|
1
|
Dostert C, Grusdat M, Letellier E and
Brenner D: The TNF Family of Ligands and Receptors: Communication
Modules in the Immune System and Beyond. Physiol Rev. 99:115–160.
2019.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Aggarwal BB, Gupta SC and Kim JH:
Historical perspectives on tumor necrosis factor and its
superfamily: 25 years later, a golden journey. Blood. 119:651–665.
2012.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Yang Y, Yeh SH, Madireddi S, Matochko WL,
Gu C, Pacheco Sanchez P, Ultsch M, De Leon Boenig G, Harris SF,
Leonard B, et al: Tetravalent biepitopic targeting enables
intrinsic antibody agonism of tumor necrosis factor receptor
superfamily members. MAbs. 11:996–1011. 2019.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Valatas V, Kolios G and Bamias G: TL1A
(TNFSF15) and DR3 (TNFRSF25): A Co-stimulatory System of Cytokines
With Diverse Functions in Gut Mucosal Immunity. Front Immunol.
10(583)2019.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Li L, Fu L, Zhou P, Lu Y, Zhang L, Wang W,
Nie J, Zhang D, Liu Y, Wu B, et al: Effects of tumor necrosis
factor-like ligand 1A (TL1A) on imiquimod-induced psoriasiform skin
inflammation in mice. Arch Dermatol Res. 312:481–490.
2020.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Clarke AW, Poulton L, Shim D, Mabon D,
Butt D, Pollard M, Pande V, Husten J, Lyons J, Tian C, et al: An
anti-TL1A antibody for the treatment of asthma and inflammatory
bowel disease. MAbs. 10:664–677. 2018.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Richard AC, Tan C, Hawley ET,
Gomez-Rodriguez J, Goswami R, Yang XP, Cruz AC, Penumetcha P, Hayes
ET, Pelletier M, et al: The TNF-family ligand TL1A and its receptor
DR3 promote T cell-mediated allergic immunopathology by enhancing
differentiation and pathogenicity of IL-9-producing T cells. J
Immunol. 194:3567–3582. 2015.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Schreiber TH, Wolf D, Tsai MS, Chirinos J,
Deyev VV, Gonzalez L, Malek TR, Levy RB and Podack ER: Therapeutic
Treg expansion in mice by TNFRSF25 prevents allergic lung
inflammation. J Clin Invest. 120:3629–3640. 2010.PubMed/NCBI View
Article : Google Scholar
|
|
9
|
Khan SQ, Tsai MS, Schreiber TH, Wolf D,
Deyev VV and Podack ER: Cloning, expression, and functional
characterization of TL1A-Ig. J Immunol. 190:1540–1550.
2013.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Mavers M, Simonetta F, Nishikii H, Ribado
JV, Maas-Bauer K, Alvarez M, Hirai T, Turkoz M, Baker J and Negrin
RS: Activation of the DR3-TL1A Axis in Donor Mice Leads to
Regulatory T Cell Expansion and Activation With Reduction in
Graft-Versus-Host Disease. Front Immunol. 10(1624)2019.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Chinnaiyan AM, O'Rourke K, Yu GL, Lyons
RH, Garg M, Duan DR, Xing L, Gentz R, Ni J and Dixit VM: Signal
transduction by DR3, a death domain-containing receptor related to
TNFR-1 and CD95. Science. 274:990–992. 1996.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Perks WV, Singh RK, Jones GW, Twohig JP,
Williams AS, Humphreys IR, Taylor PR, Jones SA and Wang ECY: Death
Receptor 3 Promotes Chemokine-Directed Leukocyte Recruitment in
Acute Resolving Inflammation and Is Essential for Pathological
Development of Mesothelial Fibrosis in Chronic Disease. Am J
Pathol. 186:2813–2823. 2016.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Wang EC, Kitson J, Thern A, Williamson J,
Farrow SN and Owen MJ: Genomic structure, expression, and
chromosome mapping of the mouse homologue for the WSL-1 (DR3, Apo3,
TRAMP, LARD, TR3, TNFRSF12) gene. Immunogenetics. 53:59–63.
2001.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Screaton GR, Xu XN, Olsen AL, Cowper AE,
Tan R, McMichael AJ and Bell JI: LARD: A new lymphoid-specific
death domain containing receptor regulated by alternative pre-mRNA
splicing. Proc Natl Acad Sci USA. 94:4615–4619. 1997.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Schreiber TH and Podack ER: Immunobiology
of TNFSF15 and TNFRSF25. Immunol Res. 57:3–11. 2013.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Gout S, Morin C, Houle F and Huot J: Death
receptor-3, a new E-Selectin counter-receptor that confers
migration and survival advantages to colon carcinoma cells by
triggering p38 and ERK MAPK activation. Cancer Res. 66:9117–9124.
2006.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Al-Lamki RS, Wang J, Thiru S, Pritchard
NR, Bradley JA, Pober JS and Bradley JR: Expression of silencer of
death domains and death-receptor-3 in normal human kidney and in
rejecting renal transplants. Am J Pathol. 163:401–411.
2003.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Liu W, Vetreno RP and Crews FT:
Hippocampal TNF-death receptors, caspase cell death cascades, and
IL-8 in alcohol use disorder. Mol Psychiatry: Mar 5, 2020 (Epub
ahead of print). doi: 10.1038/s41380-020-0698-4.
|
|
19
|
Bittner S and Ehrenschwender M:
Multifaceted death receptor 3 signaling-promoting survival and
triggering death. FEBS Lett. 591:2543–2555. 2017.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Collins FL, Stone MD, Turton J, McCabe LR,
Wang ECY and Williams AS: Oestrogen-deficiency induces bone loss by
modulating CD14+ monocyte and CD4+ T cell DR3
expression and serum TL1A levels. BMC Musculoskelet Disord.
20(326)2019.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Della Bella S, Calcaterra F, Bacci M,
Carenza C, Pandolfo C, Ferrazzi P, Uva P, Pagani M, Lodigiani C and
Mavilio D: Pathologic up-regulation of TNFSF15-TNFRSF25 axis
sustains endothelial dysfunction in unprovoked venous
thromboembolism. Cardiovasc Res. 116:698–707. 2020.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Slebioda TJ, Bojarska-Junak A, Cyman M,
Landowski P, Kaminska B, Celinski K and Kmiec Z: Expression of
death receptor 3 on peripheral blood mononuclear cells differes in
adult IBD patients and children with newly diagnosed IBD. Cytometry
B Clin Cytom. 92:165–169. 2017.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Facco M, Cabrelle A, Calabrese F, Teramo
A, Cinetto F, Carraro S, Martini V, Calzetti F, Tamassia N,
Cassatella MA, et al: TL1A/DR3 axis involvement in the inflammatory
cytokine network during pulmonary sarcoidosis. Clin Mol Allergy.
13(16)2015.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Li L, Lu Y, Fu L, Zhou P, Zhang L, Wang W,
Nie J, Zhang D, Liu Y, Wu B, et al: Expression of death receptor 3
(DR3) on peripheral blood mononuclear cells of patients with
psoriasis vulgaris. Postgrad Med J. 94:551–555. 2018.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Safaya S, Alfarhan M, Sulaiman A,
Alsulaiman A and Al-Ali A: TNFSF/TNFRSF cytokine gene expression in
sickle cell anemia: Up-regulated TNF-like cytokine 1A (TL1A) and
its decoy receptor (DcR3) in peripheral blood mononuclear cells and
plasma. Cytokine. 123(154744)2019.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Ślebioda TJ, Stanisławowski M, Cyman M,
Wierzbicki PM, Żurawa-Janicka D, Kobiela J, Makarewicz W, Guzek M
and Kmieć Z: Distinct Expression Patterns of Two Tumor Necrosis
Factor Superfamily Member 15 Gene Isoforms in Human Colon Cancer.
Dig Dis Sci. 64:1857–1867. 2019.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Bittner S, Knoll G, Füllsack S, Kurz M,
Wajant H and Ehrenschwender M: Soluble TL1A is sufficient for
activation of death receptor 3. FEBS J. 283:323–336.
2016.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Li Z, Buttó LF, Buela KA, Jia LG, Lam M,
Ward JD, Pizarro TT and Cominelli F: Death Receptor 3 Signaling
Controls the Balance between Regulatory and Effector Lymphocytes in
SAMP1/YitFc Mice with Crohn's Disease-Like Ileitis. Front Immunol.
9(362)2018.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Nishikii H, Kim BS, Yokoyama Y, Chen Y,
Baker J, Pierini A, Alvarez M, Mavers M, Maas-Bauer K, Pan Y, et
al: DR3 signaling modulates the function of Foxp3+
regulatory T cells and the severity of acute graft-versus-host
disease. Blood. 128:2846–2858. 2016.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Xu LX, Grimaldo S, Qi JW, Yang GL, Qin TT,
Xiao HY, Xiang R, Xiao Z, Li LY and Zhang ZS: Death receptor 3
mediates TNFSF15- and TNFα-induced endothelial cell apoptosis. Int
J Biochem Cell Biol. 55:109–118. 2014.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Buttó LF, Jia LG, Arseneau KO, Tamagawa H,
Rodriguez-Palacios A, Li Z, De Salvo C, Pizarro TT, Bamias G and
Cominelli F: Death-Domain-Receptor 3 Deletion Normalizes
Inflammatory Gene Expression and Prevents Ileitis in Experimental
Crohn's Disease. Inflamm Bowel Dis. 25:14–26. 2019.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Li J, Shi W, Sun H, Ji Y, Chen Y, Guo X,
Sheng H, Shu J, Zhou L, Cai T, et al: Activation of DR3 signaling
causes loss of ILC3s and exacerbates intestinal inflammation. Nat
Commun. 10(3371)2019.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Castellanos JG, Woo V, Viladomiu M, Putzel
G, Lima S, Diehl GE, Marderstein AR, Gandara J, Perez AR, Withers
DR, et al: Microbiota-Induced TNF-like Ligand 1A Drives Group 3
Innate Lymphoid Cell-Mediated Barrier Protection and Intestinal T
Cell Activation during Colitis. Immunity. 49:1077–1089.e5.
2018.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Karta MR, Broide DH and Doherty TA:
Insights into Group 2 Innate Lymphoid Cells in Human Airway
Disease. Curr Allergy Asthma Rep. 16(8)2016.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Singh RK, Perks WV, Twohig JP, Kidd EJ,
Broadley K, Farrow SN, Williams AS, Taylor PR and Wang ECY: Death
Receptor 3 regulates distinct pathological attributes of acute
versus chronic murine allergic lung inflammation. Cell Immunol.
320:62–70. 2017.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Jin S, Chin J, Seeber S, Niewoehner J,
Weiser B, Beaucamp N, Woods J, Murphy C, Fanning A, Shanahan F, et
al: TL1A/TNFSF15 directly induces proinflammatory cytokines,
including TNFα, from CD3+CD161+ T cells to
exacerbate gut inflammation. Mucosal Immunol. 6:886–899.
2013.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Papadakis KA, Zhu D, Prehn JL, Landers C,
Avanesyan A, Lafkas G and Targan SR: Dominant role for TL1A/DR3
pathway in IL-12 plus IL-18-induced IFN-gamma production by
peripheral blood and mucosal CCR9+ T lymphocytes. J
Immunol. 174:4985–4990. 2005.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Siakavellas SI and Bamias G: Tumor
Necrosis Factor-like Cytokine TL1A and Its Receptors DR3 and DcR3:
Important New Factors in Mucosal Homeostasis and Inflammation.
Inflamm Bowel Dis. 21:2441–2452. 2015.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Fang L, Adkins B, Deyev V and Podack ER:
Essential role of TNF receptor superfamily 25 (TNFRSF25) in the
development of allergic lung inflammation. J Exp Med.
205:1037–1048. 2008.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Meylan F, Davidson TS, Kahle E, Kinder M,
Acharya K, Jankovic D, Bundoc V, Hodges M, Shevach EM, Keane-Myers
A, et al: The TNF-family receptor DR3 is essential for diverse T
cell-mediated inflammatory diseases. Immunity. 29:79–89.
2008.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Basnyat P, Sumelahti ML, Lehtimäki T,
Elovaara I and Hagman S: Gene expression profiles of TNF-like
cytokine 1A (TL1A) and its receptors death receptor 3 (DR3) and
decoy receptor 3 (DcR3) in multiple sclerosis. J Neuroimmunol.
335(577020)2019.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Jones GW, Stumhofer JS, Foster T, Twohig
JP, Hertzog P, Topley N, Williams AS, Hunter CA, Jenkins BJ, Wang
EC, et al: Naive and activated T cells display differential
responsiveness to TL1A that affects Th17 generation, maintenance,
and proliferation. FASEB J. 25:409–419. 2011.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Zhou M, Liu R, Su D, Feng X and Li X: TL1A
increased the differentiation of peripheral Th17 in rheumatoid
arthritis. Cytokine. 69:125–130. 2014.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Pappu BP, Borodovsky A, Zheng TS, Yang X,
Wu P, Dong X, Weng S, Browning B, Scott ML, Ma L, et al: TL1A-DR3
interaction regulates Th17 cell function and Th17-mediated
autoimmune disease. J Exp Med. 205:1049–1062. 2008.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Wang D, Li H, Duan YY, Han F, Luo YX, Wu
MY, Yang MY, Zhan RR, Song J, Zhang H, et al: TL1A modulates the
severity of colitis by promoting Th9 differentiation and IL-9
secretion. Life Sci. 231(116536)2019.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Tsuda M, Hamade H, Thomas LS, Salumbides
BC, Potdar AA, Wong MH, Nunnelee JS, Stamps JT, Neutzsky-Wulff AV,
Barrett RJ, et al: A role for BATF3 in TH9 differentiation and
T-cell-driven mucosal pathologies. Mucosal Immunol. 12:644–655.
2019.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Meylan F, Hawley ET, Barron L, Barlow JL,
Penumetcha P, Pelletier M, Sciumè G, Richard AC, Hayes ET,
Gomez-Rodriguez J, et al: The TNF-family cytokine TL1A promotes
allergic immunopathology through group 2 innate lymphoid cells.
Mucosal Immunol. 7:958–968. 2014.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Castellanos JG and Longman RS: Innate
lymphoid cells link gut microbes with mucosal T cell immunity. Gut
Microbes. 11:231–236. 2020.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Bull MJ, Williams AS, Mecklenburgh Z,
Calder CJ, Twohig JP, Elford C, Evans BA, Rowley TF, Slebioda TJ,
Taraban VY, et al: The Death Receptor 3-TNF-like protein 1A pathway
drives adverse bone pathology in inflammatory arthritis. J Exp Med.
205:2457–2464. 2008.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Tougaard P, Zervides KA, Skov S, Hansen AK
and Pedersen AE: Biologics beyond TNF-α inhibitors and the effect
of targeting the homologues TL1A-DR3 pathway in chronic
inflammatory disorders. Immunopharmacol Immunotoxicol. 38:29–38.
2016.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Takedatsu H, Michelsen KS, Wei B, Landers
CJ, Thomas LS, Dhall D, Braun J and Targan SR: TL1A (TNFSF15)
regulates the development of chronic colitis by modulating both
T-helper 1 and T-helper 17 activation. Gastroenterology.
135:552–567. 2008.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Meylan F, Song YJ, Fuss I, Villarreal S,
Kahle E, Malm IJ, Acharya K, Ramos HL, Lo L, Mentink-Kane MM, et
al: The TNF-family cytokine TL1A drives IL-13-dependent small
intestinal inflammation. Mucosal Immunol. 4:172–185.
2011.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Shih DQ, Zheng L, Zhang X, Zhang H,
Kanazawa Y, Ichikawa R, Wallace KL, Chen J, Pothoulakis C, Koon HW,
et al: Inhibition of a novel fibrogenic factor Tl1a reverses
established colonic fibrosis. Mucosal Immunol. 7:1492–1503.
2014.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Li H, Song J, Niu G, Zhang H, Guo J, Shih
DQ, Targan SR and Zhang X: TL1A blocking ameliorates intestinal
fibrosis in the T cell transfer model of chronic colitis in mice.
Pathol Res Pract. 214:217–227. 2018.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Deng G, Song X and Greene MI: FoxP3 in
Treg cell biology: A molecular and structural perspective. Clin Exp
Immunol. 199:255–262. 2020.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Williams LM and Rudensky AY: Maintenance
of the Foxp3-dependent developmental program in mature regulatory T
cells requires continued expression of Foxp3. Nat Immunol.
8:277–284. 2007.PubMed/NCBI View
Article : Google Scholar
|
|
57
|
Allos H, Al Dulaijan BS, Choi J and Azzi
J: Regulatory T Cells for More Targeted Immunosuppressive
Therapies. Clin Lab Med. 39:1–13. 2019.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Lubrano di Ricco M, Ronin E, Collares D,
Divoux J, Grégoire S, Wajant H, Gomes T, Grinberg-Bleyer Y, Baud V,
Marodon G, et al: Tumor necrosis factor receptor family
costimulation increases regulatory T-cell activation and function
via NF-κB. Eur J Immunol. 50:972–985. 2020.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Bittner S, Knoll G and Ehrenschwender M:
Death receptor 3 signaling enhances proliferation of human
regulatory T cells. FEBS Lett. 591:1187–1195. 2017.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Tran GT, Hodgkinson SJ, Carter N, Verma
ND, Robinson CM, Plain KM, Nomura M and Hall BM: Autoantigen
specific IL-2 activated CD4+CD25+T regulatory
cells inhibit induction of experimental autoimmune neuritis. J
Neuroimmunol. 341(577186)2020.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Zhang J, Czerpaniak K, Huang L, Liu X,
Cloud ME, Unsinger J, Hotchkiss RS, Li D and Cao YQ: Low-dose
interleukin-2 reverses behavioral sensitization in multiple mouse
models of headache disorders. Pain. 161:1381–1398. 2020.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Scalapino KJ, Tang Q, Bluestone JA,
Bonyhadi ML and Daikh DI: Suppression of disease in New Zealand
Black/New Zealand White lupus-prone mice by adoptive transfer of ex
vivo expanded regulatory T cells. J Immunol. 177:1451–1459.
2006.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Canavan JB, Scottà C, Vossenkämper A,
Goldberg R, Elder MJ, Shoval I, Marks E, Stolarczyk E, Lo JW,
Powell N, et al: Developing in vitro expanded CD45RA+
regulatory T cells as an adoptive cell therapy for Crohn's disease.
Gut. 65:584–594. 2016.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Golshayan D, Jiang S, Tsang J, Garin MI,
Mottet C and Lechler RI: In vitro-expanded donor
alloantigen-specific CD4+CD25+ regulatory T
cells promote experimental transplantation tolerance. Blood.
109:827–835. 2007.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Xia G, He J and Leventhal JR: Ex
vivo-expanded natural CD4+CD25+ regulatory T
cells synergize with host T-cell depletion to promote long-term
survival of allografts. Am J Transplant. 8:298–306. 2008.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Matsuoka KI: Low-dose interleukin-2 as a
modulator of Treg homeostasis after HSCT: Current understanding and
future perspectives. Int J Hematol. 107:130–137. 2018.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Kapur R, Kim M, Aslam R, McVey MJ, Tabuchi
A, Luo A, Liu J, Li Y, Shanmugabhavananthan S, Speck ER, et al: T
regulatory cells and dendritic cells protect against
transfusion-related acute lung injury via IL-10. Blood.
129:2557–2569. 2017.PubMed/NCBI View Article : Google Scholar
|
|
68
|
He R, Li L, Kong Y, Tian L, Tian X, Fang
P, Bian M and Liu Z: Preventing murine transfusion-related acute
lung injury by expansion of CD4+ CD25+
FoxP3+ Tregs using IL-2/anti-IL-2 complexes.
Transfusion. 59:534–544. 2019.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Madireddi S, Eun SY, Mehta AK, Birta A,
Zajonc DM, Niki T, Hirashima M, Podack ER, Schreiber TH and Croft
M: Regulatory T Cell-Mediated Suppression of Inflammation Induced
by DR3 Signaling Is Dependent on Galectin-9. J Immunol.
199:2721–2728. 2017.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Schreiber TH, Wolf D, Bodero M, Gonzalez L
and Podack ER: T cell costimulation by TNFR superfamily (TNFRSF)4
and TNFRSF25 in the context of vaccination. J Immunol.
189:3311–3318. 2012.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Wolf D, Schreiber TH, Tryphonopoulos P, Li
S, Tzakis AG, Ruiz P and Podack ER: Tregs expanded in vivo by
TNFRSF25 agonists promote cardiac allograft survival.
Transplantation. 94:569–574. 2012.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Wolf D, Bader CS, Barreras H, Copsel S,
Pfeiffer BJ, Lightbourn CO, Altman NH, Komanduri KV and Levy RB:
Superior immune reconstitution using Treg-expanded donor cells
versus PTCy treatment in preclinical HSCT models. JCI Insight.
3(e121717)2018.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Gorczynski RM, Sadozai H, Zhu F and Khatri
I: Effect of infusion of monoclonal antibodies to tumour necrosis
factor-receptor super family 25 on graft rejection in allo-immune
mice receiving autologous marrow transplantation. Immunology.
150:418–431. 2017.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Pierini A, Colonna L, Alvarez M,
Schneidawind D, Nishikii H, Baker J, Pan Y, Florek M, Kim BS and
Negrin RS: Donor Requirements for Regulatory T Cell Suppression of
Murine Graft-versus-Host Disease. J Immunol. 195:347–355.
2015.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Hoffmann P, Ermann J, Edinger M, Fathman
CG and Strober S: Donor-type CD4(+)CD25(+) regulatory T cells
suppress lethal acute graft-versus-host disease after allogeneic
bone marrow transplantation. J Exp Med. 196:389–399.
2002.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Kim BS, Nishikii H, Baker J, Pierini A,
Schneidawind D, Pan Y, Beilhack A, Park CG and Negrin RS: Treatment
with agonistic DR3 antibody results in expansion of donor Tregs and
reduced graft-versus-host disease. Blood. 126:546–557.
2015.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Wolf D, Barreras H, Bader CS, Copsel S,
Lightbourn CO, Pfeiffer BJ, Altman NH, Podack ER, Komanduri KV and
Levy RB: Marked In Vivo Donor Regulatory T Cell Expansion via
Interleukin-2 and TL1A-Ig Stimulation Ameliorates Graft-versus-Host
Disease but Preserves Graft-versus-Leukemia in Recipients after
Hematopoietic Stem Cell Transplantation. Biol Blood Marrow
Transplant. 23:757–766. 2017.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Copsel S, Wolf D, Kale B, Barreras H,
Lightbourn CO, Bader CS, Alperstein W, Altman NH, Komanduri KV and
Levy RB: Very Low Numbers of CD4+ FoxP3+
Tregs Expanded in Donors via TL1A-Ig and Low-Dose IL-2 Exhibit a
Distinct Activation/Functional Profile and Suppress GVHD in a
Preclinical Model. Biol Blood Marrow Transplant. 24:1788–1794.
2018.PubMed/NCBI View Article : Google Scholar
|