|
1
|
Esumi H, Izuishi K, Kato K, Hashimoto K,
Kurashima Y, Kishimoto A, Ogura T and Ozawa T: Hypoxia and nitric
oxide treatment confer tolerance to glucose starvation in a
5'-AMP-activated protein kinase-dependent manner. J Biol Chem.
277:32791–32798. 2002.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Ivanov S, Liao SY, Ivanova A,
Danilkovitch-Miagkova A, Tarasova N, Weirich G, Merrill MJ,
Proescholdt MA, Oldfield EH, Lee J, et al: Expression of
hypoxia-inducible cell-surface transmembrane carbonic anhydrases in
human cancer. Am J Pathol. 158:905–919. 2001.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Kaluz S, Kaluzova M, Chrastina A, Olive
PL, Pastoreková S, Pastorek J, Lerman MI and Stanbridge EJ: Lowered
oxygen tension induces expression of the hypoxia marker MN/carbonic
anhydrase IX in the absence of hypoxia-inducible factor 1 alpha
stabilization: A role for phosphatidylinositol 3'-kinase. Cancer
Res. 62:4469–4477. 2002.PubMed/NCBI
|
|
4
|
Suzuki A, Kusakai G, Kishimoto A, Lu J,
Ogura T, Lavin MF and Esumi H: Identification of a novel protein
kinase mediating Akt survival signaling to the ATM protein. J Biol
Chem. 278:48–53. 2003.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Li B, Tsao SW, Li YY, Wang X, Ling MT,
Wong YC, He QY and Cheung AL: Id-1 promotes tumorigenicity and
metastasis of human esophageal cancer cells through activation of
PI3K/AKT signaling pathway. Int J Cancer. 125:2576–2585.
2009.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Ohta T, Isobe M, Takahashi T,
Saitoh-Sekiguchi M, Motoyama T and Kurachi H: The Akt and ERK
activation by platinum-based chemotherapy in ovarian cancer is
associated with favorable patient outcome. Anticancer Res.
29:4639–4647. 2009.PubMed/NCBI
|
|
7
|
Renton A, Llanos S and Lu X: Hypoxia
induces p53 through a pathway distinct from most DNA-damaging and
stress-inducing agents. Carcinogenesis. 24:1177–1182.
2003.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Suzuki A, Iida S, Kato-Uranishi M, Tajima
E, Zhan F, Hanamura I, Huang Y, Ogura T, Takahashi S and Ueda R:
ARK5 is transcriptionally regulated by the Large-MAF family and
mediates IGF-1-induced cell invasion in multiple myeloma: ARK5 as a
new molecular determinant of malignant multiple myeloma. Oncogene.
24:6936–6944. 2005.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Simon PO Jr, McDunn JE, Kashiwagi H, Chang
K, Goedegebuure PS, Hotchkiss RS and Hawkins WG: Targeting AKT with
the proapoptotic peptide, TAT-CTMP: A novel strategy for the
treatment of human pancreatic adenocarcinoma. Int J Cancer.
125:942–951. 2009.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Kato K, Ogura T, Kishimoto A, Minegishi Y,
Nakajima N, Miyazaki M and Esumi H: Critical roles of AMP-activated
protein kinase in constitutive tolerance of cancer cells to
nutrient deprivation and tumor formation. Oncogene. 21:6082–6090.
2002.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Izuishi K, Kato K, Ogura T, Kinoshita T
and Esumi H: Remarkable tolerance of tumor cells to nutrient
deprivation: Possible new biochemical target for cancer therapy.
Cancer Res. 60:6201–6207. 2000.PubMed/NCBI
|
|
12
|
Suzuki A, Kusakai G, Kishimoto A, Lu J,
Ogura T and Esumi H: ARK5 suppresses the cell death induced by
nutrient starvation and death receptors via inhibition of caspase 8
activation, but not by chemotherapeutic agents or UV irradiation.
Oncogene. 22:6177–6182. 2003.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Suzuki A, Kusakai G, Shimojo Y, Chen J,
Ogura T, Kobayashi M and Esumi H: Involvement of transforming
growth factor-beta 1 signaling in hypoxia-induced tolerance to
glucose starvation. J Biol Chem. 280:31557–31563. 2005.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Kuehl WM and Bergsagel PL: Molecular
pathogenesis of multiple myeloma and its premalignant precursor. J
Clin Invest. 122:3456–3463. 2012.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2013. CA Cancer J Clin. 63:11–30. 2013.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Benboubker L, Dimopoulos MA, Dispenzieri
A, Catalano J, Belch AR, Cavo M, Pinto A, Weisel K, Ludwig H,
Bahlis N, et al: Lenalidomide and dexamethasone in
transplant-ineligible patients with myeloma. N Engl J Med.
371:906–917. 2014.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Rajkumar SV, Blood E, Vesole D, Fonseca R
and Greipp PR: Eastern Cooperative Oncology Group. Phase III
clinical trial of thalidomide plus dexamethasone compared with
dexamethasone alone in newly diagnosed multiple myeloma: A clinical
trial coordinated by the Eastern Cooperative Oncology Group. J Clin
Oncol. 24:431–436. 2006.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Richardson PG, Weller E, Lonial S,
Jakubowiak AJ, Jagannath S, Raje NS, Avigan DE, Xie W, Ghobrial IM,
Schlossman RL, et al: Lenalidomide, bortezomib, and dexamethasone
combination therapy in patients with newly diagnosed multiple
myeloma. Blood. 116:679–686. 2010.PubMed/NCBI View Article : Google Scholar
|
|
19
|
San Miguel JF, Schlag R, Khuageva NK,
Dimopoulos MA, Shpilberg O, Kropff M, Spicka I, Petrucci MT,
Palumbo A, Samoilova OS, et al: Bortezomib plus melphalan and
prednisone for initial treatment of multiple myeloma. N Engl J Med.
359:906–917. 2008.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Kumar SK, Dispenzieri A, Lacy MQ, Gertz
MA, Buadi FK, Pandey S, Kapoor P, Dingli D, Hayman SR, Leung N, et
al: Continued improvement in survival in multiple myeloma: Changes
in early mortality and outcomes in older patients. Leukemia.
28:1122–1128. 2014.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Kawauchi S, Takahashi S, Nakajima O, Ogino
H, Morita M, Nishizawa M, Nishizawa M, Yasuda K and Yamamoto M:
Regulation of lens fiber cell differentiation by transcription
factor c-Maf. J Biol Chem. 274:19254–19260. 1999.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Kim JI, Li T, Ho IC, Grusby MJ and
Glimcher LH: Requirement for the c-Maf transcription factor in
crystallin gene regulation and lens development. Proc Natl Acad Sci
USA. 96:3781–3785. 1999.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Ring BZ, Cordes SP, Overbeek PA and Barsh
GS: Regulation of mouse lens fiber cell development and
differentiation by the Maf gene. Development. 127:307–317.
2000.PubMed/NCBI
|
|
24
|
Zhang Z, Tong J, Tang X, Juan J, Cao B,
Hurren R, Chen G, Taylor P, Xu X, Shi CX, et al: The ubiquitin
ligase HERC4 mediates c-Maf ubiquitination and delays the growth of
multiple myeloma xenografts in nude mice. Blood. 127:1676–1686.
2016.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Wang S, Juan J, Zhang Z, Du Y, Xu Y, Tong
J, Cao B, Moran MF, Zeng Y and Mao X: Inhibition of the
deubiquitinase USP5 leads to c-Maf protein degradation and myeloma
cell apoptosis. Cell Death Dis. 8(e3058)2017.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Qiang YW, Ye S, Chen Y, Buros AF, Edmonson
R, van Rhee F, Barlogie B, Epstein J, Morgan GJ and Davies FE: MAF
protein mediates innate resistance to proteasome inhibition therapy
in multiple myeloma. Blood. 128:2919–2930. 2016.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Schiller NR, Duchesneau CD, Lane LS, Reedy
AR, Manzon ER and Hoppe PE: The Role of the UNC-82 protein kinase
in organizing myosin filaments in striated muscle of caenorhabditis
elegans. Genetics. 205:1195–1213. 2017.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Perumal D, Kuo PY, Leshchenko VV, Jiang Z,
Divakar SK, Cho HJ, Chari A, Brody J, Reddy MV, Zhang W, et al:
Dual targeting of CDK4 and ARK5 using a novel kinase inhibitor
ON123300 exerts potent anticancer activity against multiple
myeloma. Cancer Res. 76:1225–1236. 2016.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Liu L, Ulbrich J, Müller J, Wüstefeld T,
Aeberhard L, Kress TR, Muthalagu N, Rycak L, Rudalska R, Moll R, et
al: Deregulated MYC expression induces dependence upon AMPK-related
kinase 5. Nature. 483:608–612. 2012.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Hoppe S, Bierhoff H, Cado I, Weber A,
Tiebe M, Grummt I and Voit R: AMP-activated protein kinase adapts
rRNA synthesis to cellular energy supply. Proc Natl Acad Sci USA.
106:17781–17786. 2009.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Kusakai G, Suzuki A, Ogura T, Miyamoto S,
Ochiai A, Kaminishi M and Esumi H: ARK5 expression in colorectal
cancer and its implications for tumor progression. Am J Pathol.
164:987–995. 2004.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Li X, Zhang XA, Li X, Xie W and Huang S:
MYC-mediated synthetic lethality for treating tumors. Curr Cancer
Drug Targets. 15:99–115. 2015.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Colon Cancer Treatment (PDQ®):
Patient Version. PDQ Cancer Information Summaries. Bethesda, MD,
2002.
|
|
34
|
Peng JK, Shen SQ, Wang J, Jiang HW and
Wang YQ: Ηypoxia-inducible factor 1-α promotes colon cell
proliferation and migration by upregulating AMPK-related protein
kinase 5 under hypoxic conditions. Oncol Lett. 15:3639–3645.
2018.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Semenza GL: Defining the role of
hypoxia-inducible factor 1 in cancer biology and therapeutics.
Oncogene. 29:625–634. 2010.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Semenza GL: Targeting HIF-1 for cancer
therapy. Nat Rev Cancer. 3:721–732. 2003.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Wang GL, Jiang BH, Rue EA and Semenza GL:
Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS
heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci
USA. 92:5510–5514. 1995.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Wang JS, Jing CQ, Shan KS, Chen YZ, Guo
XB, Cao ZX, Mu LJ, Peng LP, Zhou ML and Li LP: Semaphorin 4D and
hypoxia-inducible factor-1alpha overexpression is related to
prognosis in colorectal carcinoma. World J Gastroenterol.
21:2191–2198. 2015.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Sirri E, Castro FA, Kieschke J, Jansen L,
Emrich K, Gondos A, Holleczek B, Katalinic A, Urbschat I, Vohmann C
and Brenner H: Recent trends in survival of patients with
pancreatic cancer in Germany and the United States. Pancreas.
45:908–914. 2016.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Rajamani D and Bhasin MK: Identification
of key regulators of pancreatic cancer progression through
multidimensional systems-level analysis. Genome Med.
8(38)2016.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Von Hoff DD, Ervin T, Arena FP, Chiorean
EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, et
al: Increased survival in pancreatic cancer with nab-paclitaxel
plus gemcitabine. N Engl J Med. 369:1691–1703. 2013.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Berlin JD, Catalano P, Thomas JP, Kugler
JW, Haller DG and Benson AB III: Phase III study of gemcitabine in
combination with fluorouracil versus gemcitabine alone in patients
with advanced pancreatic carcinoma: Eastern Cooperative Oncology
Group Trial E2297. J Clin Oncol. 20:3270–3275. 2002.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Oettle H, Richards D, Ramanathan RK, van
Laethem JL, Peeters M, Fuchs M, Zimmermann A, John W, Von Hoff D,
Arning M and Kindler HL: A phase III trial of pemetrexed plus
gemcitabine versus gemcitabine in patients with unresectable or
metastatic pancreatic cancer. Ann Oncol. 16:1639–1645.
2005.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Wang Y, Kuramitsu Y, Tokuda K, Baron B,
Kitagawa T, Akada J, Maehara S, Maehara Y and Nakamura K:
Gemcitabine induces poly (ADP-ribose) polymerase-1 (PARP-1)
degradation through autophagy in pancreatic cancer. PLoS One.
9(e109076)2014.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Gilkes DM, Semenza GL and Wirtz D: Hypoxia
and the extracellular matrix: Drivers of tumour metastasis. Nat Rev
Cancer. 14:430–439. 2014.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Wu J, Yang B, Zhang Y, Feng X, He B, Xie
H, Zhou L, Wu J and Zheng S: miR-424-5p represses the metastasis
and invasion of intrahepatic cholangiocarcinoma by targeting ARK5.
Int J Biol Sci. 15:1591–1599. 2019.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Wang X, Song Z, Chen F, Yang X, Wu B, Xie
S, Zheng X, Cai Y, Chen W and Zhong Z: AMPK-related kinase 5 (ARK5)
enhances gemcitabine resistance in pancreatic carcinoma by inducing
epithelial-mesenchymal transition. Am J Transl Res. 10:4095–4106.
2018.PubMed/NCBI
|
|
48
|
Jemal A, Murray T, Samuels A, Ghafoor A,
Ward E and Thun MJ: Cancer statistics, 2003. CA Cancer J Clin.
53:5–26. 2003.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Schiller JH, Harrington D, Belani CP,
Langer C, Sandler A, Krook J, Zhu J and Johnson DH: Eastern
Cooperative Oncology Group. Comparison of four chemotherapy
regimens for advanced non-small-cell lung cancer. N Engl J Med.
346:92–98. 2002.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Li Y, Qi K, Zu L, Wang M, Wang Y and Zhou
Q: Anti-apoptotic brain and reproductive organ-expressed proteins
enhance cisplatin resistance in lung cancer cells via the protein
kinase B signaling pathway. Thorac Cancer. 7:190–198.
2016.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Zhang HY, Li JH, Li G and Wang SR:
Activation of ARK5/miR-1181/HOXA10 axis promotes
epithelial-mesenchymal transition in ovarian cancer. Oncol Rep.
34:1193–1202. 2015.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Yu HG, Wei W, Xia LH, Han WL, Zhao P, Wu
SJ, Li WD and Chen W: FBW7 upregulation enhances cisplatin
cytotoxicity in non-small cell lung cancer cells. Asian Pac J
Cancer Prev. 14:6321–6326. 2013.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Chang XZ, Yu J, Liu HY, Dong RH and Cao
XC: ARK5 is associated with the invasive and metastatic potential
of human breast cancer cells. J Cancer Res Clin Oncol. 138:247–254.
2012.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Cui J, Yu Y, Lu GF, Liu C, Liu X, Xu YX
and Zheng PY: Overexpression of ARK5 is associated with poor
prognosis in hepatocellular carcinoma. Tumour Biol. 34:1913–1918.
2013.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Sun X, Gao L, Chien HY, Li WC and Zhao J:
The regulation and function of the NUAK family. J Mol Endocrinol.
51:R15–R22. 2013.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Suzuki A, Ogura T and Esumi H: NDR2 acts
as the upstream kinase of ARK5 during insulin-like growth factor-1
signaling. J Biol Chem. 281:13915–13921. 2006.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Lizcano JM, Göransson O, Toth R, Deak M,
Morrice NA, Boudeau J, Hawley SA, Udd L, Mäkelä TP, Hardie DG and
Alessi DR: LKB1 is a master kinase that activates 13 kinases of the
AMPK subfamily, including MARK/PAR-1. EMBO J. 23:833–843.
2004.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Davis LE, Jeng S, Svalina MN, Huang E,
Pittsenbarger J, Cantor EL, Berlow N, Seguin B, Mansoor A, McWeeney
SK and Keller C: Integration of genomic, transcriptomic and
functional profiles of aggressive osteosarcomas across multiple
species. Oncotarget. 8:76241–76256. 2017.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Ryu S and Tjian R: Purification of
transcription cofactor complex CRSP. Proc Natl Acad Sci USA.
96:7137–7142. 1999.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Datta SR, Brunet A and Greenberg ME:
Cellular survival: A play in three Akts. Genes Dev. 13:2905–2927.
1999.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Itoh N, Semba S, Ito M, Takeda H, Kawata S
and Yamakawa M: Phosphorylation of Akt/PKB is required for
suppression of cancer cell apoptosis and tumor progression in human
colorectal carcinoma. Cancer. 94:3127–3134. 2002.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Nicholson KM and Anderson NG: The protein
kinase B/Akt signalling pathway in human malignancy. Cell Signal.
14:381–395. 2002.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Ruggeri BA, Huang L, Wood M, Cheng JQ and
Testa JR: Amplification and overexpression of the AKT2 oncogene in
a subset of human pancreatic ductal adenocarcinomas. Mol Carcinog.
21:81–86. 1998.PubMed/NCBI
|
|
64
|
Higuchi M, Masuyama N, Fukui Y, Suzuki A
and Gotoh Y: Akt mediates Rac/Cdc42-regulated cell motility in
growth factor-stimulated cells and in invasive PTEN knockout cells.
Curr Biol. 11:1958–1962. 2001.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Lawlor MA and Alessi DR: PKB/Akt: A key
mediator of cell proliferation, survival and insulin responses? J
Cell Sci. 114:2903–2910. 2001.PubMed/NCBI
|
|
66
|
Taatjes DJ, Naar AM, Andel F III, Nogales
E and Tjian R: Structure, function, and activator-induced
conformations of the CRSP coactivator. Science. 295:1058–1062.
2002.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Kusakai G, Suzuki A, Ogura T, Kaminishi M
and Esumi H: Strong association of ARK5 with tumor invasion and
metastasis. J Exp Clin Cancer Res. 23:263–268. 2004.PubMed/NCBI
|
|
68
|
Cox AD and Der CJ: The dark side of Ras:
Regulation of apoptosis. Oncogene. 22:8999–9006. 2003.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Suzuki A, Lu J, Kusakai G, Kishimoto A,
Ogura T and Esumi H: ARK5 is a tumor invasion-associated factor
downstream of Akt signaling. Mol Cell Biol. 24:3526–3535.
2004.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Xie M, Wu X, Zhang J, Zhang J and Li X:
Ski regulates Smads and TAZ signaling to suppress lung cancer
progression. Mol Carcinog. 56:2178–2189. 2017.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Sato H, Takino T, Okada Y, Cao J,
Shinagawa A, Yamamoto E and Seiki M: A matrix metalloproteinase
expressed on the surface of invasive tumour cells. Nature.
370:61–65. 1994.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Kaufhold S and Bonavida B: Central role of
Snail1 in the regulation of EMT and resistance in cancer: A target
for therapeutic intervention. J Exp Clin Cancer Res.
33(62)2014.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Fischer KR, Durrans A, Lee S, Sheng J, Li
F, Wong ST, Choi H, El Rayes T, Ryu S, Troeger J, et al:
Epithelial-to-mesenchymal transition is not required for lung
metastasis but contributes to chemoresistance. Nature. 527:472–476.
2015.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Thiery JP and Sleeman JP: Complex networks
orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell
Biol. 7:131–142. 2006.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Li M, Zheng C, Xu H, He W, Ruan Y, Ma J,
Zheng J, Ye C and Li W: Inhibition of AMPK-related kinase 5 (ARK5)
enhances cisplatin cytotoxicity in non-small cell lung cancer cells
through regulation of epithelial-mesenchymal transition. Am J
Transl Res. 9:1708–1719. 2017.PubMed/NCBI
|
|
76
|
Liu Y, Du F, Zhao Q, Jin J, Ma X and Li H:
Acquisition of 5-fluorouracil resistance induces
epithelial-mesenchymal transitions through the Hedgehog signaling
pathway in HCT-8 colon cancer cells. Oncol Lett. 9:2675–2679.
2015.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Mallini P, Lennard T, Kirby J and Meeson
A: Epithelial-to-mesenchymal transition: What is the impact on
breast cancer stem cells and drug resistance. Cancer Treat Rev.
40:341–348. 2014.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Xu T, Zhang J, Chen W, Pan S, Zhi X, Wen
L, Zhou Y, Chen BW, Qiu J, Zhang Y, et al: ARK5 promotes
doxorubicin resistance in hepatocellular carcinoma via
epithelial-mesenchymal transition. Cancer Lett. 377:140–148.
2016.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Chen D, Liu G, Xu N, You X, Zhou H, Zhao X
and Liu Q: Knockdown of ARK5 expression suppresses invasion and
metastasis of gastric cancer. Cell Physiol Biochem. 42:1025–1036.
2017.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Liotta LA: Tumor invasion and
metastases-role of the extracellular matrix: Rhoads memorial award
lecture. Cancer Res. 46:1–7. 1986.PubMed/NCBI
|
|
81
|
Chen XF, Zhang HJ, Wang HB, Zhu J, Zhou
WY, Zhang H, Zhao MC, Su JM, Gao W, Zhang L, et al: Transforming
growth factor-β1 induces epithelial-to-mesenchymal transition in
human lung cancer cells via PI3K/Akt and MEK/Erk1/2 signaling
pathways. Molr Biol Reps. 39:3549–3556. 2012.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Park NR, Cha JH, Jang JW, Bae SH, Jang B,
Kim JH, Hur W, Choi JY and Yoon SK: Synergistic effects of CD44 and
TGF-β1 through AKT/GSK-3β/β-catenin signaling during
epithelial-mesenchymal transition in liver cancer cells. Biochem
Biophys Res Commun. 477:568–574. 2016.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Shiraki K, Tsuji N, Shioda T, Isselbacher
KJ and Takahashi H: Expression of Fas ligand in liver metastases of
human colonic adenocarcinomas. Proc Natl Acad Sci USA.
94:6420–6425. 1997.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Yoong KF, Afford SC, Randhawa S, Hubscher
SG and Adams DH: Fas/Fas ligand interaction in human colorectal
hepatic metastases: A mechanism of hepatocyte destruction to
facilitate local tumor invasion. Am J Pathol. 154:693–703.
1999.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Sánchez-Tilló E, Fanlo L, Siles L,
Montes-Moreno S, Moros A, Chiva-Blanch G, Estruch R, Martinez A,
Colomer D, Győrffy B, et al: The EMT activator ZEB1 promotes tumor
growth and determines differential response to chemotherapy in
mantle cell lymphoma. Cell Death Differ. 21:247–257.
2014.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Suzuki A, Kusakai G, Kishimoto A, Shimojo
Y, Miyamoto S, Ogura T, Ochiai A and Esumi H: Regulation of
caspase-6 and FLIP by the AMPK family member ARK5. Oncogene.
23:7067–7075. 2004.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Restifo NP: Not so Fas: Re-evaluating the
mechanisms of immune privilege and tumor escape. Nat Med.
6:493–495. 2000.PubMed/NCBI View
Article : Google Scholar
|
|
88
|
Suzuki A, Kusakai G, Kishimoto A,
Minegichi Y, Ogura T and Esumi H: Induction of cell-cell detachment
during glucose starvation through F-actin conversion by SNARK, the
fourth member of the AMP-activated protein kinase catalytic subunit
family. Biochem Biophys Res Commun. 311:156–161. 2003.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Conacci-Sorrell M, McFerrin L and Eisenman
RN: An overview of MYC and its interactome. Cold Spring Harb
Perspect Med. 4(a014357)2014.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Stine ZE, Walton ZE, Altman BJ, Hsieh AL
and Dang CV: MYC, metabolism, and cancer. Cancer Discov.
5:1024–1039. 2015.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Evan GI, Christophorou M, Lawlor EA,
Ringshausen I, Prescott J, Dansen T, Dansen T, Finch A, Martins C
and Murphy D: Oncogene-dependent tumor suppression: Using the dark
side of the force for cancer therapy. Cold Spring Harb Symp Quant
Biol. 70:263–273. 2005.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Murphy DJ, Junttila MR, Pouyet L, Karnezis
A, Shchors K, Bui DA, Brown-Swigart L, Johnson L and Evan GI:
Distinct thresholds govern Myc's biological output in vivo. Cancer
Cell. 14:447–457. 2008.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Ross FA, MacKintosh C and Hardie DG:
AMP-activated protein kinase: A cellular energy sensor that comes
in 12 flavours. Febs J. 283:2987–3001. 2016.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Shackelford DB and Shaw RJ: The LKB1-AMPK
pathway: Metabolism and growth control in tumour suppression. Nat
Rev Cancer. 9:563–575. 2009.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Woods A, Dickerson K, Heath R, Hong SP,
Momcilovic M, Johnstone SR, Carlson M and Carling D:
Ca2+/calmodulin-dependent protein kinase kinase-beta
acts upstream of AMP-activated protein kinase in mammalian cells.
Cell Metab. 2:21–33. 2005.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Ciccarese F, Zulato E and Indraccolo S:
LKB1/AMPK pathway and drug response in cancer: A therapeutic
perspective. Oxid Med Cell Longev. 2019(8730816)2019.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Kawakami Y, Nishimoto H, Kitaura J,
Maeda-Yamamoto M, Kato RM, Littman DR, Leitges M, Rawlings DJ and
Kawakami T: Protein kinase C betaII regulates Akt phosphorylation
on Ser-473 in a cell type- and stimulus-specific fashion. J Biol
Chem. 279:47720–4725. 2004.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Partovian C and Simons M: Regulation of
protein kinase B/Akt activity and Ser473 phosphorylation by protein
kinase Calpha in endothelial cells. Cell Signal. 16:951–957.
2004.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Delbridge AR and Strasser A: The BCL-2
protein family, BH3-mimetics and cancer therapy. Cell Death Differ.
22:1071–1080. 2015.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Muthalagu N, Junttila MR, Wiese KE, Wolf
E, Morton J, Bauer B, Evan GI, Eilers M and Murphy DJ: BIM is the
primary mediator of MYC-induced apoptosis in multiple solid
tissues. Cell Rep. 8:1347–1353. 2014.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Zhang X, Tang N, Hadden TJ and Rishi AK:
Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta.
1813:1978–1986. 2011.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Cermelli S, Jang IS, Bernard B and
Grandori C: Synthetic lethal screens as a means to understand and
treat MYC-driven cancers. Cold Spring Harb Perspect Med.
4(a014209)2014.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Carling D: AMPK signalling in health and
disease. Curr Opin Cell Biol. 45:31–37. 2017.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Jones RG, Plas DR, Kubek S, Buzzai M, Mu
J, Xu Y, Birnbaum MJ and Thompson CB: AMP-activated protein kinase
induces a p53-dependent metabolic checkpoint. Mol Cell. 18:283–293.
2005.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Hou X, Liu JE, Liu W, Liu CY, Liu ZY and
Sun ZY: A new role of NUAK1: Directly phosphorylating p53 and
regulating cell proliferation. Oncogene. 30:2933–2942.
2011.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Baker DJ, Jeganathan KB, Cameron JD,
Thompson M, Juneja S, Kopecka A, Kumar R, Jenkins RB, de Groen PC,
Roche P and van Deursen JM: BubR1 insufficiency causes early onset
of aging-associated phenotypes and infertility in mice. Nat Genet.
36:744–749. 2004.PubMed/NCBI View
Article : Google Scholar
|
|
108
|
Chesnokova V, Zonis S, Kovacs K,
Ben-Shlomo A, Wawrowsky K, Bannykh S and Melmed S: p21(Cip1)
restrains pituitary tumor growth. Proc Natl Acad Sci USA.
105:17498–17503. 2004.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Takahashi A, Ohtani N, Yamakoshi K, Iida
S, Tahara H, Nakayama K, Nakayama KI, Ide T, Saya H and Hara E:
Mitogenic signalling and the p16INK4a-Rb pathway cooperate to
enforce irreversible cellular senescence. Nat Cell Biol.
8:1291–1297. 2006.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Zhang D, Shimizu T, Araki N, Hirota T,
Yoshie M, Ogawa K, Nakagata N, Takeya M and Saya H: Aurora A
overexpression induces cellular senescence in mammary gland
hyperplastic tumors developed in p53-deficient mice. Oncogene.
27:4305–4314. 2008.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Holland B, Wong J, Li M and Rasheed S:
Identification of human microRNA-like sequences embedded within the
protein-encoding genes of the human immunodeficiency virus. PLoS
One. 8(e58586)2013.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Obayashi M, Yoshida M, Tsunematsu T, Ogawa
I, Sasahira T, Kuniyasu H, Imoto I, Abiko Y, Xu D, Fukunaga S, et
al: microRNA-203 suppresses invasion and epithelial-mesenchymal
transition induction via targeting NUAK1 in head and neck cancer.
Oncotarget. 7:8223–8239. 2016.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Shenouda SK and Alahari SK: MicroRNA
function in cancer: Oncogene or a tumor suppressor? Cancer
Metastasis Rev. 28:369–378. 2009.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Yu Y, Wang Y, Xiao X, Chang W, Hu L, Yao
W, Qian Z and Wu W: MiR-204 inhibits hepatocellular cancer drug
resistance and metastasis through targeting NUAK1. Biochem Cell
Biol. 97:563–570. 2019.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Xiong X, Sun D, Chai H, Shan W, Yu Y, Pu L
and Cheng F: MiR-145 functions as a tumor suppressor targeting
NUAK1 in human intrahepatic cholangiocarcinoma. Biochem Biophys Res
Commun. 465:262–269. 2015.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Bell RE, Khaled M, Netanely D, Schubert S,
Golan T, Buxbaum A, Janas MM, Postolsky B, Goldberg MS, Shamir R
and Levy C: Transcription factor/microRNA axis blocks melanoma
invasion program by miR-211 targeting NUAK1. J Invest Dermatol.
134:441–451. 2014.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Huang X, Lv W, Zhang JH and Lu DL: miR96
functions as a tumor suppressor gene by targeting NUAK1 in
pancreatic cancer. Int J Mol Med. 34:1599–1605. 2014.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Monteverde T, Tait-Mulder J, Hedley A,
Knight JR, Sansom OJ and Murphy DJ: Calcium signalling links MYC to
NUAK1. Oncogene. 37:982–992. 2018.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Ojo OO, Bhadauria S and Rath SK:
Dose-dependent adverse effects of salinomycin on male reproductive
organs and fertility in mice. PLoS One. 8(e69086)2013.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Zhou Y, Liang C, Xue F, Chen W, Zhi X,
Feng X, Bai X and Liang T: Salinomycin decreases doxorubicin
resistance in hepatocellular carcinoma cells by inhibiting the
β-catenin/TCF complex association via FOXO3a activation.
Oncotarget. 6:10350–10365. 2015.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Yu Z, Cheng H, Zhu H, Cao M, Lu C, Bao S,
Pan Y and Li Y: Salinomycin enhances doxorubicin sensitivity
through reversing the epithelial-mesenchymal transition of
cholangiocarcinoma cells by regulating ARK5. Braz J Med Biol Res.
50(e6147)2017.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Reddy MV, Akula B, Cosenza SC,
Athuluridivakar S, Mallireddigari MR, Pallela VR, Billa VK,
Subbaiah DR, Bharathi EV, Vasquez-Del Carpio R, et al: Discovery of
8-cyclopentyl-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-7-oxo-7,8-dihydro-pyrido[2,3-d]pyrimidine-6-carbonitrile
(7x) as a potent inhibitor of cyclin-dependent kinase 4 (CDK4) and
AMPK-related kinase 5 (ARK5). J Med Chem. 57:578–599.
2014.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Huang X, Di Liberto M, Jayabalan D, Liang
J, Ely S, Bretz J, Shaffer AL III, Louie T, Chen I, Randolph S, et
al: Prolonged early G(1) arrest by selective CDK4/CDK6 inhibition
sensitizes myeloma cells to cytotoxic killing through cell
cycle-coupled loss of IRF4. Blood. 120:1095–1106. 2012.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Niesvizky R, Badros AZ, Costa LJ, Ely SA,
Singhal SB, Stadtmauer EA, Haideri NA, Yacoub A, Hess G, Lentzsch
S, et al: Phase 1/2 study of cyclin-dependent kinase (CDK)4/6
inhibitor palbociclib (PD-0332991) with bortezomib and
dexamethasone in relapsed/refractory multiple myeloma. Leuk
Lymphoma. 56:3320–3328. 2015.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Banerjee S, Buhrlage SJ, Huang HT, Deng X,
Zhou W, Wang J, Traynor R, Prescott AR, Alessi DR and Gray NS:
Characterization of WZ4003 and HTH-01-015 as selective inhibitors
of the LKB1-tumour-suppressor-activated NUAK kinases. Biochem J.
457:215–225. 2014.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Banerjee S, Zagorska A, Deak M, Campbell
DG, Prescott AR and Alessi DR: Interplay between Polo kinase,
LKB1-activated NUAK1 kinase, PP1βMYPT1 phosphatase complex and the
SCFβTrCP E3 ubiquitin ligase. Biochem J. 461:233–245.
2014.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Reeves WB and Andreoli TE: Transforming
growth factor beta contributes to progressive diabetic nephropathy.
Proc Natl Acad Sci USA. 97:7667–7669. 2000.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Zhang X, Lv H, Zhou Q, Elkholi R, Chipuk
JE, Reddy MV, Reddy EP and Gallo JM: Preclinical pharmacological
evaluation of a novel multiple kinase inhibitor, ON123300, in brain
tumor models. Mol Cancer Ther. 13:1105–1116. 2014.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Kalluri R and Weinberg RA: The basics of
epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428.
2009.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Brennan EP, Morine MJ, Walsh DW, Roxburgh
SA, Lindenmeyer MT, Brazil DP, Gaora PÓ, Roche HM, Sadlier DM,
Cohen CD, et al: Next-generation sequencing identifies
TGF-β1-associated gene expression profiles in renal epithelial
cells reiterated in human diabetic nephropathy. Biochim Biophys
Acta. 1822:589–599. 2012.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Russo LM, del Re E, Brown D and Lin HY:
Evidence for a role of transforming growth factor (TGF)-beta1 in
the induction of postglomerular albuminuria in diabetic
nephropathy: Amelioration by soluble TGF-beta type II receptor.
Diabetes. 56:380–388. 2007.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Sakamoto K, Goransson O, Hardie DG and
Alessi DR: Activity of LKB1 and AMPK-related kinases in skeletal
muscle: Effects of contraction, phenformin, and AICAR. Am J Physiol
Endocrinol Metab. 287:E310–E317. 2004.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Fisher JS, Ju JS, Oppelt PJ, Smith JL,
Suzuki A and Esumi H: Muscle contractions, AICAR, and insulin cause
phosphorylation of an AMPK-related kinase. Am J Physiol Endocrinol
Metab. 289:E986–E992. 2005.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Hoppe PE, Chau J, Flanagan KA, Reedy AR
and Schriefer LA: Caenorhabditis elegans unc-82 encodes a
serine/threonine kinase important for myosin filament organization
in muscle during growth. Genetics. 184:79–90. 2010.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Zagorska A, Deak M, Campbell DG, Banerjee
S, Hirano M, Aizawa S, Prescott AR and Alessi DR: New roles for the
LKB1-NUAK pathway in controlling myosin phosphatase complexes and
cell adhesion. Sci Signal. 3(ra25)2010.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Inazuka F, Sugiyama N, Tomita M, Abe T,
Shioi G and Esumi H: Muscle-specific knock-out of NUAK family
SNF1-like kinase 1 (NUAK1) prevents high fat diet-induced glucose
intolerance. J Biol Chem. 287:16379–16389. 2012.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Yap JKY, Pickard BS, Chan EWL and Gan SY:
The role of neuronal NLRP1 inflammasome in Alzheimer's disease:
Bringing neurons into the neuroinflammation game. Mol Neurobiol.
56:7741–7753. 2019.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Courchet V, Roberts AJ, Meyer-Dilhet G,
Del Carmine P, Lewis TL Jr, Polleux F and Courchet J:
Haploinsufficiency of autism spectrum disorder candidate gene NUAK1
impairs cortical development and behavior in mice. Nat Commun.
9(4289)2018.PubMed/NCBI View Article : Google Scholar
|
|
139
|
Soto C and Pritzkow S: Protein misfolding,
aggregation, and conformational strains in neurodegenerative
diseases. Nat Neurosci. 21:1332–1340. 2018.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Cao Q, Wang XJ, Liu CW, Liu DF, Li LF, Gao
YQ and Su XD: Inhibitory mechanism of caspase-6 phosphorylation
revealed by crystal structures, molecular dynamics simulations, and
biochemical assays. J Biol Chem. 287:15371–15379. 2012.PubMed/NCBI View Article : Google Scholar
|
|
141
|
MacLachlan TK and El-Deiry WS: Apoptotic
threshold is lowered by p53 transactivation of caspase-6. Proc Natl
Acad Sci USA. 99:9492–9497. 2002.PubMed/NCBI View Article : Google Scholar
|
|
142
|
Kurokawa M and Kornbluth S: Caspases and
kinases in a death grip. Cell. 138:838–854. 2009.PubMed/NCBI View Article : Google Scholar
|