Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
July-2021 Volume 22 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2021 Volume 22 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The mitochondrial biogenesis signaling pathway is a potential therapeutic target for myasthenia gravis via energy metabolism (Review)

  • Authors:
    • Lingling Ke
    • Qing Li
    • Jingwei Song
    • Wei Jiao
    • Aidong Ji
    • Tongkai Chen
    • Huafeng Pan
    • Yafang Song
  • View Affiliations / Copyright

    Affiliations: Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China, Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
    Copyright: © Ke et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 702
    |
    Published online on: May 2, 2021
       https://doi.org/10.3892/etm.2021.10134
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Myasthenia gravis (MG) is an autoantibody‑mediated autoimmune disease that is characterized by muscle weakness and fatigue. Traditional treatments for MG target the neuromuscular junction (NMJ) or the immune system. However, the efficacy of such treatments is limited, and novel therapeutic options for MG are urgently required. In the current review, a new therapeutic strategy is proposed based on the mitochondrial biogenesis and energy metabolism pathway, as stimulating mitochondrial biogenesis and the energy metabolism might alleviate myasthenia gravis. A number of cellular sensors of the energy metabolism were investigated, including AMP‑activated protein kinase (AMPK) and sirtuin 1 (SIRT1). AMPK and SIRT1 are sensors that regulate cellular energy homeostasis and maintain energy metabolism by balancing anabolism and catabolism. Peroxisome proliferator‑activated receptor γ coactivator 1α and its downstream transcription factors nuclear respiratory factors 1, nuclear respiratory factors 2, and transcription factor A are key sensors of mitochondrial biogenesis, which can restore mitochondrial DNA and produce new mitochondria. These processes help to control muscle contraction and relieve the symptoms of MG, including muscle weakness caused by dysfunctional NMJ transmission. Therefore, the present review provides evidence for the therapeutic potential of targeting mitochondrial biogenesis for the treatment of MG.
View Figures

Figure 1

Figure 2

View References

1 

Cataneo AJM, Felisberto G Jr and Cataneo DC: Thymectomy in nonthymomatous myasthenia gravis-systematic review and meta-analysis. Orphanet J Rare Dis. 13(99)2018.PubMed/NCBI View Article : Google Scholar

2 

Barnett C, Bril V, Kapral M, Kulkarni A and Davis AM: Development and validation of the myasthenia gravis impairment index. Neurology. 87:879–886. 2016.PubMed/NCBI View Article : Google Scholar

3 

Gwathmey KG and Burns TM: Myasthenia gravis. Semin Neurol. 35:327–339. 2015.PubMed/NCBI View Article : Google Scholar

4 

Wang Z and Yan YP: Immunopathogenesis in myasthenia gravis and neuromyelitis optica. Front Immunol. 8(1785)2017.PubMed/NCBI View Article : Google Scholar

5 

Gilhus NE, Skeie GO, Romi F, Lazaridis K, Zisimopoulou P and Tzartos S: Myasthenia gravis-autoantibody characteristics and their implications for therapy. Nat Rev Neurol. 12:259–268. 2016.PubMed/NCBI View Article : Google Scholar

6 

Juel VC: Myasthenia gravis: Management of myasthenic crisis and perioperative care. Semin Neurol. 24:75–81. 2004.PubMed/NCBI View Article : Google Scholar

7 

Thomas CE, Mayer SA, Gungor Y, Swarup R, Webster EA, Chang I, Brannagan TH, Fink ME and Rowland LP: Myasthenic crisis: Clinical features, mortality, complications, and risk factors for prolonged intubation. Neurology. 48:1253–1260. 1997.PubMed/NCBI View Article : Google Scholar

8 

Mantegazza R and Antozzi C: When myasthenia gravis is deemed refractory: Clinical signposts and treatment strategies. Ther Adv Neurol Disord. 11(1756285617749134)2018.PubMed/NCBI View Article : Google Scholar

9 

Mehndiratta MM, Pandey S and Kuntzer T: Acetylcholinesterase inhibitor treatment for myasthenia gravis. Cochrane Database Syst Rev. 16(CD006986)2011.PubMed/NCBI View Article : Google Scholar

10 

Watanabe G, Yuki T, Sugaya R, et al: Effectiveness of treatment based on the simultaneous administration of pyridostigmine, prednisolone, calcineurin inhibitor, and intravenous immunoglobulin (PPCI therapy) in patients with myasthenia gravis. Eur J Neurol. 25:143. 2018.

11 

Luo J and Lindstrom J: AChR-specific immunosuppressive therapy of myasthenia gravis. Biochem Pharmacol. 97:609–619. 2015.PubMed/NCBI View Article : Google Scholar

12 

Binks S, Vincent A and Palace J: Myasthenia gravis: A clinical-immunological update. J Neurol. 263:826–834. 2016.PubMed/NCBI View Article : Google Scholar

13 

Wang L, Xi J, Zhang S, Wu H, Zhou L, Lu J, Zhang T and Zhao C: Effectiveness and safety of tacrolimus therapy for myasthenia gravis: A single arm meta-analysis. J Clin Neurosci. 63:160–167. 2019.PubMed/NCBI View Article : Google Scholar

14 

Gilhus NE and Verschuuren JJ: Myasthenia gravis: Subgroup classification and therapeutic strategies. Lancet Neurol. 14:1023–1036. 2015.PubMed/NCBI View Article : Google Scholar

15 

Song JW, Lei XW, Jiao W, Song Y, Chen W, Li J and Chen Z: Effect of Qiangji Jianli decoction on mitochondrial respiratory chain activity and expression of mitochondrial fusion and fission proteins in myasthenia gravis rats. Sci Rep. 8(8623)2018.PubMed/NCBI View Article : Google Scholar

16 

Li YL, Li L and Li JM: Proteomic analysis of 11000 bands in thymic hyperplasia tissues of patients with myasthenia gravis. J Zhengzhou Univ. 43:291–295. 2012.

17 

Guptill JT, Juel VC, Massey JM, Anderson AC, Chopra M, Yi JS, Esfandiari E, Buchanan T, Smith B, Atherfold P, et al: Effect of therapeutic plasma exchange on immunoglobulins in myasthenia gravis. Autoimmunity. 49:472–479. 2016.PubMed/NCBI View Article : Google Scholar

18 

Alipour-Faz A, Shojaei M, Peyvandi H, Ramzi D, Oroei M, Ghadiri F and Peyvandi M: A comparison between IVIG and plasma exchange as preparations before thymectomy in myasthenia gravis patients. Acta Neurol Belg. 117:245–249. 2017.PubMed/NCBI View Article : Google Scholar

19 

Newsom-Davis J, Wilson SG, Vincent A and Ward CD: Long-term effects of repeated plasma exchange in myasthenia gravis. Lancet. 1:464–468. 1979.PubMed/NCBI View Article : Google Scholar

20 

Guptill JT, Oakley D, Kuchibhatla M, Guidon AC, Hobson-Webb LD, Massey JM, Sanders DB and Juel VC: A retrospective study of complications of therapeutic plasma exchange in myasthenia. Muscle Nerve. 47:170–176. 2013.PubMed/NCBI View Article : Google Scholar

21 

Furlan JC, Barth D, Barnett C and Bril V: Cost-minimization analysis comparing intravenous immunoglobulin with plasma exchange in the management of patients with myasthenia gravis. Muscle Nerve. 53:872–876. 2016.PubMed/NCBI View Article : Google Scholar

22 

Mantegazza R, Bernasconi P and Cavalcante P: Myasthenia gravis: From autoantibodies to therapy. Curr Opin Neurol. 31:517–525. 2018.PubMed/NCBI View Article : Google Scholar

23 

Breiner A, Widdifield J, Katzberg HD, Barnett C, Bril V and Tu K: Epidemiology of myasthenia gravis in Ontario, Canada. Neuromuscul Disord. 26:41–46. 2016.PubMed/NCBI View Article : Google Scholar

24 

Kordas G, Lagoumintzis G, Sideris S, Poulas K and Tzartos SJ: Direct proof of the in vivo pathogenic role of the AChR autoantibodies from myasthenia gravis patients. PLoS One. 9(e108327)2014.PubMed/NCBI View Article : Google Scholar

25 

Sala TP, Crave JC, Duracinsky M, Lepira Bompeka F, Tadmouri A, Chassany O and Cherin P: Efficacy and patient satisfaction in the use of subcutaneous immunoglobulin immunotherapy for the treatment of auto-immune neuromuscular diseases. Autoimmun Rev. 17:873–881. 2018.PubMed/NCBI View Article : Google Scholar

26 

Khedraki A, Reed EJ, Romer SH, Wang Q, Romine W, Rich MM, Talmadge RJ and Voss AA: Depressed synaptic transmission and reduced vesicle release sites in Huntington's disease neuromuscular junctions. J Neurosci. 37:8077–8091. 2017.PubMed/NCBI View Article : Google Scholar

27 

Verschuuren J, Strijbos E and Vincent A: Neuromuscular junction disorders. Handb Clin Neurol. 133:447–466. 2016.PubMed/NCBI View Article : Google Scholar

28 

Gonzalez-Freire M, de Cabo R, Studenski SA and Ferrucci L: The neuromuscular junction: Aging at the crossroad between nerves and muscle. Front Aging Neurosci. 6(208)2014.PubMed/NCBI View Article : Google Scholar

29 

Zhang SJ, Li XX, Yu Y, Chiu AP, Lo LH, To JC, Rowlands DK and Keng VW: Schwann cell-specific PTEN and EGFR dysfunctions affect neuromuscular junction development by impairing agrin signaling and autophagy. Biochem Biophys Res Commun. 515:50–56. 2019.PubMed/NCBI View Article : Google Scholar

30 

Liu W, Klose A, Forman S, Paris ND, Wei-LaPierre L, Cortés-Lopéz M, Tan A, Flaherty M, Miura P, Dirksen RT and Chakkalakal JV: Loss of adult skeletal muscle stem cells drives age-related neuromuscular junction degeneration. Elife. 6(e26464)2017.PubMed/NCBI View Article : Google Scholar

31 

Pasnoor M, Dimachkie MM, Farmakidis C and Barohn RJ: Diagnosis of myasthenia gravis. Neurol Clin. 36:261–274. 2018.PubMed/NCBI View Article : Google Scholar

32 

Özkök E, Durmuş H, Yetimler B, Taşlı H, Trakas N, Ulusoy C, Lagoumintzis G, Tzartos S and Tüzün E: Reduced muscle mitochondrial enzyme activity in MuSK-immunized mice. Clin Neuropathol. 34:359–363. 2015.PubMed/NCBI View Article : Google Scholar

33 

Chang DT and Reynolds IJ: Mitochondrial trafficking and morphology in healthy and injured neurons. Prog Neurobiol. 80:241–268. 2006.PubMed/NCBI View Article : Google Scholar

34 

Sorrentino V, Menzies KJ and Auwerx J: Repairing mitochondrial dysfunction in disease. Annu Rev Pharmacol. 58:353–389. 2018.PubMed/NCBI View Article : Google Scholar

35 

Chaturvedi RK, Calingasan NY, Yang L, Hennessey T, Johri A and Beal MF: Impairment of PGC-1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of Huntington's disease following chronic energy deprivation. Hum Mol Genet. 19:3190–3205. 2010.PubMed/NCBI View Article : Google Scholar

36 

Theilen NT, Kunkel GH and Tyagi SC: The role of exercise and TFAM in preventing skeletal muscle atrophy. J Cell Physiol. 232:2348–2358. 2017.PubMed/NCBI View Article : Google Scholar

37 

Gorgey AS, Witt O, O'Brien L, Cardozo C, Chen Q, Lesnefsky EJ and Graham ZA: Mitochondrial health and muscle plasticity after spinal cord injury. Eur J Appl Physiol. 119:315–331. 2019.PubMed/NCBI View Article : Google Scholar

38 

Klinge CM: Estrogenic control of mitochondrial function and biogenesis. J Cell Biochem. 105:1342–1351. 2008.PubMed/NCBI View Article : Google Scholar

39 

Fukunaga K, Shinoda Y and Tagashira H: The role of SIGMAR1 gene mutation and mitochondrial dysfunction in amyotrophic lateral sclerosis. J Pharmacol Sci. 127:36–41. 2015.PubMed/NCBI View Article : Google Scholar

40 

Walczak J, Dębska-Vielhaber G, Vielhaber S, Szymański J, Charzyńska A, Duszyński J and Szczepanowska J: Distinction of sporadic and familial forms of ALS based on mitochondrial characteristics. FASEB J. 33:4388–4403. 2019.PubMed/NCBI View Article : Google Scholar

41 

Jésus P, Fayemendy P, Nicol M, Lautrette G, Sourisseau H, Preux PM, Desport JC, Marin B and Couratier P: Hypermetabolism is a deleterious prognostic factor in patients with amyotrophic lateral sclerosis. Eur J Neurol. 25:97–104. 2018.PubMed/NCBI View Article : Google Scholar

42 

Europa TA, Nel M and Heckmann JM: A review of the histopathological findings in myasthenia gravis: Clues to the pathogenesis of treatment-resistance in extraocular muscles. Neuromuscul Disord. 29:381–387. 2019.PubMed/NCBI View Article : Google Scholar

43 

Wu H, She S, Liu Y, Xiong W, Guo Y, Fang H, Chen H and Li J: Protective effect of Sijunzi decoction on neuromuscular junction ultrastructure in autoimmune myasthenia gravis rats. J Tradit Chin Med. 33:669–673. 2013.PubMed/NCBI View Article : Google Scholar

44 

Vercauteren K, Gleyzer N and Scarpulla RC: PGC-1-related coactivator complexes with HCF-1 and NRF-2beta in mediating NRF-2(GABP)-dependent respiratory gene expression. J Biol Chem. 283:12102–12111. 2008.PubMed/NCBI View Article : Google Scholar

45 

Taherzadeh-Fard E, Saft C, Akkad DA, Wieczorek S, Haghikia A, Chan A, Epplen JT and Arning L: PGC-1alpha downstream transcription factors NRF-1 and TFAM are genetic modifiers of Huntington disease. Mol Neurodegener. 6(32)2011.PubMed/NCBI View Article : Google Scholar

46 

Finsterer J, Oberman I and Reitner A: Respiratory chain complex-I defect mimicking myasthenia. Metab Brain Dis. 17:41–46. 2002.PubMed/NCBI View Article : Google Scholar

47 

Shichijo K, Mitsui T, Kunishige M, Kuroda Y, Masuda K and Matsumoto T: Involvement of mitochondria in myasthenia gravis complicated with dermatomyositis and rheumatoid arthritis: A case report. Acta Neuropathol. 109:539–542. 2005.PubMed/NCBI View Article : Google Scholar

48 

Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmøller C, Shum M, Marette A, Mounier R, Treebak JT, et al: AMPK in skeletal muscle function and metabolism. FASEB J. 32:1741–1777. 2018.PubMed/NCBI View Article : Google Scholar

49 

Zhang MH, Fang XS, Guo JY and Jin Z: Effects of AMPK on apoptosis and energy metabolism of gastric smooth muscle cells in rats with diabetic gastroparesis. Cell Biochem Biophys. 77:165–177. 2019.PubMed/NCBI View Article : Google Scholar

50 

Garcia-Carrizo F, Nozhenko Y, Palou A and Rodriguez AM: Leptin effect on acetylation and phosphorylation of Pgc1α in muscle cells associated with Ampk and Akt activation in high-glucose medium. J Cell Physiol. 231:641–649. 2016.PubMed/NCBI View Article : Google Scholar

51 

Tamás P, Hawley SA, Clarke RG, Mustard KJ, Green K, Hardie DG and Cantrell DA: Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J Exp Med. 203:1665–1670. 2006.PubMed/NCBI View Article : Google Scholar

52 

Martignago S, Fanin M, Albertini E, Pegoraro E and Angelini C: Muscle histopathology in myasthenia gravis with antibodies against MuSK and AChR. Neuropathol Appl Neurobiol. 35:103–110. 2009.PubMed/NCBI View Article : Google Scholar

53 

Willows R, Sanders MJ, Xiao B, Patel BR, Martin SR, Read J, Wilson JR, Hubbard J, Gamblin SJ and Carling D: Phosphorylation of AMPK by upstream kinases is required for activity in mammalian cells. Biochem J. 474:3059–3073. 2017.PubMed/NCBI View Article : Google Scholar

54 

Ke R, Xu Q, Li C, Luo L and Huang D: Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int. 42:384–392. 2018.PubMed/NCBI View Article : Google Scholar

55 

Inata Y, Kikuchi S, Samraj RS, Hake PW, O'Connor M, Ledford JR, O'Connor J, Lahni P, Wolfe V, Piraino G and Zingarelli B: Autophagy and mitochondrial biogenesis impairment contribute to age-dependent liver injury in experimental sepsis: dysregulation of AMP-activated protein kinase pathway. FASEB J. 32:728–741. 2018.PubMed/NCBI View Article : Google Scholar

56 

Melser S, Lavie J and Benard G: Mitochondrial degradation and energy metabolism. Biochim Biophys Acta. 1853:2812–2821. 2015.PubMed/NCBI View Article : Google Scholar

57 

Cui Y, Chang L, Wang C, Han X, Mu L, Hao Y, Liu C, Zhao J, Zhang T, Zhang H, et al: Metformin attenuates autoimmune disease of the neuromotor system in animal models of myasthenia gravis. Int Immunopharmacol. 75(105822)2019.PubMed/NCBI View Article : Google Scholar

58 

Nillni EA: The metabolic sensor Sirt1 and the hypothalamus: Interplay between peptide hormones and pro-hormone convertases. Mol Cell Endocrinol. 438:77–88. 2016.PubMed/NCBI View Article : Google Scholar

59 

Xu YH, Song QQ, Li C, Hu YT, Song BB, Ye JM, Rao Y and Huang ZS: Bouchardatine suppresses rectal cancer in mice by disrupting its metabolic pathways via activating the SIRT1-PGC-1α-UCP2 axis. Eur J Pharmacol. 854:328–337. 2019.PubMed/NCBI View Article : Google Scholar

60 

Jang SY, Kang HT and Hwang ES: Nicotinamide-induced mitophagy: Event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J Biol Chem. 287:19304–19314. 2012.PubMed/NCBI View Article : Google Scholar

61 

Snyder-Warwick AK, Satoh A, Santosa KB, Imai S and Jablonka-Shariff A: Hypothalamic Sirt1 protects terminal Schwann cells and neuromuscular junctions from age-related morphological changes. Aging Cell. 17(e12776)2018.PubMed/NCBI View Article : Google Scholar

62 

Wu B, Feng JY, Yu LM, Wang YC, Chen YQ, Wei Y, Han JS, Feng X, Zhang Y, Di SY, et al: Icariin protects cardiomyocytes against ischaemia/reperfusion injury by attenuating sirtuin 1-dependent mitochondrial oxidative damage. Br J Pharmacol. 175:4137–4153. 2018.PubMed/NCBI View Article : Google Scholar

63 

Li Y, Xu S, Li J, Zheng L, Feng M, Wang X, Han K, Pi H, Li M, Huang X, et al: SIRT1 facilitates hepatocellular carcinoma metastasis by promoting PGC-1α-mediated mitochondrial biogenesis. Oncotarget. 7:29255–29274. 2016.PubMed/NCBI View Article : Google Scholar

64 

Johnson ML, Robinson MM and Nair KS: Skeletal muscle aging and the mitochondrion. Trends Endocrinol Metab. 24:247–256. 2013.PubMed/NCBI View Article : Google Scholar

65 

Salt IP and Hardie DG: AMP-activated protein kinase an ubiquitous signaling pathway with key roles in the cardiovascular system. Circ Res. 120:1825–1841. 2017.PubMed/NCBI View Article : Google Scholar

66 

Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB, Williams RS and Yan Z: Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem. 280:19587–19593. 2005.PubMed/NCBI View Article : Google Scholar

67 

Ljubicic V, Burt M and Jasmin BJ: The therapeutic potential of skeletal muscle plasticity in Duchenne muscular dystrophy: Phenotypic modifiers as pharmacologic targets. FASEB J. 28:548–568. 2014.PubMed/NCBI View Article : Google Scholar

68 

Abrahan C and Ash JD: The potential use of PGC-1α and PGC-1β to protect the retina by stimulating mitochondrial repair. Adv Exp Med Biol. 854:403–409. 2016.PubMed/NCBI View Article : Google Scholar

69 

Shu JT, Xu WJ, Zhang M, Song WT, Shan YJ, Song C, Zhu WQ, Zhang XY and Li HF: Transcriptional co-activator PGC-1α gene is associated with chicken skeletal muscle fiber types. Genet Mol Res. 13:895–905. 2014.PubMed/NCBI View Article : Google Scholar

70 

Jiang SN, Teague AM, Tryggestad JB and Chernausek SD: Role of microRNA-130b in placental PGC-1α/TFAM mitochondrial biogenesis pathway. Biochem Biophys Res Commun. 487:607–612. 2017.PubMed/NCBI View Article : Google Scholar

71 

Felszeghy S, Viiri J, Paterno JJ, Hyttinen JMT, Koskela A, Chen M, Leinonen H, Tanila H, Kivinen N, Koistinen A, et al: Loss of NRF-2 and PGC-1α genes leads to retinal pigment epithelium damage resembling dry age-related macular degeneration. Redox Biol. 20:1–12. 2019.PubMed/NCBI View Article : Google Scholar

72 

Du H, Zhou C, Wu H, Shan T, Wu Z, Xu B and Zhang Y: Effects of electroacupuncture on PGC-1 α expression in brown adipose tissue. Evid Based Complement Alternat Med. 2013(625104)2013.PubMed/NCBI View Article : Google Scholar

73 

Cooper MP, Uldry M, Kajimura S, Arany Z and Spiegelman BM: Modulation of PGC-1 coactivator pathways in brown fat differentiation through LRP130. J Biol Chem. 283:31960–31967. 2008.PubMed/NCBI View Article : Google Scholar

74 

Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM and Kelly DP: Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial. biogenesis. 106:847–856. 2000.PubMed/NCBI View Article : Google Scholar

75 

Zhang Q and Liang XC: Effects of mitochondrial dysfunction via AMPK/PGC-1 α signal pathway on pathogenic mechanism of diabetic peripheral neuropathy and the protective effects of Chinese medicine. Chin J Integr Med. 25:386–394. 2019.PubMed/NCBI View Article : Google Scholar

76 

Jones AW, Yao Z, Vicencio JM, Karkucinska-Wieckowska A and Szabadkai G: PGC-1 family coactivators and cell fate: Roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria-nucleus signalling. Mitochondrion. 12:86–99. 2012.PubMed/NCBI View Article : Google Scholar

77 

Xiang Z, Valenza M, Cui L, Leoni V, Jeong HK, Brilli E, Zhang J, Peng Q, Duan W, Reeves SA, et al: Peroxisome-proliferator-activated receptor gamma coactivator 1 α contributes to dysmyelination in experimental models of Huntington's disease. J Neurosci. 31:9544–9553. 2011.PubMed/NCBI View Article : Google Scholar

78 

Wang Y, Zhao X, Lotz M, Terkeltaub R and Liu-Bryan R: Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α. Arthritis Rheumatol. 67:2141–2153. 2015.PubMed/NCBI View Article : Google Scholar

79 

Koh JH, Hancock CR, Terada S, Higashida K, Holloszy JO and Han DH: PPARβ is essential for maintaining normal levels of PGC-1α and mitochondria and for the increase in muscle mitochondria induced by exercise. Cell Metab. 25:1176–1185 e5. 2017.PubMed/NCBI View Article : Google Scholar

80 

Hsieh PF, Liu SF, Hung TJ, Hung CY, Liu GZ, Chuang LY, Chen MF, Wang JL, Shi MD, Hsu CH, et al: Elucidation of the therapeutic role of mitochondrial biogenesis transducers NRF-1 in the regulation of renal fibrosis. Exp Cell Res. 349:23–31. 2016.PubMed/NCBI View Article : Google Scholar

81 

Lanza IR and Nair KS: Regulation of skeletal muscle mitochondrial function: Genes to proteins. Acta Physiol (Oxf). 199:529–547. 2010.PubMed/NCBI View Article : Google Scholar

82 

Ramachandran B, Yu GS and Gulick T: Nuclear respiratory factor 1 controls myocyte enhancer factor 2A transcription to provide a mechanism for coordinate expression of respiratory chain subunits. J Biol Chem. 283:11935–11946. 2008.PubMed/NCBI View Article : Google Scholar

83 

Matsuda T, Kanki T, Tanimura T, Kang D and Matsuura ET: Effects of overexpression of mitochondrial transcription factor A on lifespan and oxidative stress response in Drosophila melanogaster. Biochem Biophys Res Commun. 430:717–721. 2013.PubMed/NCBI View Article : Google Scholar

84 

Thirupathi A and Pinho RA: Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles. J Physiol Biochem. 74:359–367. 2018.PubMed/NCBI View Article : Google Scholar

85 

Brandt N, Dethlefsen MM, Bangsbo J and Pilegaard H: PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle. PLoS One. 12(e0185993)2017.PubMed/NCBI View Article : Google Scholar

86 

Wu KLH, Wu CW, Chao YM, Hung CY and Chan JYH: Impaired Nrf2 regulation of mitochondrial biogenesis in rostral ventrolateral medulla on hypertension induced by systemic inflammation. Free Radic Biol Med. 97:58–74. 2016.PubMed/NCBI View Article : Google Scholar

87 

Hu Q, Ren J, Li G, Wu J, Wu X, Wang G, Gu G, Ren H, Hong Z and Li J: The mitochondrially targeted antioxidant MitoQ protects the intestinal barrier by ameliorating mitochondrial DNA damage via the Nrf2/ARE signaling pathway. Cell Death Dis. 9(403)2018.PubMed/NCBI View Article : Google Scholar

88 

Bernard K, Logsdon NJ, Miguel V, Benavides GA, Zhang J, Carter AB, Darley-Usmar VM and Thannickal VJ: NADPH oxidase 4 (Nox4) suppresses mitochondrial biogenesis and bioenergetics in lung fibroblasts via a nuclear factor erythroid-derived 2-like 2 (Nrf2)-dependent pathway. J Biol Chem. 292:3029–3038. 2017.PubMed/NCBI View Article : Google Scholar

89 

Kang I, Chu CT and Kaufman BA: The mitochondrial transcription factor TFAM in neurodegeneration: Emerging evidence and mechanisms. FEBS Lett. 592:793–811. 2018.PubMed/NCBI View Article : Google Scholar

90 

Piao Y, Kim HG, Oh MS and Pak YK: Overexpression of TFAM, NRF-1 and myr-AKT protects the MPP(+)-induced mitochondrial dysfunctions in neuronal cells. Biochim Biophys Acta. 1820:577–585. 2012.PubMed/NCBI View Article : Google Scholar

91 

Rostedt Punga A, Ahlqvist K, Bartoccioni E, Scuderi F, Marino M, Suomalainen A, Kalimo H and Stålberg EV: Neurophysiological and mitochondrial abnormalities in MuSK antibody seropositive myasthenia gravis compared to other immunological subtypes. Clin Neurophysiol. 117:1434–1443. 2006.PubMed/NCBI View Article : Google Scholar

92 

Kunkel GH, Chaturvedi P and Tyagi SC: Mitochondrial pathways to cardiac recovery: TFAM. Heart Fail Rev. 21:499–517. 2016.PubMed/NCBI View Article : Google Scholar

93 

Ruzzenente B, Rötig A and Metodiev MD: Mouse models for mitochondrial diseases. Hum Mol Genet. 25:R115–R122. 2016.PubMed/NCBI View Article : Google Scholar

94 

Li H, Slone J, Fei L and Huang T: Mitochondrial DNA variants and common diseases: A mathematical model for the diversity of age-related mtDNA mutations. Cells. 8(608)2019.PubMed/NCBI View Article : Google Scholar

95 

Lezza AMS: Mitochondrial transcription factor A (TFAM): One actor for different roles. Front Biol. 7:30–39. 2012.

96 

Xu S, Zhong M, Zhang L, Wang Y, Zhou Z, Hao Y, Zhang W, Yang X, Wei A, Pei L and Yu Z: Overexpression of Tfam protects mitochondria against beta-amyloid-induced oxidative damage in SH-SY5Y cells. FEBS J. 276:3800–3809. 2009.PubMed/NCBI View Article : Google Scholar

97 

Kang D, Kim SH and Hamasaki N: Mitochondrial transcription factor A (TFAM): Roles in maintenance of mtDNA and cellular functions. Mitochondrion. 7:39–44. 2007.PubMed/NCBI View Article : Google Scholar

98 

Dong J, Zhao J, Zhang M, Liu G, Wang X, Liu Y, Yang N, Liu Y, Zhao G, Sun J, et al: β3-Adrenoceptor impairs mitochondrial biogenesis and energy metabolism during rapid atrial pacing-induced atrial fibrillation. J Cardiovasc Pharmacol Ther. 21:114–126. 2016.PubMed/NCBI View Article : Google Scholar

99 

Tao L, Wang L, Yang X, Jiang X and Hua F: Recombinant human glucagon-like peptide-1 protects against chronic intermittent hypoxia by improving myocardial energy metabolism and mitochondrial biogenesis. Mol Cell Endocrinol. 481:95–103. 2019.PubMed/NCBI View Article : Google Scholar

100 

Jeon SM: Regulation and function of AMPK in physiology and diseases. Exp Mol Med. 48(e245)2016.PubMed/NCBI View Article : Google Scholar

101 

Aguirre-Rueda D, Guerra-Ojeda S, Aldasoro M, Iradi A, Obrador E, Ortega A, Mauricio MD, Vila JM and Valles SL: Astrocytes protect neurons from Aβ1-42 peptide-induced neurotoxicity increasing TFAM and PGC-1 and decreasing PPAR-γ and SIRT-1. Int J Med Sci. 12:48–56. 2015.PubMed/NCBI View Article : Google Scholar

102 

Hood DA, Tryon LD, Carter HN, Kim Y and Chen CCW: Unravelling the mechanisms regulating muscle mitochondrial biogenesis. Biochem J. 473:2295–2314. 2016.PubMed/NCBI View Article : Google Scholar

103 

Nie Y, Sato Y, Wang C, Yue F, Kuang S and Gavin TP: Impaired exercise tolerance, mitochondrial biogenesis, and muscle fiber maintenance in miR-133a-deficient mice. FASEB J. 30:3745–3758. 2016.PubMed/NCBI View Article : Google Scholar

104 

Nirwane A and Majumdar A: Understanding mitochondrial biogenesis through energy sensing pathways and its translation in cardio-metabolic health. Arch Physiol Biochem. 124:194–206. 2018.PubMed/NCBI View Article : Google Scholar

105 

Dhar SS and Wong-Riley MTT: Coupling of energy metabolism and synaptic transmission at the transcriptional level: Role of nuclear respiratory factor 1 in regulating both Cytochrome c oxidase and NMDA glutamate receptor subunit genes. J Neurosci. 29:483–492. 2009.PubMed/NCBI View Article : Google Scholar

106 

Huang DD, Fan SD, Chen XY, Yan XL, Zhang XZ, Ma BW, Yu DY, Xiao WY, Zhuang CL and Yu Z: Nrf2 deficiency exacerbates frailty and sarcopenia by impairing skeletal muscle mitochondrial biogenesis and dynamics in an age-dependent manner. Exp Gerontol. 119:61–73. 2019.PubMed/NCBI View Article : Google Scholar

107 

Chuang YC, Chen SD, Jou SB, Lin TK, Chen SF, Chen NC and Hsu CY: Sirtuin 1 regulates mitochondrial biogenesis and provides an endogenous neuroprotective mechanism against seizure-induced neuronal cell death in the hippocampus following status epilepticus. Int J Mol Sci. 20(3588)2019.PubMed/NCBI View Article : Google Scholar

108 

Van Laar VS, Arnold B, Howlett EH, Calderon MJ, St Croix CM, Greenamyre JT, Sanders LH and Berman SB: Evidence for compartmentalized axonal mitochondrial biogenesis: Mitochondrial DNA replication increases in distal axons as an early response to Parkinson's disease-relevant stress. J Neurosci. 38:7505–7515. 2018.PubMed/NCBI View Article : Google Scholar

109 

Osborne B, Cooney GJ and Turner N: Are sirtuin deacylase enzymes important modulators of mitochondrial energy metabolism? Biochim Biophys Acta. 1840:1295–1302. 2014.PubMed/NCBI View Article : Google Scholar

110 

Jarmuszkiewicz W and Szewczyk A: Energy-dissipating hub in muscle mitochondria: Potassium channels and uncoupling proteins. Arch Biochem Biophys. 664:102–109. 2019.PubMed/NCBI View Article : Google Scholar

111 

Dan Dunn J, Alvarez LA, Zhang X and Soldati T: Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol. 6:472–485. 2015.PubMed/NCBI View Article : Google Scholar

112 

Rahman S and Hanna MG: Diagnosis and therapy in neuromuscular disorders: Diagnosis and new treatments in mitochondrial diseases. J Neurol Neurosurg Psychiatry. 80:943–953. 2009.PubMed/NCBI View Article : Google Scholar

113 

Cabezas R, Baez-Jurado E, Hidalgo-Lanussa O, Echeverria V, Ashrad GM, Sahebkar A and Barreto GE: Growth factors and neuroglobin in astrocyte protection against neurodegeneration and oxidative stress. Mol Neurobiol. 56:2339–2351. 2019.PubMed/NCBI View Article : Google Scholar

114 

Niemann A, Huber N, Wagner KM, Somandin C, Horn M, Lebrun-Julien F, Angst B, Pereira JA, Halfter H, Welzl H, et al: The Gdap1 knockout mouse mechanistically links redox control to charcot-marie-tooth disease. Brain. 137:668–682. 2014.PubMed/NCBI View Article : Google Scholar

115 

Li Y, Zhao X, Hu Y, Sun H, He Z, Yuan J, Cai H, Sun Y, Huang X and Kong W and Kong W: Age-associated decline in Nrf2 signaling and associated mtDNA damage may be involved in the degeneration of the auditory cortex: Implications for central presbycusis. Int J Mol Med. 42:3371–3385. 2018.PubMed/NCBI View Article : Google Scholar

116 

Li X, Fang P, Yang WY, Chan K, Lavallee M, Xu K, Gao T, Wang H and Yang X: Mitochondrial ROS, uncoupled from ATP synthesis, determine endothelial activation for both physiological recruitment of patrolling cells and pathological recruitment of inflammatory cells. Can J Physiol Pharmacol. 95:247–252. 2017.PubMed/NCBI View Article : Google Scholar

117 

Danikowski KM, Jayaraman S and Prabhakar BS: Regulatory T cells in multiple sclerosis and myasthenia gravis. J Neuroinflammation. 14(117)2017.PubMed/NCBI View Article : Google Scholar

118 

Tarnopolsky M, Brady L and MacNeil L: Myasthenia graves-like symptoms associated with rare mitochondrial mutation (m.5728T>C). Mitochondrion. 47:139–140. 2019.PubMed/NCBI View Article : Google Scholar

119 

Wang X and Rich MM: Homeostatic synaptic plasticity at the neuromuscular junction in myasthenia gravis. Ann NY Acad Sci. 1412:170–177. 2018.PubMed/NCBI View Article : Google Scholar

120 

Lanser AJ, Rezende RM, Rubino S, Lorello PJ, Donnelly DJ, Xu H, Lau LA, Dulla CG, Caldarone BJ, Robson SC and Weiner HL: Disruption of the ATP/adenosine balance in CD39-/- mice is associated with handling-induced seizures. Immunology. 152:589–601. 2017.PubMed/NCBI View Article : Google Scholar

121 

Zhang Y and Xu H: Translational regulation of mitochondrial biogenesis. Biochem Soc Trans. 44:1717–1724. 2016.PubMed/NCBI View Article : Google Scholar

122 

Doan KN, Ellenrieder L and Becker T: Mitochondrial porin links protein biogenesis to metabolism. Curr Genet. 65:899–903. 2019.PubMed/NCBI View Article : Google Scholar

123 

Jeffery CJ: Enzymes, pseudoenzymes, and moonlighting proteins: Diversity of function in protein superfamilies. FEBS J, Jun 13, 2020 (Online ahead of print).

124 

Askanas V, Engel WK and Nogalska A: Pathogenic considerations in sporadic inclusion-body myositis, a degenerative muscle disease associated with aging and abnormalities of myoproteostasis. J Neuropathol Exp Neurol. 71:680–693. 2012.PubMed/NCBI View Article : Google Scholar

125 

Arnold W, McGovern VL, Sanchez B, Li J, Corlett KM, Kolb SJ, Rutkove SB and Burghes AH: The neuromuscular impact of symptomatic SMN restoration in a mouse model of spinal muscular atrophy. Neurobiol Dis. 87:116–123. 2016.PubMed/NCBI View Article : Google Scholar

126 

Saifetiarova J, Liu X, Taylor AM, Li J and Bhat MA: Axonal domain disorganization in Caspr1 and Caspr2 mutant myelinated axons affects neuromuscular junction integrity, leading to muscle atrophy. J Neurosci Res. 95:1373–1390. 2017.PubMed/NCBI View Article : Google Scholar

127 

Wu H, She S, Liu Y, Xiong W, Guo Y, Fang H, Chen H and Li J: Protective effect of Sijunzi decoction on neuromuscular junction ultrastructure in autoimmune myasthenia gravis rats. J Tradit Chin Med. 33:669–673. 2013.PubMed/NCBI View Article : Google Scholar

128 

Attia M, Maurer M, Robinet M, Le Grand F, Fadel E, Le Panse R, Butler-Browne G and Berrih-Aknin S: Muscle satellite cells are functionally impaired in myasthenia gravis: Consequences on muscle regeneration. Acta Neuropathol. 134:869–888. 2017.PubMed/NCBI View Article : Google Scholar

129 

Iwasa K, Furukawa Y, Yoshikawa H and Yamada M: Caveolin-3 is aberrantly expressed in skeletal muscle cells in myasthenia gravis. J Neuroimmunol. 301:30–34. 2016.PubMed/NCBI View Article : Google Scholar

130 

Rivner MH, Pasnoor M, Dimachkie MM, Barohn RJ and Mei L: Muscle-specific tyrosine kinase and myasthenia gravis owing to other antibodies. Neurol Clin. 36:293–310. 2018.PubMed/NCBI View Article : Google Scholar

131 

Beecher G, Putko BN, Wagner AN and Siddiqi ZA: Therapies directed against b-cells and downstream effectors in generalized autoimmune myasthenia gravis: Current status. Drugs. 79:353–364. 2019.PubMed/NCBI View Article : Google Scholar

132 

Valbuena GN, Rizzardini M, Cimini S, Siskos AP, Bendotti C, Cantoni L and Keun HC: Metabolomic analysis reveals increased aerobic glycolysis and amino acid deficit in a cellular model of amyotrophic lateral sclerosis. Mol Neurobiol. 53:2222–2240. 2016.PubMed/NCBI View Article : Google Scholar

133 

Lysenko EA, Popov DV, Vepkhvadze TF, Lednev EM and Vinogradova OL: Effect of combined aerobic and strength exercise on regulation of mitochondrial biogenesis, protein synthesis and degradation in human skeletal muscle. Fiziol Cheloveka. 42:58–69. 2016.PubMed/NCBI(In Russian).

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ke L, Li Q, Song J, Jiao W, Ji A, Chen T, Pan H and Song Y: The mitochondrial biogenesis signaling pathway is a potential therapeutic target for myasthenia gravis via energy metabolism (Review). Exp Ther Med 22: 702, 2021.
APA
Ke, L., Li, Q., Song, J., Jiao, W., Ji, A., Chen, T. ... Song, Y. (2021). The mitochondrial biogenesis signaling pathway is a potential therapeutic target for myasthenia gravis via energy metabolism (Review). Experimental and Therapeutic Medicine, 22, 702. https://doi.org/10.3892/etm.2021.10134
MLA
Ke, L., Li, Q., Song, J., Jiao, W., Ji, A., Chen, T., Pan, H., Song, Y."The mitochondrial biogenesis signaling pathway is a potential therapeutic target for myasthenia gravis via energy metabolism (Review)". Experimental and Therapeutic Medicine 22.1 (2021): 702.
Chicago
Ke, L., Li, Q., Song, J., Jiao, W., Ji, A., Chen, T., Pan, H., Song, Y."The mitochondrial biogenesis signaling pathway is a potential therapeutic target for myasthenia gravis via energy metabolism (Review)". Experimental and Therapeutic Medicine 22, no. 1 (2021): 702. https://doi.org/10.3892/etm.2021.10134
Copy and paste a formatted citation
x
Spandidos Publications style
Ke L, Li Q, Song J, Jiao W, Ji A, Chen T, Pan H and Song Y: The mitochondrial biogenesis signaling pathway is a potential therapeutic target for myasthenia gravis via energy metabolism (Review). Exp Ther Med 22: 702, 2021.
APA
Ke, L., Li, Q., Song, J., Jiao, W., Ji, A., Chen, T. ... Song, Y. (2021). The mitochondrial biogenesis signaling pathway is a potential therapeutic target for myasthenia gravis via energy metabolism (Review). Experimental and Therapeutic Medicine, 22, 702. https://doi.org/10.3892/etm.2021.10134
MLA
Ke, L., Li, Q., Song, J., Jiao, W., Ji, A., Chen, T., Pan, H., Song, Y."The mitochondrial biogenesis signaling pathway is a potential therapeutic target for myasthenia gravis via energy metabolism (Review)". Experimental and Therapeutic Medicine 22.1 (2021): 702.
Chicago
Ke, L., Li, Q., Song, J., Jiao, W., Ji, A., Chen, T., Pan, H., Song, Y."The mitochondrial biogenesis signaling pathway is a potential therapeutic target for myasthenia gravis via energy metabolism (Review)". Experimental and Therapeutic Medicine 22, no. 1 (2021): 702. https://doi.org/10.3892/etm.2021.10134
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team