong Y, Tian L, Tian X, Fang P, Bian M and Liu Z: Preventing murine transfusion-related acute lung injury by expansion of CD4+ CD25+ FoxP3+ Tregs using IL-2/anti-IL-2 complexes. Transfusion. 59:534–544. 2019.PubMed/NCBI View Article : Google Scholar

69 

Madireddi S, Eun SY, Mehta AK, Birta A, Zajonc DM, Niki T, Hirashima M, Podack ER, Schreiber TH and Croft M: Regulatory T Cell-Mediated Suppression of Inflammation Induced by DR3 Signaling Is Dependent on Galectin-9. J Immunol. 199:2721–2728. 2017.PubMed/NCBI View Article : Google Scholar

70 

Schreiber TH, Wolf D, Bodero M, Gonzalez L and Podack ER: T cell costimulation by TNFR superfamily (TNFRSF)4 and TNFRSF25 in the context of vaccination. J Immunol. 189:3311–3318. 2012.PubMed/NCBI View Article : Google Scholar

71 

Wolf D, Schreiber TH, Tryphonopoulos P, Li S, Tzakis AG, Ruiz P and Podack ER: Tregs expanded in vivo by TNFRSF25 agonists promote cardiac allograft survival. Transplantation. 94:569–574. 2012.PubMed/NCBI View Article : Google Scholar

72 

Wolf D, Bader CS, Barreras H, Copsel S, Pfeiffer BJ, Lightbourn CO, Altman NH, Komanduri KV and Levy RB: Superior immune reconstitution using Treg-expanded donor cells versus PTCy treatment in preclinical HSCT models. JCI Insight. 3(e121717)2018.PubMed/NCBI View Article : Google Scholar

73 

Gorczynski RM, Sadozai H, Zhu F and Khatri I: Effect of infusion of monoclonal antibodies to tumour necrosis factor-receptor super family 25 on graft rejection in allo-immune mice receiving autologous marrow transplantation. Immunology. 150:418–431. 2017.PubMed/NCBI View Article : Google Scholar

74 

Pierini A, Colonna L, Alvarez M, Schneidawind D, Nishikii H, Baker J, Pan Y, Florek M, Kim BS and Negrin RS: Donor Requirements for Regulatory T Cell Suppression of Murine Graft-versus-Host Disease. J Immunol. 195:347–355. 2015.PubMed/NCBI View Article : Google Scholar

75 

Hoffmann P, Ermann J, Edinger M, Fathman CG and Strober S: Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med. 196:389–399. 2002.PubMed/NCBI View Article : Google Scholar

76 

Kim BS, Nishikii H, Baker J, Pierini A, Schneidawind D, Pan Y, Beilhack A, Park CG and Negrin RS: Treatment with agonistic DR3 antibody results in expansion of donor Tregs and reduced graft-versus-host disease. Blood. 126:546–557. 2015.PubMed/NCBI View Article : Google Scholar

77 

Wolf D, Barreras H, Bader CS, Copsel S, Lightbourn CO, Pfeiffer BJ, Altman NH, Podack ER, Komanduri KV and Levy RB: Marked In Vivo Donor Regulatory T Cell Expansion via Interleukin-2 and TL1A-Ig Stimulation Ameliorates Graft-versus-Host Disease but Preserves Graft-versus-Leukemia in Recipients after Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant. 23:757–766. 2017.PubMed/NCBI View Article : Google Scholar

78 

Copsel S, Wolf D, Kale B, Barreras H, Lightbourn CO, Bader CS, Alperstein W, Altman NH, Komanduri KV and Levy RB: Very Low Numbers of CD4+ FoxP3+ Tregs Expanded in Donors via TL1A-Ig and Low-Dose IL-2 Exhibit a Distinct Activation/Functional Profile and Suppress GVHD in a Preclinical Model. Biol Blood Marrow Transplant. 24:1788–1794. 2018.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yu Y, Jiang P, Sun P, Su N and Lin F: Analysis of therapeutic potential of preclinical models based on DR3/TL1A pathway modulation (Review). Exp Ther Med 22: 693, 2021.
APA
Yu, Y., Jiang, P., Sun, P., Su, N., & Lin, F. (2021). Analysis of therapeutic potential of preclinical models based on DR3/TL1A pathway modulation (Review). Experimental and Therapeutic Medicine, 22, 693. https://doi.org/10.3892/etm.2021.10125
MLA
Yu, Y., Jiang, P., Sun, P., Su, N., Lin, F."Analysis of therapeutic potential of preclinical models based on DR3/TL1A pathway modulation (Review)". Experimental and Therapeutic Medicine 22.1 (2021): 693.
Chicago
Yu, Y., Jiang, P., Sun, P., Su, N., Lin, F."Analysis of therapeutic potential of preclinical models based on DR3/TL1A pathway modulation (Review)". Experimental and Therapeutic Medicine 22, no. 1 (2021): 693. https://doi.org/10.3892/etm.2021.10125
Copy and paste a formatted citation
x
Spandidos Publications style
Yu Y, Jiang P, Sun P, Su N and Lin F: Analysis of therapeutic potential of preclinical models based on DR3/TL1A pathway modulation (Review). Exp Ther Med 22: 693, 2021.
APA
Yu, Y., Jiang, P., Sun, P., Su, N., & Lin, F. (2021). Analysis of therapeutic potential of preclinical models based on DR3/TL1A pathway modulation (Review). Experimental and Therapeutic Medicine, 22, 693. https://doi.org/10.3892/etm.2021.10125
MLA
Yu, Y., Jiang, P., Sun, P., Su, N., Lin, F."Analysis of therapeutic potential of preclinical models based on DR3/TL1A pathway modulation (Review)". Experimental and Therapeutic Medicine 22.1 (2021): 693.
Chicago
Yu, Y., Jiang, P., Sun, P., Su, N., Lin, F."Analysis of therapeutic potential of preclinical models based on DR3/TL1A pathway modulation (Review)". Experimental and Therapeutic Medicine 22, no. 1 (2021): 693. https://doi.org/10.3892/etm.2021.10125
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team