|
1
|
Cataneo AJM, Felisberto G Jr and Cataneo
DC: Thymectomy in nonthymomatous myasthenia gravis-systematic
review and meta-analysis. Orphanet J Rare Dis.
13(99)2018.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Barnett C, Bril V, Kapral M, Kulkarni A
and Davis AM: Development and validation of the myasthenia gravis
impairment index. Neurology. 87:879–886. 2016.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Gwathmey KG and Burns TM: Myasthenia
gravis. Semin Neurol. 35:327–339. 2015.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Wang Z and Yan YP: Immunopathogenesis in
myasthenia gravis and neuromyelitis optica. Front Immunol.
8(1785)2017.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Gilhus NE, Skeie GO, Romi F, Lazaridis K,
Zisimopoulou P and Tzartos S: Myasthenia gravis-autoantibody
characteristics and their implications for therapy. Nat Rev Neurol.
12:259–268. 2016.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Juel VC: Myasthenia gravis: Management of
myasthenic crisis and perioperative care. Semin Neurol. 24:75–81.
2004.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Thomas CE, Mayer SA, Gungor Y, Swarup R,
Webster EA, Chang I, Brannagan TH, Fink ME and Rowland LP:
Myasthenic crisis: Clinical features, mortality, complications, and
risk factors for prolonged intubation. Neurology. 48:1253–1260.
1997.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Mantegazza R and Antozzi C: When
myasthenia gravis is deemed refractory: Clinical signposts and
treatment strategies. Ther Adv Neurol Disord.
11(1756285617749134)2018.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Mehndiratta MM, Pandey S and Kuntzer T:
Acetylcholinesterase inhibitor treatment for myasthenia gravis.
Cochrane Database Syst Rev. 16(CD006986)2011.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Watanabe G, Yuki T, Sugaya R, et al:
Effectiveness of treatment based on the simultaneous administration
of pyridostigmine, prednisolone, calcineurin inhibitor, and
intravenous immunoglobulin (PPCI therapy) in patients with
myasthenia gravis. Eur J Neurol. 25:143. 2018.
|
|
11
|
Luo J and Lindstrom J: AChR-specific
immunosuppressive therapy of myasthenia gravis. Biochem Pharmacol.
97:609–619. 2015.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Binks S, Vincent A and Palace J:
Myasthenia gravis: A clinical-immunological update. J Neurol.
263:826–834. 2016.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Wang L, Xi J, Zhang S, Wu H, Zhou L, Lu J,
Zhang T and Zhao C: Effectiveness and safety of tacrolimus therapy
for myasthenia gravis: A single arm meta-analysis. J Clin Neurosci.
63:160–167. 2019.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Gilhus NE and Verschuuren JJ: Myasthenia
gravis: Subgroup classification and therapeutic strategies. Lancet
Neurol. 14:1023–1036. 2015.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Song JW, Lei XW, Jiao W, Song Y, Chen W,
Li J and Chen Z: Effect of Qiangji Jianli decoction on
mitochondrial respiratory chain activity and expression of
mitochondrial fusion and fission proteins in myasthenia gravis
rats. Sci Rep. 8(8623)2018.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Li YL, Li L and Li JM: Proteomic analysis
of 11000 bands in thymic hyperplasia tissues of patients with
myasthenia gravis. J Zhengzhou Univ. 43:291–295. 2012.
|
|
17
|
Guptill JT, Juel VC, Massey JM, Anderson
AC, Chopra M, Yi JS, Esfandiari E, Buchanan T, Smith B, Atherfold
P, et al: Effect of therapeutic plasma exchange on immunoglobulins
in myasthenia gravis. Autoimmunity. 49:472–479. 2016.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Alipour-Faz A, Shojaei M, Peyvandi H,
Ramzi D, Oroei M, Ghadiri F and Peyvandi M: A comparison between
IVIG and plasma exchange as preparations before thymectomy in
myasthenia gravis patients. Acta Neurol Belg. 117:245–249.
2017.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Newsom-Davis J, Wilson SG, Vincent A and
Ward CD: Long-term effects of repeated plasma exchange in
myasthenia gravis. Lancet. 1:464–468. 1979.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Guptill JT, Oakley D, Kuchibhatla M,
Guidon AC, Hobson-Webb LD, Massey JM, Sanders DB and Juel VC: A
retrospective study of complications of therapeutic plasma exchange
in myasthenia. Muscle Nerve. 47:170–176. 2013.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Furlan JC, Barth D, Barnett C and Bril V:
Cost-minimization analysis comparing intravenous immunoglobulin
with plasma exchange in the management of patients with myasthenia
gravis. Muscle Nerve. 53:872–876. 2016.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Mantegazza R, Bernasconi P and Cavalcante
P: Myasthenia gravis: From autoantibodies to therapy. Curr Opin
Neurol. 31:517–525. 2018.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Breiner A, Widdifield J, Katzberg HD,
Barnett C, Bril V and Tu K: Epidemiology of myasthenia gravis in
Ontario, Canada. Neuromuscul Disord. 26:41–46. 2016.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Kordas G, Lagoumintzis G, Sideris S,
Poulas K and Tzartos SJ: Direct proof of the in vivo pathogenic
role of the AChR autoantibodies from myasthenia gravis patients.
PLoS One. 9(e108327)2014.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Sala TP, Crave JC, Duracinsky M, Lepira
Bompeka F, Tadmouri A, Chassany O and Cherin P: Efficacy and
patient satisfaction in the use of subcutaneous immunoglobulin
immunotherapy for the treatment of auto-immune neuromuscular
diseases. Autoimmun Rev. 17:873–881. 2018.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Khedraki A, Reed EJ, Romer SH, Wang Q,
Romine W, Rich MM, Talmadge RJ and Voss AA: Depressed synaptic
transmission and reduced vesicle release sites in Huntington's
disease neuromuscular junctions. J Neurosci. 37:8077–8091.
2017.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Verschuuren J, Strijbos E and Vincent A:
Neuromuscular junction disorders. Handb Clin Neurol. 133:447–466.
2016.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Gonzalez-Freire M, de Cabo R, Studenski SA
and Ferrucci L: The neuromuscular junction: Aging at the crossroad
between nerves and muscle. Front Aging Neurosci.
6(208)2014.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Zhang SJ, Li XX, Yu Y, Chiu AP, Lo LH, To
JC, Rowlands DK and Keng VW: Schwann cell-specific PTEN and EGFR
dysfunctions affect neuromuscular junction development by impairing
agrin signaling and autophagy. Biochem Biophys Res Commun.
515:50–56. 2019.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Liu W, Klose A, Forman S, Paris ND,
Wei-LaPierre L, Cortés-Lopéz M, Tan A, Flaherty M, Miura P, Dirksen
RT and Chakkalakal JV: Loss of adult skeletal muscle stem cells
drives age-related neuromuscular junction degeneration. Elife.
6(e26464)2017.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Pasnoor M, Dimachkie MM, Farmakidis C and
Barohn RJ: Diagnosis of myasthenia gravis. Neurol Clin. 36:261–274.
2018.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Özkök E, Durmuş H, Yetimler B, Taşlı H,
Trakas N, Ulusoy C, Lagoumintzis G, Tzartos S and Tüzün E: Reduced
muscle mitochondrial enzyme activity in MuSK-immunized mice. Clin
Neuropathol. 34:359–363. 2015.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Chang DT and Reynolds IJ: Mitochondrial
trafficking and morphology in healthy and injured neurons. Prog
Neurobiol. 80:241–268. 2006.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Sorrentino V, Menzies KJ and Auwerx J:
Repairing mitochondrial dysfunction in disease. Annu Rev Pharmacol.
58:353–389. 2018.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Chaturvedi RK, Calingasan NY, Yang L,
Hennessey T, Johri A and Beal MF: Impairment of PGC-1alpha
expression, neuropathology and hepatic steatosis in a transgenic
mouse model of Huntington's disease following chronic energy
deprivation. Hum Mol Genet. 19:3190–3205. 2010.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Theilen NT, Kunkel GH and Tyagi SC: The
role of exercise and TFAM in preventing skeletal muscle atrophy. J
Cell Physiol. 232:2348–2358. 2017.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Gorgey AS, Witt O, O'Brien L, Cardozo C,
Chen Q, Lesnefsky EJ and Graham ZA: Mitochondrial health and muscle
plasticity after spinal cord injury. Eur J Appl Physiol.
119:315–331. 2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Klinge CM: Estrogenic control of
mitochondrial function and biogenesis. J Cell Biochem.
105:1342–1351. 2008.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Fukunaga K, Shinoda Y and Tagashira H: The
role of SIGMAR1 gene mutation and mitochondrial dysfunction in
amyotrophic lateral sclerosis. J Pharmacol Sci. 127:36–41.
2015.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Walczak J, Dębska-Vielhaber G, Vielhaber
S, Szymański J, Charzyńska A, Duszyński J and Szczepanowska J:
Distinction of sporadic and familial forms of ALS based on
mitochondrial characteristics. FASEB J. 33:4388–4403.
2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Jésus P, Fayemendy P, Nicol M, Lautrette
G, Sourisseau H, Preux PM, Desport JC, Marin B and Couratier P:
Hypermetabolism is a deleterious prognostic factor in patients with
amyotrophic lateral sclerosis. Eur J Neurol. 25:97–104.
2018.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Europa TA, Nel M and Heckmann JM: A review
of the histopathological findings in myasthenia gravis: Clues to
the pathogenesis of treatment-resistance in extraocular muscles.
Neuromuscul Disord. 29:381–387. 2019.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Wu H, She S, Liu Y, Xiong W, Guo Y, Fang
H, Chen H and Li J: Protective effect of Sijunzi decoction on
neuromuscular junction ultrastructure in autoimmune myasthenia
gravis rats. J Tradit Chin Med. 33:669–673. 2013.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Vercauteren K, Gleyzer N and Scarpulla RC:
PGC-1-related coactivator complexes with HCF-1 and NRF-2beta in
mediating NRF-2(GABP)-dependent respiratory gene expression. J Biol
Chem. 283:12102–12111. 2008.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Taherzadeh-Fard E, Saft C, Akkad DA,
Wieczorek S, Haghikia A, Chan A, Epplen JT and Arning L: PGC-1alpha
downstream transcription factors NRF-1 and TFAM are genetic
modifiers of Huntington disease. Mol Neurodegener.
6(32)2011.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Finsterer J, Oberman I and Reitner A:
Respiratory chain complex-I defect mimicking myasthenia. Metab
Brain Dis. 17:41–46. 2002.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Shichijo K, Mitsui T, Kunishige M, Kuroda
Y, Masuda K and Matsumoto T: Involvement of mitochondria in
myasthenia gravis complicated with dermatomyositis and rheumatoid
arthritis: A case report. Acta Neuropathol. 109:539–542.
2005.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Kjøbsted R, Hingst JR, Fentz J, Foretz M,
Sanz MN, Pehmøller C, Shum M, Marette A, Mounier R, Treebak JT, et
al: AMPK in skeletal muscle function and metabolism. FASEB J.
32:1741–1777. 2018.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Zhang MH, Fang XS, Guo JY and Jin Z:
Effects of AMPK on apoptosis and energy metabolism of gastric
smooth muscle cells in rats with diabetic gastroparesis. Cell
Biochem Biophys. 77:165–177. 2019.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Garcia-Carrizo F, Nozhenko Y, Palou A and
Rodriguez AM: Leptin effect on acetylation and phosphorylation of
Pgc1α in muscle cells associated with Ampk and Akt activation in
high-glucose medium. J Cell Physiol. 231:641–649. 2016.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Tamás P, Hawley SA, Clarke RG, Mustard KJ,
Green K, Hardie DG and Cantrell DA: Regulation of the energy sensor
AMP-activated protein kinase by antigen receptor and Ca2+ in T
lymphocytes. J Exp Med. 203:1665–1670. 2006.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Martignago S, Fanin M, Albertini E,
Pegoraro E and Angelini C: Muscle histopathology in myasthenia
gravis with antibodies against MuSK and AChR. Neuropathol Appl
Neurobiol. 35:103–110. 2009.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Willows R, Sanders MJ, Xiao B, Patel BR,
Martin SR, Read J, Wilson JR, Hubbard J, Gamblin SJ and Carling D:
Phosphorylation of AMPK by upstream kinases is required for
activity in mammalian cells. Biochem J. 474:3059–3073.
2017.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Ke R, Xu Q, Li C, Luo L and Huang D:
Mechanisms of AMPK in the maintenance of ATP balance during energy
metabolism. Cell Biol Int. 42:384–392. 2018.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Inata Y, Kikuchi S, Samraj RS, Hake PW,
O'Connor M, Ledford JR, O'Connor J, Lahni P, Wolfe V, Piraino G and
Zingarelli B: Autophagy and mitochondrial biogenesis impairment
contribute to age-dependent liver injury in experimental sepsis:
dysregulation of AMP-activated protein kinase pathway. FASEB J.
32:728–741. 2018.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Melser S, Lavie J and Benard G:
Mitochondrial degradation and energy metabolism. Biochim Biophys
Acta. 1853:2812–2821. 2015.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Cui Y, Chang L, Wang C, Han X, Mu L, Hao
Y, Liu C, Zhao J, Zhang T, Zhang H, et al: Metformin attenuates
autoimmune disease of the neuromotor system in animal models of
myasthenia gravis. Int Immunopharmacol. 75(105822)2019.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Nillni EA: The metabolic sensor Sirt1 and
the hypothalamus: Interplay between peptide hormones and
pro-hormone convertases. Mol Cell Endocrinol. 438:77–88.
2016.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Xu YH, Song QQ, Li C, Hu YT, Song BB, Ye
JM, Rao Y and Huang ZS: Bouchardatine suppresses rectal cancer in
mice by disrupting its metabolic pathways via activating the
SIRT1-PGC-1α-UCP2 axis. Eur J Pharmacol. 854:328–337.
2019.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Jang SY, Kang HT and Hwang ES:
Nicotinamide-induced mitophagy: Event mediated by high
NAD+/NADH ratio and SIRT1 protein activation. J Biol
Chem. 287:19304–19314. 2012.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Snyder-Warwick AK, Satoh A, Santosa KB,
Imai S and Jablonka-Shariff A: Hypothalamic Sirt1 protects terminal
Schwann cells and neuromuscular junctions from age-related
morphological changes. Aging Cell. 17(e12776)2018.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Wu B, Feng JY, Yu LM, Wang YC, Chen YQ,
Wei Y, Han JS, Feng X, Zhang Y, Di SY, et al: Icariin protects
cardiomyocytes against ischaemia/reperfusion injury by attenuating
sirtuin 1-dependent mitochondrial oxidative damage. Br J Pharmacol.
175:4137–4153. 2018.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Li Y, Xu S, Li J, Zheng L, Feng M, Wang X,
Han K, Pi H, Li M, Huang X, et al: SIRT1 facilitates hepatocellular
carcinoma metastasis by promoting PGC-1α-mediated mitochondrial
biogenesis. Oncotarget. 7:29255–29274. 2016.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Johnson ML, Robinson MM and Nair KS:
Skeletal muscle aging and the mitochondrion. Trends Endocrinol
Metab. 24:247–256. 2013.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Salt IP and Hardie DG: AMP-activated
protein kinase an ubiquitous signaling pathway with key roles in
the cardiovascular system. Circ Res. 120:1825–1841. 2017.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Akimoto T, Pohnert SC, Li P, Zhang M,
Gumbs C, Rosenberg PB, Williams RS and Yan Z: Exercise stimulates
Pgc-1alpha transcription in skeletal muscle through activation of
the p38 MAPK pathway. J Biol Chem. 280:19587–19593. 2005.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Ljubicic V, Burt M and Jasmin BJ: The
therapeutic potential of skeletal muscle plasticity in Duchenne
muscular dystrophy: Phenotypic modifiers as pharmacologic targets.
FASEB J. 28:548–568. 2014.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Abrahan C and Ash JD: The potential use of
PGC-1α and PGC-1β to protect the retina by stimulating
mitochondrial repair. Adv Exp Med Biol. 854:403–409.
2016.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Shu JT, Xu WJ, Zhang M, Song WT, Shan YJ,
Song C, Zhu WQ, Zhang XY and Li HF: Transcriptional co-activator
PGC-1α gene is associated with chicken skeletal muscle fiber types.
Genet Mol Res. 13:895–905. 2014.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Jiang SN, Teague AM, Tryggestad JB and
Chernausek SD: Role of microRNA-130b in placental PGC-1α/TFAM
mitochondrial biogenesis pathway. Biochem Biophys Res Commun.
487:607–612. 2017.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Felszeghy S, Viiri J, Paterno JJ, Hyttinen
JMT, Koskela A, Chen M, Leinonen H, Tanila H, Kivinen N, Koistinen
A, et al: Loss of NRF-2 and PGC-1α genes leads to retinal pigment
epithelium damage resembling dry age-related macular degeneration.
Redox Biol. 20:1–12. 2019.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Du H, Zhou C, Wu H, Shan T, Wu Z, Xu B and
Zhang Y: Effects of electroacupuncture on PGC-1 α expression in
brown adipose tissue. Evid Based Complement Alternat Med.
2013(625104)2013.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Cooper MP, Uldry M, Kajimura S, Arany Z
and Spiegelman BM: Modulation of PGC-1 coactivator pathways in
brown fat differentiation through LRP130. J Biol Chem.
283:31960–31967. 2008.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Lehman JJ, Barger PM, Kovacs A, Saffitz
JE, Medeiros DM and Kelly DP: Peroxisome proliferator-activated
receptor gamma coactivator-1 promotes cardiac mitochondrial.
biogenesis. 106:847–856. 2000.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Zhang Q and Liang XC: Effects of
mitochondrial dysfunction via AMPK/PGC-1 α signal pathway on
pathogenic mechanism of diabetic peripheral neuropathy and the
protective effects of Chinese medicine. Chin J Integr Med.
25:386–394. 2019.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Jones AW, Yao Z, Vicencio JM,
Karkucinska-Wieckowska A and Szabadkai G: PGC-1 family coactivators
and cell fate: Roles in cancer, neurodegeneration, cardiovascular
disease and retrograde mitochondria-nucleus signalling.
Mitochondrion. 12:86–99. 2012.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Xiang Z, Valenza M, Cui L, Leoni V, Jeong
HK, Brilli E, Zhang J, Peng Q, Duan W, Reeves SA, et al:
Peroxisome-proliferator-activated receptor gamma coactivator 1 α
contributes to dysmyelination in experimental models of
Huntington's disease. J Neurosci. 31:9544–9553. 2011.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Wang Y, Zhao X, Lotz M, Terkeltaub R and
Liu-Bryan R: Mitochondrial biogenesis is impaired in osteoarthritis
chondrocytes but reversible via peroxisome proliferator-activated
receptor γ coactivator 1α. Arthritis Rheumatol. 67:2141–2153.
2015.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Koh JH, Hancock CR, Terada S, Higashida K,
Holloszy JO and Han DH: PPARβ is essential for maintaining normal
levels of PGC-1α and mitochondria and for the increase in muscle
mitochondria induced by exercise. Cell Metab. 25:1176–1185 e5.
2017.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Hsieh PF, Liu SF, Hung TJ, Hung CY, Liu
GZ, Chuang LY, Chen MF, Wang JL, Shi MD, Hsu CH, et al: Elucidation
of the therapeutic role of mitochondrial biogenesis transducers
NRF-1 in the regulation of renal fibrosis. Exp Cell Res. 349:23–31.
2016.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Lanza IR and Nair KS: Regulation of
skeletal muscle mitochondrial function: Genes to proteins. Acta
Physiol (Oxf). 199:529–547. 2010.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Ramachandran B, Yu GS and Gulick T:
Nuclear respiratory factor 1 controls myocyte enhancer factor 2A
transcription to provide a mechanism for coordinate expression of
respiratory chain subunits. J Biol Chem. 283:11935–11946.
2008.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Matsuda T, Kanki T, Tanimura T, Kang D and
Matsuura ET: Effects of overexpression of mitochondrial
transcription factor A on lifespan and oxidative stress response in
Drosophila melanogaster. Biochem Biophys Res Commun. 430:717–721.
2013.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Thirupathi A and Pinho RA: Effects of
reactive oxygen species and interplay of antioxidants during
physical exercise in skeletal muscles. J Physiol Biochem.
74:359–367. 2018.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Brandt N, Dethlefsen MM, Bangsbo J and
Pilegaard H: PGC-1α and exercise intensity dependent adaptations in
mouse skeletal muscle. PLoS One. 12(e0185993)2017.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Wu KLH, Wu CW, Chao YM, Hung CY and Chan
JYH: Impaired Nrf2 regulation of mitochondrial biogenesis in
rostral ventrolateral medulla on hypertension induced by systemic
inflammation. Free Radic Biol Med. 97:58–74. 2016.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Hu Q, Ren J, Li G, Wu J, Wu X, Wang G, Gu
G, Ren H, Hong Z and Li J: The mitochondrially targeted antioxidant
MitoQ protects the intestinal barrier by ameliorating mitochondrial
DNA damage via the Nrf2/ARE signaling pathway. Cell Death Dis.
9(403)2018.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Bernard K, Logsdon NJ, Miguel V, Benavides
GA, Zhang J, Carter AB, Darley-Usmar VM and Thannickal VJ: NADPH
oxidase 4 (Nox4) suppresses mitochondrial biogenesis and
bioenergetics in lung fibroblasts via a nuclear factor
erythroid-derived 2-like 2 (Nrf2)-dependent pathway. J Biol Chem.
292:3029–3038. 2017.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Kang I, Chu CT and Kaufman BA: The
mitochondrial transcription factor TFAM in neurodegeneration:
Emerging evidence and mechanisms. FEBS Lett. 592:793–811.
2018.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Piao Y, Kim HG, Oh MS and Pak YK:
Overexpression of TFAM, NRF-1 and myr-AKT protects the
MPP(+)-induced mitochondrial dysfunctions in neuronal cells.
Biochim Biophys Acta. 1820:577–585. 2012.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Rostedt Punga A, Ahlqvist K, Bartoccioni
E, Scuderi F, Marino M, Suomalainen A, Kalimo H and Stålberg EV:
Neurophysiological and mitochondrial abnormalities in MuSK antibody
seropositive myasthenia gravis compared to other immunological
subtypes. Clin Neurophysiol. 117:1434–1443. 2006.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Kunkel GH, Chaturvedi P and Tyagi SC:
Mitochondrial pathways to cardiac recovery: TFAM. Heart Fail Rev.
21:499–517. 2016.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Ruzzenente B, Rötig A and Metodiev MD:
Mouse models for mitochondrial diseases. Hum Mol Genet.
25:R115–R122. 2016.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Li H, Slone J, Fei L and Huang T:
Mitochondrial DNA variants and common diseases: A mathematical
model for the diversity of age-related mtDNA mutations. Cells.
8(608)2019.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Lezza AMS: Mitochondrial transcription
factor A (TFAM): One actor for different roles. Front Biol.
7:30–39. 2012.
|
|
96
|
Xu S, Zhong M, Zhang L, Wang Y, Zhou Z,
Hao Y, Zhang W, Yang X, Wei A, Pei L and Yu Z: Overexpression of
Tfam protects mitochondria against beta-amyloid-induced oxidative
damage in SH-SY5Y cells. FEBS J. 276:3800–3809. 2009.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Kang D, Kim SH and Hamasaki N:
Mitochondrial transcription factor A (TFAM): Roles in maintenance
of mtDNA and cellular functions. Mitochondrion. 7:39–44.
2007.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Dong J, Zhao J, Zhang M, Liu G, Wang X,
Liu Y, Yang N, Liu Y, Zhao G, Sun J, et al: β3-Adrenoceptor impairs
mitochondrial biogenesis and energy metabolism during rapid atrial
pacing-induced atrial fibrillation. J Cardiovasc Pharmacol Ther.
21:114–126. 2016.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Tao L, Wang L, Yang X, Jiang X and Hua F:
Recombinant human glucagon-like peptide-1 protects against chronic
intermittent hypoxia by improving myocardial energy metabolism and
mitochondrial biogenesis. Mol Cell Endocrinol. 481:95–103.
2019.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Jeon SM: Regulation and function of AMPK
in physiology and diseases. Exp Mol Med. 48(e245)2016.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Aguirre-Rueda D, Guerra-Ojeda S, Aldasoro
M, Iradi A, Obrador E, Ortega A, Mauricio MD, Vila JM and Valles
SL: Astrocytes protect neurons from Aβ1-42 peptide-induced
neurotoxicity increasing TFAM and PGC-1 and decreasing PPAR-γ and
SIRT-1. Int J Med Sci. 12:48–56. 2015.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Hood DA, Tryon LD, Carter HN, Kim Y and
Chen CCW: Unravelling the mechanisms regulating muscle
mitochondrial biogenesis. Biochem J. 473:2295–2314. 2016.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Nie Y, Sato Y, Wang C, Yue F, Kuang S and
Gavin TP: Impaired exercise tolerance, mitochondrial biogenesis,
and muscle fiber maintenance in miR-133a-deficient mice. FASEB J.
30:3745–3758. 2016.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Nirwane A and Majumdar A: Understanding
mitochondrial biogenesis through energy sensing pathways and its
translation in cardio-metabolic health. Arch Physiol Biochem.
124:194–206. 2018.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Dhar SS and Wong-Riley MTT: Coupling of
energy metabolism and synaptic transmission at the transcriptional
level: Role of nuclear respiratory factor 1 in regulating both
Cytochrome c oxidase and NMDA glutamate receptor subunit genes. J
Neurosci. 29:483–492. 2009.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Huang DD, Fan SD, Chen XY, Yan XL, Zhang
XZ, Ma BW, Yu DY, Xiao WY, Zhuang CL and Yu Z: Nrf2 deficiency
exacerbates frailty and sarcopenia by impairing skeletal muscle
mitochondrial biogenesis and dynamics in an age-dependent manner.
Exp Gerontol. 119:61–73. 2019.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Chuang YC, Chen SD, Jou SB, Lin TK, Chen
SF, Chen NC and Hsu CY: Sirtuin 1 regulates mitochondrial
biogenesis and provides an endogenous neuroprotective mechanism
against seizure-induced neuronal cell death in the hippocampus
following status epilepticus. Int J Mol Sci.
20(3588)2019.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Van Laar VS, Arnold B, Howlett EH,
Calderon MJ, St Croix CM, Greenamyre JT, Sanders LH and Berman SB:
Evidence for compartmentalized axonal mitochondrial biogenesis:
Mitochondrial DNA replication increases in distal axons as an early
response to Parkinson's disease-relevant stress. J Neurosci.
38:7505–7515. 2018.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Osborne B, Cooney GJ and Turner N: Are
sirtuin deacylase enzymes important modulators of mitochondrial
energy metabolism? Biochim Biophys Acta. 1840:1295–1302.
2014.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Jarmuszkiewicz W and Szewczyk A:
Energy-dissipating hub in muscle mitochondria: Potassium channels
and uncoupling proteins. Arch Biochem Biophys. 664:102–109.
2019.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Dan Dunn J, Alvarez LA, Zhang X and
Soldati T: Reactive oxygen species and mitochondria: A nexus of
cellular homeostasis. Redox Biol. 6:472–485. 2015.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Rahman S and Hanna MG: Diagnosis and
therapy in neuromuscular disorders: Diagnosis and new treatments in
mitochondrial diseases. J Neurol Neurosurg Psychiatry. 80:943–953.
2009.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Cabezas R, Baez-Jurado E, Hidalgo-Lanussa
O, Echeverria V, Ashrad GM, Sahebkar A and Barreto GE: Growth
factors and neuroglobin in astrocyte protection against
neurodegeneration and oxidative stress. Mol Neurobiol.
56:2339–2351. 2019.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Niemann A, Huber N, Wagner KM, Somandin C,
Horn M, Lebrun-Julien F, Angst B, Pereira JA, Halfter H, Welzl H,
et al: The Gdap1 knockout mouse mechanistically links redox control
to charcot-marie-tooth disease. Brain. 137:668–682. 2014.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Li Y, Zhao X, Hu Y, Sun H, He Z, Yuan J,
Cai H, Sun Y, Huang X and Kong W and Kong W: Age-associated decline
in Nrf2 signaling and associated mtDNA damage may be involved in
the degeneration of the auditory cortex: Implications for central
presbycusis. Int J Mol Med. 42:3371–3385. 2018.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Li X, Fang P, Yang WY, Chan K, Lavallee M,
Xu K, Gao T, Wang H and Yang X: Mitochondrial ROS, uncoupled from
ATP synthesis, determine endothelial activation for both
physiological recruitment of patrolling cells and pathological
recruitment of inflammatory cells. Can J Physiol Pharmacol.
95:247–252. 2017.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Danikowski KM, Jayaraman S and Prabhakar
BS: Regulatory T cells in multiple sclerosis and myasthenia gravis.
J Neuroinflammation. 14(117)2017.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Tarnopolsky M, Brady L and MacNeil L:
Myasthenia graves-like symptoms associated with rare mitochondrial
mutation (m.5728T>C). Mitochondrion. 47:139–140. 2019.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Wang X and Rich MM: Homeostatic synaptic
plasticity at the neuromuscular junction in myasthenia gravis. Ann
NY Acad Sci. 1412:170–177. 2018.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Lanser AJ, Rezende RM, Rubino S, Lorello
PJ, Donnelly DJ, Xu H, Lau LA, Dulla CG, Caldarone BJ, Robson SC
and Weiner HL: Disruption of the ATP/adenosine balance in
CD39-/- mice is associated with handling-induced
seizures. Immunology. 152:589–601. 2017.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Zhang Y and Xu H: Translational regulation
of mitochondrial biogenesis. Biochem Soc Trans. 44:1717–1724.
2016.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Doan KN, Ellenrieder L and Becker T:
Mitochondrial porin links protein biogenesis to metabolism. Curr
Genet. 65:899–903. 2019.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Jeffery CJ: Enzymes, pseudoenzymes, and
moonlighting proteins: Diversity of function in protein
superfamilies. FEBS J, Jun 13, 2020 (Online ahead of print).
|
|
124
|
Askanas V, Engel WK and Nogalska A:
Pathogenic considerations in sporadic inclusion-body myositis, a
degenerative muscle disease associated with aging and abnormalities
of myoproteostasis. J Neuropathol Exp Neurol. 71:680–693.
2012.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Arnold W, McGovern VL, Sanchez B, Li J,
Corlett KM, Kolb SJ, Rutkove SB and Burghes AH: The neuromuscular
impact of symptomatic SMN restoration in a mouse model of spinal
muscular atrophy. Neurobiol Dis. 87:116–123. 2016.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Saifetiarova J, Liu X, Taylor AM, Li J and
Bhat MA: Axonal domain disorganization in Caspr1 and Caspr2 mutant
myelinated axons affects neuromuscular junction integrity, leading
to muscle atrophy. J Neurosci Res. 95:1373–1390. 2017.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Wu H, She S, Liu Y, Xiong W, Guo Y, Fang
H, Chen H and Li J: Protective effect of Sijunzi decoction on
neuromuscular junction ultrastructure in autoimmune myasthenia
gravis rats. J Tradit Chin Med. 33:669–673. 2013.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Attia M, Maurer M, Robinet M, Le Grand F,
Fadel E, Le Panse R, Butler-Browne G and Berrih-Aknin S: Muscle
satellite cells are functionally impaired in myasthenia gravis:
Consequences on muscle regeneration. Acta Neuropathol. 134:869–888.
2017.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Iwasa K, Furukawa Y, Yoshikawa H and
Yamada M: Caveolin-3 is aberrantly expressed in skeletal muscle
cells in myasthenia gravis. J Neuroimmunol. 301:30–34.
2016.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Rivner MH, Pasnoor M, Dimachkie MM, Barohn
RJ and Mei L: Muscle-specific tyrosine kinase and myasthenia gravis
owing to other antibodies. Neurol Clin. 36:293–310. 2018.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Beecher G, Putko BN, Wagner AN and Siddiqi
ZA: Therapies directed against b-cells and downstream effectors in
generalized autoimmune myasthenia gravis: Current status. Drugs.
79:353–364. 2019.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Valbuena GN, Rizzardini M, Cimini S,
Siskos AP, Bendotti C, Cantoni L and Keun HC: Metabolomic analysis
reveals increased aerobic glycolysis and amino acid deficit in a
cellular model of amyotrophic lateral sclerosis. Mol Neurobiol.
53:2222–2240. 2016.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Lysenko EA, Popov DV, Vepkhvadze TF,
Lednev EM and Vinogradova OL: Effect of combined aerobic and
strength exercise on regulation of mitochondrial biogenesis,
protein synthesis and degradation in human skeletal muscle. Fiziol
Cheloveka. 42:58–69. 2016.PubMed/NCBI(In Russian).
|