Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
July-2021 Volume 22 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2021 Volume 22 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of ARK5 in cancer and other diseases (Review)

  • Authors:
    • Guoheng Mo
    • Bohan Zhang
    • Qunguang Jiang
  • View Affiliations / Copyright

    Affiliations: Department of Neurosurgery, Queen Mary College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China, First Clinical Medical College, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
    Copyright: © Mo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 697
    |
    Published online on: May 2, 2021
       https://doi.org/10.3892/etm.2021.10129
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Malignant tumors are often exposed to hypoxic and glucose‑starved microenvironments. AMP‑activated protein kinase (AMPK) is an energy sensor that is stimulated during energy‑deficient conditions and protects cells from hypoxic injury by regulating metabolism. AMPK‑related protein kinase 5 (ARK5) is a member of the catalytic sub‑unit of the AMPK family and has an important role in energy regulation and hypoxia. ARK5 is regulated by Akt and liver kinase B1 and is associated with numerous tumor‑related molecules to exert the negative effects of tumors. Studies have revealed ARK5 overexpression in cases of tumor invasion and metastasis and a positive association with the degree of cancer cell malignancy, which is regarded as a key element in determining cancer prognosis. Furthermore, ARK5 downregulation improves drug sensitivity through the epithelial‑mesenchymal transition pathway, indicating that it may be a potential therapeutic target. In other non‑cancer conditions, ARK5 has various roles in neurodegenerative diseases (Alzheimer's and Huntington's disease), renal disorders (diabetic nephropathy and renal fibrosis) and physiological processes (striated muscle generation). In the present review, the upstream and downstream molecular pathways of ARK5 in cancer and other diseases are described and potential therapeutic strategies are discussed.
View Figures

Figure 1

View References

1 

Esumi H, Izuishi K, Kato K, Hashimoto K, Kurashima Y, Kishimoto A, Ogura T and Ozawa T: Hypoxia and nitric oxide treatment confer tolerance to glucose starvation in a 5'-AMP-activated protein kinase-dependent manner. J Biol Chem. 277:32791–32798. 2002.PubMed/NCBI View Article : Google Scholar

2 

Ivanov S, Liao SY, Ivanova A, Danilkovitch-Miagkova A, Tarasova N, Weirich G, Merrill MJ, Proescholdt MA, Oldfield EH, Lee J, et al: Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol. 158:905–919. 2001.PubMed/NCBI View Article : Google Scholar

3 

Kaluz S, Kaluzova M, Chrastina A, Olive PL, Pastoreková S, Pastorek J, Lerman MI and Stanbridge EJ: Lowered oxygen tension induces expression of the hypoxia marker MN/carbonic anhydrase IX in the absence of hypoxia-inducible factor 1 alpha stabilization: A role for phosphatidylinositol 3'-kinase. Cancer Res. 62:4469–4477. 2002.PubMed/NCBI

4 

Suzuki A, Kusakai G, Kishimoto A, Lu J, Ogura T, Lavin MF and Esumi H: Identification of a novel protein kinase mediating Akt survival signaling to the ATM protein. J Biol Chem. 278:48–53. 2003.PubMed/NCBI View Article : Google Scholar

5 

Li B, Tsao SW, Li YY, Wang X, Ling MT, Wong YC, He QY and Cheung AL: Id-1 promotes tumorigenicity and metastasis of human esophageal cancer cells through activation of PI3K/AKT signaling pathway. Int J Cancer. 125:2576–2585. 2009.PubMed/NCBI View Article : Google Scholar

6 

Ohta T, Isobe M, Takahashi T, Saitoh-Sekiguchi M, Motoyama T and Kurachi H: The Akt and ERK activation by platinum-based chemotherapy in ovarian cancer is associated with favorable patient outcome. Anticancer Res. 29:4639–4647. 2009.PubMed/NCBI

7 

Renton A, Llanos S and Lu X: Hypoxia induces p53 through a pathway distinct from most DNA-damaging and stress-inducing agents. Carcinogenesis. 24:1177–1182. 2003.PubMed/NCBI View Article : Google Scholar

8 

Suzuki A, Iida S, Kato-Uranishi M, Tajima E, Zhan F, Hanamura I, Huang Y, Ogura T, Takahashi S and Ueda R: ARK5 is transcriptionally regulated by the Large-MAF family and mediates IGF-1-induced cell invasion in multiple myeloma: ARK5 as a new molecular determinant of malignant multiple myeloma. Oncogene. 24:6936–6944. 2005.PubMed/NCBI View Article : Google Scholar

9 

Simon PO Jr, McDunn JE, Kashiwagi H, Chang K, Goedegebuure PS, Hotchkiss RS and Hawkins WG: Targeting AKT with the proapoptotic peptide, TAT-CTMP: A novel strategy for the treatment of human pancreatic adenocarcinoma. Int J Cancer. 125:942–951. 2009.PubMed/NCBI View Article : Google Scholar

10 

Kato K, Ogura T, Kishimoto A, Minegishi Y, Nakajima N, Miyazaki M and Esumi H: Critical roles of AMP-activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formation. Oncogene. 21:6082–6090. 2002.PubMed/NCBI View Article : Google Scholar

11 

Izuishi K, Kato K, Ogura T, Kinoshita T and Esumi H: Remarkable tolerance of tumor cells to nutrient deprivation: Possible new biochemical target for cancer therapy. Cancer Res. 60:6201–6207. 2000.PubMed/NCBI

12 

Suzuki A, Kusakai G, Kishimoto A, Lu J, Ogura T and Esumi H: ARK5 suppresses the cell death induced by nutrient starvation and death receptors via inhibition of caspase 8 activation, but not by chemotherapeutic agents or UV irradiation. Oncogene. 22:6177–6182. 2003.PubMed/NCBI View Article : Google Scholar

13 

Suzuki A, Kusakai G, Shimojo Y, Chen J, Ogura T, Kobayashi M and Esumi H: Involvement of transforming growth factor-beta 1 signaling in hypoxia-induced tolerance to glucose starvation. J Biol Chem. 280:31557–31563. 2005.PubMed/NCBI View Article : Google Scholar

14 

Kuehl WM and Bergsagel PL: Molecular pathogenesis of multiple myeloma and its premalignant precursor. J Clin Invest. 122:3456–3463. 2012.PubMed/NCBI View Article : Google Scholar

15 

Siegel R, Naishadham D and Jemal A: Cancer statistics, 2013. CA Cancer J Clin. 63:11–30. 2013.PubMed/NCBI View Article : Google Scholar

16 

Benboubker L, Dimopoulos MA, Dispenzieri A, Catalano J, Belch AR, Cavo M, Pinto A, Weisel K, Ludwig H, Bahlis N, et al: Lenalidomide and dexamethasone in transplant-ineligible patients with myeloma. N Engl J Med. 371:906–917. 2014.PubMed/NCBI View Article : Google Scholar

17 

Rajkumar SV, Blood E, Vesole D, Fonseca R and Greipp PR: Eastern Cooperative Oncology Group. Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: A clinical trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol. 24:431–436. 2006.PubMed/NCBI View Article : Google Scholar

18 

Richardson PG, Weller E, Lonial S, Jakubowiak AJ, Jagannath S, Raje NS, Avigan DE, Xie W, Ghobrial IM, Schlossman RL, et al: Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood. 116:679–686. 2010.PubMed/NCBI View Article : Google Scholar

19 

San Miguel JF, Schlag R, Khuageva NK, Dimopoulos MA, Shpilberg O, Kropff M, Spicka I, Petrucci MT, Palumbo A, Samoilova OS, et al: Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med. 359:906–917. 2008.PubMed/NCBI View Article : Google Scholar

20 

Kumar SK, Dispenzieri A, Lacy MQ, Gertz MA, Buadi FK, Pandey S, Kapoor P, Dingli D, Hayman SR, Leung N, et al: Continued improvement in survival in multiple myeloma: Changes in early mortality and outcomes in older patients. Leukemia. 28:1122–1128. 2014.PubMed/NCBI View Article : Google Scholar

21 

Kawauchi S, Takahashi S, Nakajima O, Ogino H, Morita M, Nishizawa M, Nishizawa M, Yasuda K and Yamamoto M: Regulation of lens fiber cell differentiation by transcription factor c-Maf. J Biol Chem. 274:19254–19260. 1999.PubMed/NCBI View Article : Google Scholar

22 

Kim JI, Li T, Ho IC, Grusby MJ and Glimcher LH: Requirement for the c-Maf transcription factor in crystallin gene regulation and lens development. Proc Natl Acad Sci USA. 96:3781–3785. 1999.PubMed/NCBI View Article : Google Scholar

23 

Ring BZ, Cordes SP, Overbeek PA and Barsh GS: Regulation of mouse lens fiber cell development and differentiation by the Maf gene. Development. 127:307–317. 2000.PubMed/NCBI

24 

Zhang Z, Tong J, Tang X, Juan J, Cao B, Hurren R, Chen G, Taylor P, Xu X, Shi CX, et al: The ubiquitin ligase HERC4 mediates c-Maf ubiquitination and delays the growth of multiple myeloma xenografts in nude mice. Blood. 127:1676–1686. 2016.PubMed/NCBI View Article : Google Scholar

25 

Wang S, Juan J, Zhang Z, Du Y, Xu Y, Tong J, Cao B, Moran MF, Zeng Y and Mao X: Inhibition of the deubiquitinase USP5 leads to c-Maf protein degradation and myeloma cell apoptosis. Cell Death Dis. 8(e3058)2017.PubMed/NCBI View Article : Google Scholar

26 

Qiang YW, Ye S, Chen Y, Buros AF, Edmonson R, van Rhee F, Barlogie B, Epstein J, Morgan GJ and Davies FE: MAF protein mediates innate resistance to proteasome inhibition therapy in multiple myeloma. Blood. 128:2919–2930. 2016.PubMed/NCBI View Article : Google Scholar

27 

Schiller NR, Duchesneau CD, Lane LS, Reedy AR, Manzon ER and Hoppe PE: The Role of the UNC-82 protein kinase in organizing myosin filaments in striated muscle of caenorhabditis elegans. Genetics. 205:1195–1213. 2017.PubMed/NCBI View Article : Google Scholar

28 

Perumal D, Kuo PY, Leshchenko VV, Jiang Z, Divakar SK, Cho HJ, Chari A, Brody J, Reddy MV, Zhang W, et al: Dual targeting of CDK4 and ARK5 using a novel kinase inhibitor ON123300 exerts potent anticancer activity against multiple myeloma. Cancer Res. 76:1225–1236. 2016.PubMed/NCBI View Article : Google Scholar

29 

Liu L, Ulbrich J, Müller J, Wüstefeld T, Aeberhard L, Kress TR, Muthalagu N, Rycak L, Rudalska R, Moll R, et al: Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature. 483:608–612. 2012.PubMed/NCBI View Article : Google Scholar

30 

Hoppe S, Bierhoff H, Cado I, Weber A, Tiebe M, Grummt I and Voit R: AMP-activated protein kinase adapts rRNA synthesis to cellular energy supply. Proc Natl Acad Sci USA. 106:17781–17786. 2009.PubMed/NCBI View Article : Google Scholar

31 

Kusakai G, Suzuki A, Ogura T, Miyamoto S, Ochiai A, Kaminishi M and Esumi H: ARK5 expression in colorectal cancer and its implications for tumor progression. Am J Pathol. 164:987–995. 2004.PubMed/NCBI View Article : Google Scholar

32 

Li X, Zhang XA, Li X, Xie W and Huang S: MYC-mediated synthetic lethality for treating tumors. Curr Cancer Drug Targets. 15:99–115. 2015.PubMed/NCBI View Article : Google Scholar

33 

Colon Cancer Treatment (PDQ®): Patient Version. PDQ Cancer Information Summaries. Bethesda, MD, 2002.

34 

Peng JK, Shen SQ, Wang J, Jiang HW and Wang YQ: Ηypoxia-inducible factor 1-α promotes colon cell proliferation and migration by upregulating AMPK-related protein kinase 5 under hypoxic conditions. Oncol Lett. 15:3639–3645. 2018.PubMed/NCBI View Article : Google Scholar

35 

Semenza GL: Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 29:625–634. 2010.PubMed/NCBI View Article : Google Scholar

36 

Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 3:721–732. 2003.PubMed/NCBI View Article : Google Scholar

37 

Wang GL, Jiang BH, Rue EA and Semenza GL: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 92:5510–5514. 1995.PubMed/NCBI View Article : Google Scholar

38 

Wang JS, Jing CQ, Shan KS, Chen YZ, Guo XB, Cao ZX, Mu LJ, Peng LP, Zhou ML and Li LP: Semaphorin 4D and hypoxia-inducible factor-1alpha overexpression is related to prognosis in colorectal carcinoma. World J Gastroenterol. 21:2191–2198. 2015.PubMed/NCBI View Article : Google Scholar

39 

Sirri E, Castro FA, Kieschke J, Jansen L, Emrich K, Gondos A, Holleczek B, Katalinic A, Urbschat I, Vohmann C and Brenner H: Recent trends in survival of patients with pancreatic cancer in Germany and the United States. Pancreas. 45:908–914. 2016.PubMed/NCBI View Article : Google Scholar

40 

Rajamani D and Bhasin MK: Identification of key regulators of pancreatic cancer progression through multidimensional systems-level analysis. Genome Med. 8(38)2016.PubMed/NCBI View Article : Google Scholar

41 

Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, et al: Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 369:1691–1703. 2013.PubMed/NCBI View Article : Google Scholar

42 

Berlin JD, Catalano P, Thomas JP, Kugler JW, Haller DG and Benson AB III: Phase III study of gemcitabine in combination with fluorouracil versus gemcitabine alone in patients with advanced pancreatic carcinoma: Eastern Cooperative Oncology Group Trial E2297. J Clin Oncol. 20:3270–3275. 2002.PubMed/NCBI View Article : Google Scholar

43 

Oettle H, Richards D, Ramanathan RK, van Laethem JL, Peeters M, Fuchs M, Zimmermann A, John W, Von Hoff D, Arning M and Kindler HL: A phase III trial of pemetrexed plus gemcitabine versus gemcitabine in patients with unresectable or metastatic pancreatic cancer. Ann Oncol. 16:1639–1645. 2005.PubMed/NCBI View Article : Google Scholar

44 

Wang Y, Kuramitsu Y, Tokuda K, Baron B, Kitagawa T, Akada J, Maehara S, Maehara Y and Nakamura K: Gemcitabine induces poly (ADP-ribose) polymerase-1 (PARP-1) degradation through autophagy in pancreatic cancer. PLoS One. 9(e109076)2014.PubMed/NCBI View Article : Google Scholar

45 

Gilkes DM, Semenza GL and Wirtz D: Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat Rev Cancer. 14:430–439. 2014.PubMed/NCBI View Article : Google Scholar

46 

Wu J, Yang B, Zhang Y, Feng X, He B, Xie H, Zhou L, Wu J and Zheng S: miR-424-5p represses the metastasis and invasion of intrahepatic cholangiocarcinoma by targeting ARK5. Int J Biol Sci. 15:1591–1599. 2019.PubMed/NCBI View Article : Google Scholar

47 

Wang X, Song Z, Chen F, Yang X, Wu B, Xie S, Zheng X, Cai Y, Chen W and Zhong Z: AMPK-related kinase 5 (ARK5) enhances gemcitabine resistance in pancreatic carcinoma by inducing epithelial-mesenchymal transition. Am J Transl Res. 10:4095–4106. 2018.PubMed/NCBI

48 

Jemal A, Murray T, Samuels A, Ghafoor A, Ward E and Thun MJ: Cancer statistics, 2003. CA Cancer J Clin. 53:5–26. 2003.PubMed/NCBI View Article : Google Scholar

49 

Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, Zhu J and Johnson DH: Eastern Cooperative Oncology Group. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 346:92–98. 2002.PubMed/NCBI View Article : Google Scholar

50 

Li Y, Qi K, Zu L, Wang M, Wang Y and Zhou Q: Anti-apoptotic brain and reproductive organ-expressed proteins enhance cisplatin resistance in lung cancer cells via the protein kinase B signaling pathway. Thorac Cancer. 7:190–198. 2016.PubMed/NCBI View Article : Google Scholar

51 

Zhang HY, Li JH, Li G and Wang SR: Activation of ARK5/miR-1181/HOXA10 axis promotes epithelial-mesenchymal transition in ovarian cancer. Oncol Rep. 34:1193–1202. 2015.PubMed/NCBI View Article : Google Scholar

52 

Yu HG, Wei W, Xia LH, Han WL, Zhao P, Wu SJ, Li WD and Chen W: FBW7 upregulation enhances cisplatin cytotoxicity in non-small cell lung cancer cells. Asian Pac J Cancer Prev. 14:6321–6326. 2013.PubMed/NCBI View Article : Google Scholar

53 

Chang XZ, Yu J, Liu HY, Dong RH and Cao XC: ARK5 is associated with the invasive and metastatic potential of human breast cancer cells. J Cancer Res Clin Oncol. 138:247–254. 2012.PubMed/NCBI View Article : Google Scholar

54 

Cui J, Yu Y, Lu GF, Liu C, Liu X, Xu YX and Zheng PY: Overexpression of ARK5 is associated with poor prognosis in hepatocellular carcinoma. Tumour Biol. 34:1913–1918. 2013.PubMed/NCBI View Article : Google Scholar

55 

Sun X, Gao L, Chien HY, Li WC and Zhao J: The regulation and function of the NUAK family. J Mol Endocrinol. 51:R15–R22. 2013.PubMed/NCBI View Article : Google Scholar

56 

Suzuki A, Ogura T and Esumi H: NDR2 acts as the upstream kinase of ARK5 during insulin-like growth factor-1 signaling. J Biol Chem. 281:13915–13921. 2006.PubMed/NCBI View Article : Google Scholar

57 

Lizcano JM, Göransson O, Toth R, Deak M, Morrice NA, Boudeau J, Hawley SA, Udd L, Mäkelä TP, Hardie DG and Alessi DR: LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 23:833–843. 2004.PubMed/NCBI View Article : Google Scholar

58 

Davis LE, Jeng S, Svalina MN, Huang E, Pittsenbarger J, Cantor EL, Berlow N, Seguin B, Mansoor A, McWeeney SK and Keller C: Integration of genomic, transcriptomic and functional profiles of aggressive osteosarcomas across multiple species. Oncotarget. 8:76241–76256. 2017.PubMed/NCBI View Article : Google Scholar

59 

Ryu S and Tjian R: Purification of transcription cofactor complex CRSP. Proc Natl Acad Sci USA. 96:7137–7142. 1999.PubMed/NCBI View Article : Google Scholar

60 

Datta SR, Brunet A and Greenberg ME: Cellular survival: A play in three Akts. Genes Dev. 13:2905–2927. 1999.PubMed/NCBI View Article : Google Scholar

61 

Itoh N, Semba S, Ito M, Takeda H, Kawata S and Yamakawa M: Phosphorylation of Akt/PKB is required for suppression of cancer cell apoptosis and tumor progression in human colorectal carcinoma. Cancer. 94:3127–3134. 2002.PubMed/NCBI View Article : Google Scholar

62 

Nicholson KM and Anderson NG: The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal. 14:381–395. 2002.PubMed/NCBI View Article : Google Scholar

63 

Ruggeri BA, Huang L, Wood M, Cheng JQ and Testa JR: Amplification and overexpression of the AKT2 oncogene in a subset of human pancreatic ductal adenocarcinomas. Mol Carcinog. 21:81–86. 1998.PubMed/NCBI

64 

Higuchi M, Masuyama N, Fukui Y, Suzuki A and Gotoh Y: Akt mediates Rac/Cdc42-regulated cell motility in growth factor-stimulated cells and in invasive PTEN knockout cells. Curr Biol. 11:1958–1962. 2001.PubMed/NCBI View Article : Google Scholar

65 

Lawlor MA and Alessi DR: PKB/Akt: A key mediator of cell proliferation, survival and insulin responses? J Cell Sci. 114:2903–2910. 2001.PubMed/NCBI

66 

Taatjes DJ, Naar AM, Andel F III, Nogales E and Tjian R: Structure, function, and activator-induced conformations of the CRSP coactivator. Science. 295:1058–1062. 2002.PubMed/NCBI View Article : Google Scholar

67 

Kusakai G, Suzuki A, Ogura T, Kaminishi M and Esumi H: Strong association of ARK5 with tumor invasion and metastasis. J Exp Clin Cancer Res. 23:263–268. 2004.PubMed/NCBI

68 

Cox AD and Der CJ: The dark side of Ras: Regulation of apoptosis. Oncogene. 22:8999–9006. 2003.PubMed/NCBI View Article : Google Scholar

69 

Suzuki A, Lu J, Kusakai G, Kishimoto A, Ogura T and Esumi H: ARK5 is a tumor invasion-associated factor downstream of Akt signaling. Mol Cell Biol. 24:3526–3535. 2004.PubMed/NCBI View Article : Google Scholar

70 

Xie M, Wu X, Zhang J, Zhang J and Li X: Ski regulates Smads and TAZ signaling to suppress lung cancer progression. Mol Carcinog. 56:2178–2189. 2017.PubMed/NCBI View Article : Google Scholar

71 

Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E and Seiki M: A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature. 370:61–65. 1994.PubMed/NCBI View Article : Google Scholar

72 

Kaufhold S and Bonavida B: Central role of Snail1 in the regulation of EMT and resistance in cancer: A target for therapeutic intervention. J Exp Clin Cancer Res. 33(62)2014.PubMed/NCBI View Article : Google Scholar

73 

Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, Choi H, El Rayes T, Ryu S, Troeger J, et al: Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 527:472–476. 2015.PubMed/NCBI View Article : Google Scholar

74 

Thiery JP and Sleeman JP: Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 7:131–142. 2006.PubMed/NCBI View Article : Google Scholar

75 

Li M, Zheng C, Xu H, He W, Ruan Y, Ma J, Zheng J, Ye C and Li W: Inhibition of AMPK-related kinase 5 (ARK5) enhances cisplatin cytotoxicity in non-small cell lung cancer cells through regulation of epithelial-mesenchymal transition. Am J Transl Res. 9:1708–1719. 2017.PubMed/NCBI

76 

Liu Y, Du F, Zhao Q, Jin J, Ma X and Li H: Acquisition of 5-fluorouracil resistance induces epithelial-mesenchymal transitions through the Hedgehog signaling pathway in HCT-8 colon cancer cells. Oncol Lett. 9:2675–2679. 2015.PubMed/NCBI View Article : Google Scholar

77 

Mallini P, Lennard T, Kirby J and Meeson A: Epithelial-to-mesenchymal transition: What is the impact on breast cancer stem cells and drug resistance. Cancer Treat Rev. 40:341–348. 2014.PubMed/NCBI View Article : Google Scholar

78 

Xu T, Zhang J, Chen W, Pan S, Zhi X, Wen L, Zhou Y, Chen BW, Qiu J, Zhang Y, et al: ARK5 promotes doxorubicin resistance in hepatocellular carcinoma via epithelial-mesenchymal transition. Cancer Lett. 377:140–148. 2016.PubMed/NCBI View Article : Google Scholar

79 

Chen D, Liu G, Xu N, You X, Zhou H, Zhao X and Liu Q: Knockdown of ARK5 expression suppresses invasion and metastasis of gastric cancer. Cell Physiol Biochem. 42:1025–1036. 2017.PubMed/NCBI View Article : Google Scholar

80 

Liotta LA: Tumor invasion and metastases-role of the extracellular matrix: Rhoads memorial award lecture. Cancer Res. 46:1–7. 1986.PubMed/NCBI

81 

Chen XF, Zhang HJ, Wang HB, Zhu J, Zhou WY, Zhang H, Zhao MC, Su JM, Gao W, Zhang L, et al: Transforming growth factor-β1 induces epithelial-to-mesenchymal transition in human lung cancer cells via PI3K/Akt and MEK/Erk1/2 signaling pathways. Molr Biol Reps. 39:3549–3556. 2012.PubMed/NCBI View Article : Google Scholar

82 

Park NR, Cha JH, Jang JW, Bae SH, Jang B, Kim JH, Hur W, Choi JY and Yoon SK: Synergistic effects of CD44 and TGF-β1 through AKT/GSK-3β/β-catenin signaling during epithelial-mesenchymal transition in liver cancer cells. Biochem Biophys Res Commun. 477:568–574. 2016.PubMed/NCBI View Article : Google Scholar

83 

Shiraki K, Tsuji N, Shioda T, Isselbacher KJ and Takahashi H: Expression of Fas ligand in liver metastases of human colonic adenocarcinomas. Proc Natl Acad Sci USA. 94:6420–6425. 1997.PubMed/NCBI View Article : Google Scholar

84 

Yoong KF, Afford SC, Randhawa S, Hubscher SG and Adams DH: Fas/Fas ligand interaction in human colorectal hepatic metastases: A mechanism of hepatocyte destruction to facilitate local tumor invasion. Am J Pathol. 154:693–703. 1999.PubMed/NCBI View Article : Google Scholar

85 

Sánchez-Tilló E, Fanlo L, Siles L, Montes-Moreno S, Moros A, Chiva-Blanch G, Estruch R, Martinez A, Colomer D, Győrffy B, et al: The EMT activator ZEB1 promotes tumor growth and determines differential response to chemotherapy in mantle cell lymphoma. Cell Death Differ. 21:247–257. 2014.PubMed/NCBI View Article : Google Scholar

86 

Suzuki A, Kusakai G, Kishimoto A, Shimojo Y, Miyamoto S, Ogura T, Ochiai A and Esumi H: Regulation of caspase-6 and FLIP by the AMPK family member ARK5. Oncogene. 23:7067–7075. 2004.PubMed/NCBI View Article : Google Scholar

87 

Restifo NP: Not so Fas: Re-evaluating the mechanisms of immune privilege and tumor escape. Nat Med. 6:493–495. 2000.PubMed/NCBI View Article : Google Scholar

88 

Suzuki A, Kusakai G, Kishimoto A, Minegichi Y, Ogura T and Esumi H: Induction of cell-cell detachment during glucose starvation through F-actin conversion by SNARK, the fourth member of the AMP-activated protein kinase catalytic subunit family. Biochem Biophys Res Commun. 311:156–161. 2003.PubMed/NCBI View Article : Google Scholar

89 

Conacci-Sorrell M, McFerrin L and Eisenman RN: An overview of MYC and its interactome. Cold Spring Harb Perspect Med. 4(a014357)2014.PubMed/NCBI View Article : Google Scholar

90 

Stine ZE, Walton ZE, Altman BJ, Hsieh AL and Dang CV: MYC, metabolism, and cancer. Cancer Discov. 5:1024–1039. 2015.PubMed/NCBI View Article : Google Scholar

91 

Evan GI, Christophorou M, Lawlor EA, Ringshausen I, Prescott J, Dansen T, Dansen T, Finch A, Martins C and Murphy D: Oncogene-dependent tumor suppression: Using the dark side of the force for cancer therapy. Cold Spring Harb Symp Quant Biol. 70:263–273. 2005.PubMed/NCBI View Article : Google Scholar

92 

Murphy DJ, Junttila MR, Pouyet L, Karnezis A, Shchors K, Bui DA, Brown-Swigart L, Johnson L and Evan GI: Distinct thresholds govern Myc's biological output in vivo. Cancer Cell. 14:447–457. 2008.PubMed/NCBI View Article : Google Scholar

93 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011.PubMed/NCBI View Article : Google Scholar

94 

Ross FA, MacKintosh C and Hardie DG: AMP-activated protein kinase: A cellular energy sensor that comes in 12 flavours. Febs J. 283:2987–3001. 2016.PubMed/NCBI View Article : Google Scholar

95 

Shackelford DB and Shaw RJ: The LKB1-AMPK pathway: Metabolism and growth control in tumour suppression. Nat Rev Cancer. 9:563–575. 2009.PubMed/NCBI View Article : Google Scholar

96 

Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M and Carling D: Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2:21–33. 2005.PubMed/NCBI View Article : Google Scholar

97 

Ciccarese F, Zulato E and Indraccolo S: LKB1/AMPK pathway and drug response in cancer: A therapeutic perspective. Oxid Med Cell Longev. 2019(8730816)2019.PubMed/NCBI View Article : Google Scholar

98 

Kawakami Y, Nishimoto H, Kitaura J, Maeda-Yamamoto M, Kato RM, Littman DR, Leitges M, Rawlings DJ and Kawakami T: Protein kinase C betaII regulates Akt phosphorylation on Ser-473 in a cell type- and stimulus-specific fashion. J Biol Chem. 279:47720–4725. 2004.PubMed/NCBI View Article : Google Scholar

99 

Partovian C and Simons M: Regulation of protein kinase B/Akt activity and Ser473 phosphorylation by protein kinase Calpha in endothelial cells. Cell Signal. 16:951–957. 2004.PubMed/NCBI View Article : Google Scholar

100 

Delbridge AR and Strasser A: The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ. 22:1071–1080. 2015.PubMed/NCBI View Article : Google Scholar

101 

Muthalagu N, Junttila MR, Wiese KE, Wolf E, Morton J, Bauer B, Evan GI, Eilers M and Murphy DJ: BIM is the primary mediator of MYC-induced apoptosis in multiple solid tissues. Cell Rep. 8:1347–1353. 2014.PubMed/NCBI View Article : Google Scholar

102 

Zhang X, Tang N, Hadden TJ and Rishi AK: Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta. 1813:1978–1986. 2011.PubMed/NCBI View Article : Google Scholar

103 

Cermelli S, Jang IS, Bernard B and Grandori C: Synthetic lethal screens as a means to understand and treat MYC-driven cancers. Cold Spring Harb Perspect Med. 4(a014209)2014.PubMed/NCBI View Article : Google Scholar

104 

Carling D: AMPK signalling in health and disease. Curr Opin Cell Biol. 45:31–37. 2017.PubMed/NCBI View Article : Google Scholar

105 

Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ and Thompson CB: AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell. 18:283–293. 2005.PubMed/NCBI View Article : Google Scholar

106 

Hou X, Liu JE, Liu W, Liu CY, Liu ZY and Sun ZY: A new role of NUAK1: Directly phosphorylating p53 and regulating cell proliferation. Oncogene. 30:2933–2942. 2011.PubMed/NCBI View Article : Google Scholar

107 

Baker DJ, Jeganathan KB, Cameron JD, Thompson M, Juneja S, Kopecka A, Kumar R, Jenkins RB, de Groen PC, Roche P and van Deursen JM: BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet. 36:744–749. 2004.PubMed/NCBI View Article : Google Scholar

108 

Chesnokova V, Zonis S, Kovacs K, Ben-Shlomo A, Wawrowsky K, Bannykh S and Melmed S: p21(Cip1) restrains pituitary tumor growth. Proc Natl Acad Sci USA. 105:17498–17503. 2004.PubMed/NCBI View Article : Google Scholar

109 

Takahashi A, Ohtani N, Yamakoshi K, Iida S, Tahara H, Nakayama K, Nakayama KI, Ide T, Saya H and Hara E: Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol. 8:1291–1297. 2006.PubMed/NCBI View Article : Google Scholar

110 

Zhang D, Shimizu T, Araki N, Hirota T, Yoshie M, Ogawa K, Nakagata N, Takeya M and Saya H: Aurora A overexpression induces cellular senescence in mammary gland hyperplastic tumors developed in p53-deficient mice. Oncogene. 27:4305–4314. 2008.PubMed/NCBI View Article : Google Scholar

111 

Holland B, Wong J, Li M and Rasheed S: Identification of human microRNA-like sequences embedded within the protein-encoding genes of the human immunodeficiency virus. PLoS One. 8(e58586)2013.PubMed/NCBI View Article : Google Scholar

112 

Obayashi M, Yoshida M, Tsunematsu T, Ogawa I, Sasahira T, Kuniyasu H, Imoto I, Abiko Y, Xu D, Fukunaga S, et al: microRNA-203 suppresses invasion and epithelial-mesenchymal transition induction via targeting NUAK1 in head and neck cancer. Oncotarget. 7:8223–8239. 2016.PubMed/NCBI View Article : Google Scholar

113 

Shenouda SK and Alahari SK: MicroRNA function in cancer: Oncogene or a tumor suppressor? Cancer Metastasis Rev. 28:369–378. 2009.PubMed/NCBI View Article : Google Scholar

114 

Yu Y, Wang Y, Xiao X, Chang W, Hu L, Yao W, Qian Z and Wu W: MiR-204 inhibits hepatocellular cancer drug resistance and metastasis through targeting NUAK1. Biochem Cell Biol. 97:563–570. 2019.PubMed/NCBI View Article : Google Scholar

115 

Xiong X, Sun D, Chai H, Shan W, Yu Y, Pu L and Cheng F: MiR-145 functions as a tumor suppressor targeting NUAK1 in human intrahepatic cholangiocarcinoma. Biochem Biophys Res Commun. 465:262–269. 2015.PubMed/NCBI View Article : Google Scholar

116 

Bell RE, Khaled M, Netanely D, Schubert S, Golan T, Buxbaum A, Janas MM, Postolsky B, Goldberg MS, Shamir R and Levy C: Transcription factor/microRNA axis blocks melanoma invasion program by miR-211 targeting NUAK1. J Invest Dermatol. 134:441–451. 2014.PubMed/NCBI View Article : Google Scholar

117 

Huang X, Lv W, Zhang JH and Lu DL: miR96 functions as a tumor suppressor gene by targeting NUAK1 in pancreatic cancer. Int J Mol Med. 34:1599–1605. 2014.PubMed/NCBI View Article : Google Scholar

118 

Monteverde T, Tait-Mulder J, Hedley A, Knight JR, Sansom OJ and Murphy DJ: Calcium signalling links MYC to NUAK1. Oncogene. 37:982–992. 2018.PubMed/NCBI View Article : Google Scholar

119 

Ojo OO, Bhadauria S and Rath SK: Dose-dependent adverse effects of salinomycin on male reproductive organs and fertility in mice. PLoS One. 8(e69086)2013.PubMed/NCBI View Article : Google Scholar

120 

Zhou Y, Liang C, Xue F, Chen W, Zhi X, Feng X, Bai X and Liang T: Salinomycin decreases doxorubicin resistance in hepatocellular carcinoma cells by inhibiting the β-catenin/TCF complex association via FOXO3a activation. Oncotarget. 6:10350–10365. 2015.PubMed/NCBI View Article : Google Scholar

121 

Yu Z, Cheng H, Zhu H, Cao M, Lu C, Bao S, Pan Y and Li Y: Salinomycin enhances doxorubicin sensitivity through reversing the epithelial-mesenchymal transition of cholangiocarcinoma cells by regulating ARK5. Braz J Med Biol Res. 50(e6147)2017.PubMed/NCBI View Article : Google Scholar

122 

Reddy MV, Akula B, Cosenza SC, Athuluridivakar S, Mallireddigari MR, Pallela VR, Billa VK, Subbaiah DR, Bharathi EV, Vasquez-Del Carpio R, et al: Discovery of 8-cyclopentyl-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-7-oxo-7,8-dihydro-pyrido[2,3-d]pyrimidine-6-carbonitrile (7x) as a potent inhibitor of cyclin-dependent kinase 4 (CDK4) and AMPK-related kinase 5 (ARK5). J Med Chem. 57:578–599. 2014.PubMed/NCBI View Article : Google Scholar

123 

Huang X, Di Liberto M, Jayabalan D, Liang J, Ely S, Bretz J, Shaffer AL III, Louie T, Chen I, Randolph S, et al: Prolonged early G(1) arrest by selective CDK4/CDK6 inhibition sensitizes myeloma cells to cytotoxic killing through cell cycle-coupled loss of IRF4. Blood. 120:1095–1106. 2012.PubMed/NCBI View Article : Google Scholar

124 

Niesvizky R, Badros AZ, Costa LJ, Ely SA, Singhal SB, Stadtmauer EA, Haideri NA, Yacoub A, Hess G, Lentzsch S, et al: Phase 1/2 study of cyclin-dependent kinase (CDK)4/6 inhibitor palbociclib (PD-0332991) with bortezomib and dexamethasone in relapsed/refractory multiple myeloma. Leuk Lymphoma. 56:3320–3328. 2015.PubMed/NCBI View Article : Google Scholar

125 

Banerjee S, Buhrlage SJ, Huang HT, Deng X, Zhou W, Wang J, Traynor R, Prescott AR, Alessi DR and Gray NS: Characterization of WZ4003 and HTH-01-015 as selective inhibitors of the LKB1-tumour-suppressor-activated NUAK kinases. Biochem J. 457:215–225. 2014.PubMed/NCBI View Article : Google Scholar

126 

Banerjee S, Zagorska A, Deak M, Campbell DG, Prescott AR and Alessi DR: Interplay between Polo kinase, LKB1-activated NUAK1 kinase, PP1βMYPT1 phosphatase complex and the SCFβTrCP E3 ubiquitin ligase. Biochem J. 461:233–245. 2014.PubMed/NCBI View Article : Google Scholar

127 

Reeves WB and Andreoli TE: Transforming growth factor beta contributes to progressive diabetic nephropathy. Proc Natl Acad Sci USA. 97:7667–7669. 2000.PubMed/NCBI View Article : Google Scholar

128 

Zhang X, Lv H, Zhou Q, Elkholi R, Chipuk JE, Reddy MV, Reddy EP and Gallo JM: Preclinical pharmacological evaluation of a novel multiple kinase inhibitor, ON123300, in brain tumor models. Mol Cancer Ther. 13:1105–1116. 2014.PubMed/NCBI View Article : Google Scholar

129 

Kalluri R and Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428. 2009.PubMed/NCBI View Article : Google Scholar

130 

Brennan EP, Morine MJ, Walsh DW, Roxburgh SA, Lindenmeyer MT, Brazil DP, Gaora PÓ, Roche HM, Sadlier DM, Cohen CD, et al: Next-generation sequencing identifies TGF-β1-associated gene expression profiles in renal epithelial cells reiterated in human diabetic nephropathy. Biochim Biophys Acta. 1822:589–599. 2012.PubMed/NCBI View Article : Google Scholar

131 

Russo LM, del Re E, Brown D and Lin HY: Evidence for a role of transforming growth factor (TGF)-beta1 in the induction of postglomerular albuminuria in diabetic nephropathy: Amelioration by soluble TGF-beta type II receptor. Diabetes. 56:380–388. 2007.PubMed/NCBI View Article : Google Scholar

132 

Sakamoto K, Goransson O, Hardie DG and Alessi DR: Activity of LKB1 and AMPK-related kinases in skeletal muscle: Effects of contraction, phenformin, and AICAR. Am J Physiol Endocrinol Metab. 287:E310–E317. 2004.PubMed/NCBI View Article : Google Scholar

133 

Fisher JS, Ju JS, Oppelt PJ, Smith JL, Suzuki A and Esumi H: Muscle contractions, AICAR, and insulin cause phosphorylation of an AMPK-related kinase. Am J Physiol Endocrinol Metab. 289:E986–E992. 2005.PubMed/NCBI View Article : Google Scholar

134 

Hoppe PE, Chau J, Flanagan KA, Reedy AR and Schriefer LA: Caenorhabditis elegans unc-82 encodes a serine/threonine kinase important for myosin filament organization in muscle during growth. Genetics. 184:79–90. 2010.PubMed/NCBI View Article : Google Scholar

135 

Zagorska A, Deak M, Campbell DG, Banerjee S, Hirano M, Aizawa S, Prescott AR and Alessi DR: New roles for the LKB1-NUAK pathway in controlling myosin phosphatase complexes and cell adhesion. Sci Signal. 3(ra25)2010.PubMed/NCBI View Article : Google Scholar

136 

Inazuka F, Sugiyama N, Tomita M, Abe T, Shioi G and Esumi H: Muscle-specific knock-out of NUAK family SNF1-like kinase 1 (NUAK1) prevents high fat diet-induced glucose intolerance. J Biol Chem. 287:16379–16389. 2012.PubMed/NCBI View Article : Google Scholar

137 

Yap JKY, Pickard BS, Chan EWL and Gan SY: The role of neuronal NLRP1 inflammasome in Alzheimer's disease: Bringing neurons into the neuroinflammation game. Mol Neurobiol. 56:7741–7753. 2019.PubMed/NCBI View Article : Google Scholar

138 

Courchet V, Roberts AJ, Meyer-Dilhet G, Del Carmine P, Lewis TL Jr, Polleux F and Courchet J: Haploinsufficiency of autism spectrum disorder candidate gene NUAK1 impairs cortical development and behavior in mice. Nat Commun. 9(4289)2018.PubMed/NCBI View Article : Google Scholar

139 

Soto C and Pritzkow S: Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat Neurosci. 21:1332–1340. 2018.PubMed/NCBI View Article : Google Scholar

140 

Cao Q, Wang XJ, Liu CW, Liu DF, Li LF, Gao YQ and Su XD: Inhibitory mechanism of caspase-6 phosphorylation revealed by crystal structures, molecular dynamics simulations, and biochemical assays. J Biol Chem. 287:15371–15379. 2012.PubMed/NCBI View Article : Google Scholar

141 

MacLachlan TK and El-Deiry WS: Apoptotic threshold is lowered by p53 transactivation of caspase-6. Proc Natl Acad Sci USA. 99:9492–9497. 2002.PubMed/NCBI View Article : Google Scholar

142 

Kurokawa M and Kornbluth S: Caspases and kinases in a death grip. Cell. 138:838–854. 2009.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Mo G, Zhang B and Jiang Q: Role of ARK5 in cancer and other diseases (Review). Exp Ther Med 22: 697, 2021.
APA
Mo, G., Zhang, B., & Jiang, Q. (2021). Role of ARK5 in cancer and other diseases (Review). Experimental and Therapeutic Medicine, 22, 697. https://doi.org/10.3892/etm.2021.10129
MLA
Mo, G., Zhang, B., Jiang, Q."Role of ARK5 in cancer and other diseases (Review)". Experimental and Therapeutic Medicine 22.1 (2021): 697.
Chicago
Mo, G., Zhang, B., Jiang, Q."Role of ARK5 in cancer and other diseases (Review)". Experimental and Therapeutic Medicine 22, no. 1 (2021): 697. https://doi.org/10.3892/etm.2021.10129
Copy and paste a formatted citation
x
Spandidos Publications style
Mo G, Zhang B and Jiang Q: Role of ARK5 in cancer and other diseases (Review). Exp Ther Med 22: 697, 2021.
APA
Mo, G., Zhang, B., & Jiang, Q. (2021). Role of ARK5 in cancer and other diseases (Review). Experimental and Therapeutic Medicine, 22, 697. https://doi.org/10.3892/etm.2021.10129
MLA
Mo, G., Zhang, B., Jiang, Q."Role of ARK5 in cancer and other diseases (Review)". Experimental and Therapeutic Medicine 22.1 (2021): 697.
Chicago
Mo, G., Zhang, B., Jiang, Q."Role of ARK5 in cancer and other diseases (Review)". Experimental and Therapeutic Medicine 22, no. 1 (2021): 697. https://doi.org/10.3892/etm.2021.10129
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team