Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
July-2021 Volume 22 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2021 Volume 22 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

MTHFD2 facilitates breast cancer cell proliferation via the AKT signaling pathway

  • Authors:
    • Jun Huang
    • Yinyin Qin
    • Canfeng Lin
    • Xiaoguang Huang
    • Feiran Zhang
  • View Affiliations / Copyright

    Affiliations: Department of General Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Jinping, Shantou, Guangzhou 515000, P.R. China, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Jinping, Shantou, Guangzhou 515000, P.R. China, Department of Oncology, Shantou Central Hospital, Jinping, Shantou, Guangzhou 515000, P.R. China, Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Jinping, Shantou, Guangdong 515041, P.R. China
    Copyright: © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 703
    |
    Published online on: May 2, 2021
       https://doi.org/10.3892/etm.2021.10135
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

MTHFD2 is a folate‑coupled mitochondrial metabolic enzyme which has been extensively studied in breast cancer; however, its molecular functions in this cancer remain unclear. The current study aimed to reveal the underlying mechanism of breast cancer. MTHFD2 expression status and prognostic value were determined using the Gene Expression Profiling Interactive Analysis database. To determine the function of MTHFD2 in breast cancer, MCF‑7 cells with stable overexpression of Flag‑MTHFD2 or depletion of MTHFD2 were generated. Cell Counting Kit‑8 and colony formation assays were used to examine the effect of MTHFD2 overexpression or knockout on MCF‑7 cell proliferation and clonogenicity, respectively. Luciferase reporter and an AKT inhibitor (GSK6906) analysis were carried out to investigate the effect of MTHFD2 on the AKT signaling pathway. The results demonstrated that MTHFD2 expression level was higher in breast cancer tissues compared with adjacent normal tissues. Furthermore, patients with high MTHFD2 expression had significantly poorer overall survival compared with patients with low MTHFD2 expression. In addition, ectopic expression of MTHFD2 promoted the tumorigenic properties of MCF‑7 cells, including proliferation and clonogenicity. Conversely, depletion of MTHFD2 had the opposite effect on the malignant properties of MCF‑7 cells. Luciferase reporter demonstrated that MTHFD2 can significantly increase the ATK luciferase density. Furthermore, the Akt inhibitor GSK690693 significantly decreased the increased clonogenicity caused by MTHFD2 overexpression in MCF‑7 cells. Taken together, the findings from the present study suggested that MTHFD2 may serve a protumor role in the malignancy of breast cancer by activating the AKT signaling pathway. These results provide an alternative theoretical foundation that could help the development of MTHFD2‑targeted breast cancer treatment.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Mattiuzzi C and Lippi G: Current cancer epidemiology. J Epidemiol Glob Health. 9:217–222. 2019.PubMed/NCBI View Article : Google Scholar

2 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018.PubMed/NCBI View Article : Google Scholar

3 

DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Goding Sauer A, Jemal A and Siegel RL: Breast cancer statistics, 2019. CA Cancer J Clin. 69:438–451. 2019.PubMed/NCBI View Article : Google Scholar

4 

Ito H and Matsuo K: Molecular epidemiology, and possible real-world applications in breast cancer. Breast Cancer. 23:33–38. 2016.PubMed/NCBI View Article : Google Scholar

5 

Ghoncheh M, Pournamdar Z and Salehiniya H: Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac J Cancer Prev. 17:43–46. 2016.PubMed/NCBI View Article : Google Scholar

6 

Shin M, Momb J and Appling DR: Human mitochondrial MTHFD2 is a dual redox cofactor-specific methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase. Cancer Metab. 5(11)2017.PubMed/NCBI View Article : Google Scholar

7 

Green NH, Galvan DL, Badal SS, Chang BH, LeBleu VS, Long J, Jonasch E and Danesh FR: MTHFD2 links RNA methylation to metabolic reprogramming in renal cell carcinoma. Oncogene. 38:6211–6225. 2019.PubMed/NCBI View Article : Google Scholar

8 

Nilsson R, Jain M, Madhusudhan N, Sheppard NG, Strittmatter L, Kampf C, Huang J, Asplund A and Mootha VK: Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat Commun. 5(3128)2014.PubMed/NCBI View Article : Google Scholar

9 

Mattaini KR, Sullivan MR and Vander Heiden MG: The importance of serine metabolism in cancer. J Cell Biol. 214:249–257. 2016.PubMed/NCBI View Article : Google Scholar

10 

Ju HQ, Lu YX, Chen DL, Zuo ZX, Liu ZX, Wu QN, Mo HY, Wang ZX, Wang DS, Pu HY, et al: Modulation of redox homeostasis by inhibition of MTHFD2 in colorectal cancer: Mechanisms and therapeutic implications. J Natl Cancer Inst. 111:584–596. 2019.PubMed/NCBI View Article : Google Scholar

11 

Lin H, Huang B, Wang H, Liu X, Hong Y, Qiu S and Zheng J: MTHFD2 overexpression predicts poor prognosis in renal cell carcinoma and is associated with cell proliferation and vimentin-modulated migration and invasion. Cell Physiol Biochem. 51:991–1000. 2018.PubMed/NCBI View Article : Google Scholar

12 

Pikman Y, Puissant A, Alexe G, Furman A, Chen LM, Frumm SM, Ross L, Fenouille N, Bassil CF, Lewis CA, et al: Targeting MTHFD2 in acute myeloid leukemia. J Exp Med. 213:1285–1306. 2016.PubMed/NCBI View Article : Google Scholar

13 

Yu C, Yang L, Cai M, Zhou F, Xiao S, Li Y, Wan T, Cheng D, Wang L, Zhao C and Huang X: Down-regulation of MTHFD2 inhibits NSCLC progression by suppressing cycle-related genes. J Cell Mol Med. 24:1568–1577. 2020.PubMed/NCBI View Article : Google Scholar

14 

Liu F, Liu Y, He C, Tao L, He X, Song H and Zhang G: Increased MTHFD2 expression is associated with poor prognosis in breast cancer. Tumour Biol. 35:8685–8690. 2014.PubMed/NCBI View Article : Google Scholar

15 

Tedeschi PM, Vazquez A, Kerrigan JE and Bertino JR: Mitochondrial methylenetetrahydrofolate dehydrogenase (MTHFD2) overexpression is associated with tumor cell proliferation and is a novel target for drug development. Mol Cancer Res. 13:1361–1366. 2015.PubMed/NCBI View Article : Google Scholar

16 

Wei Y, Liu P, Li Q, Du J, Chen Y, Wang Y, Shi H, Wang Y, Zhang H, Xue W, et al: The effect of MTHFD2 on the proliferation and migration of colorectal cancer cell lines. Onco Targets Ther. 12:6361–6370. 2019.PubMed/NCBI View Article : Google Scholar

17 

Sheppard NG, Jarl L, Mahadessian D, Strittmatter L, Schmidt A, Madhusudan N, Tegnér J, Lundberg EK, Asplund A, Jain M and Nilsson R: The folate-coupled enzyme MTHFD2 is a nuclear protein and promotes cell proliferation. Sci Rep. 5(15029)2015.PubMed/NCBI View Article : Google Scholar

18 

Derunes C, Burgess R, Iraheta E, Kellerer R, Becherer K, Gessner CR, Li S, Hewitt K, Vuori K, Pasquale EB, et al: Molecular determinants for interaction of SHEP1 with Cas localize to a highly solvent-protected region in the complex. FEBS Lett. 580:175–178. 2006.PubMed/NCBI View Article : Google Scholar

19 

Wigler M, Pellicer A, Silverstein S and Axel R: Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor. Cell. 14:725–731. 1978.PubMed/NCBI View Article : Google Scholar

20 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.PubMed/NCBI View Article : Google Scholar

21 

Liang T, Zhang Y, Yin S, Gan T, An T, Zhang R, Wang Y, Huang Y, Zhou Q and Zhang J: Cardio-protecteffect of qiliqiangxin capsule on left ventricular remodeling, dysfunction and apoptosis in heart failure rats after chronic myocardial infarction. Am J Transl Res. 8:2047–2058. 2016.PubMed/NCBI

22 

Tang Z, Li C, Kang B, Gao G, Li C and Zhang Z: GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45:W98–W102. 2017.PubMed/NCBI View Article : Google Scholar

23 

Lehtinen L, Ketola K, Mäkelä R, Mpindi JP, Viitala M, Kallioniemi O and Iljin K: High-throughput RNAi screening for novel modulators of vimentin expression identifies MTHFD2 as a regulator of breast cancer cell migration and invasion. Oncotarget. 4:48–63. 2013.PubMed/NCBI View Article : Google Scholar

24 

Koufaris C, Gallage S, Yang T, Lau CH, Valbuena GN and Keun HC: Suppression of MTHFD2 in MCF-7 breast cancer cells increases glycolysis, dependency on exogenous glycine, and sensitivity to folate depletion. J Proteome Res. 15:2618–2625. 2016.PubMed/NCBI View Article : Google Scholar

25 

DeBerardinis RJ, Lum JJ, Hatzivassiliou G and Thompson CB: The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7:11–20. 2008.PubMed/NCBI View Article : Google Scholar

26 

Campbell SL and Wellen KE: Metabolic signaling to the nucleus in cancer. Mol Cell. 71:398–408. 2018.PubMed/NCBI View Article : Google Scholar

27 

Torti SV and Torti FM: Iron and cancer: More ore to be mined. Nat Rev Cancer. 13:342–355. 2013.PubMed/NCBI View Article : Google Scholar

28 

Zhuang J, Song Y, Ye Y, He S, Ma X, Zhang M, Ni J, Wang J and Xia W: PYCR1 interference inhibits cell growth and survival via c-Jun N-terminal kinase/insulin receptor substrate 1 (JNK/IRS1) pathway in hepatocellular cancer. J Transl Med. 17(343)2019.PubMed/NCBI View Article : Google Scholar

29 

Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM and Thompson CB: Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 64:3892–3899. 2004.PubMed/NCBI View Article : Google Scholar

30 

Chu N, Salguero AL, Liu AZ, Chen Z, Dempsey DR, Ficarro SB, Alexander WM, Marto JA, Li Y, Amzel LM, et al: Akt kinase activation mechanisms revealed using protein semisynthesis. Cell. 174:897–907.e14. 2018.PubMed/NCBI View Article : Google Scholar

31 

Schultze SM, Hemmings BA, Niessen M and Tschopp O: PI3K/AKT, MAPK and AMPK signalling: Protein kinases in glucose homeostasis. Expert Rev Mol Med. 14(e1)2012.PubMed/NCBI View Article : Google Scholar

32 

Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM and Thompson CB: Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol. 23:7315–7328. 2003.PubMed/NCBI View Article : Google Scholar

33 

Tong X, Zhao F and Thompson CB: The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr Opin Genet Dev. 19:32–37. 2009.PubMed/NCBI View Article : Google Scholar

34 

Wieman HL, Wofford JA and Rathmell JC: Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell. 18:1437–1446. 2007.PubMed/NCBI View Article : Google Scholar

35 

Vivanco I and Sawyers CL: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2:489–501. 2002.PubMed/NCBI View Article : Google Scholar

36 

Zhang X, Zhao H, Li Y, Xia D, Yang L, Ma Y and Li H: The role of YAP/TAZ activity in cancer metabolic reprogramming. Mol Cancer. 17(134)2018.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Huang J, Qin Y, Lin C, Huang X and Zhang F: MTHFD2 facilitates breast cancer cell proliferation via the AKT signaling pathway. Exp Ther Med 22: 703, 2021.
APA
Huang, J., Qin, Y., Lin, C., Huang, X., & Zhang, F. (2021). MTHFD2 facilitates breast cancer cell proliferation via the AKT signaling pathway. Experimental and Therapeutic Medicine, 22, 703. https://doi.org/10.3892/etm.2021.10135
MLA
Huang, J., Qin, Y., Lin, C., Huang, X., Zhang, F."MTHFD2 facilitates breast cancer cell proliferation via the AKT signaling pathway". Experimental and Therapeutic Medicine 22.1 (2021): 703.
Chicago
Huang, J., Qin, Y., Lin, C., Huang, X., Zhang, F."MTHFD2 facilitates breast cancer cell proliferation via the AKT signaling pathway". Experimental and Therapeutic Medicine 22, no. 1 (2021): 703. https://doi.org/10.3892/etm.2021.10135
Copy and paste a formatted citation
x
Spandidos Publications style
Huang J, Qin Y, Lin C, Huang X and Zhang F: MTHFD2 facilitates breast cancer cell proliferation via the AKT signaling pathway. Exp Ther Med 22: 703, 2021.
APA
Huang, J., Qin, Y., Lin, C., Huang, X., & Zhang, F. (2021). MTHFD2 facilitates breast cancer cell proliferation via the AKT signaling pathway. Experimental and Therapeutic Medicine, 22, 703. https://doi.org/10.3892/etm.2021.10135
MLA
Huang, J., Qin, Y., Lin, C., Huang, X., Zhang, F."MTHFD2 facilitates breast cancer cell proliferation via the AKT signaling pathway". Experimental and Therapeutic Medicine 22.1 (2021): 703.
Chicago
Huang, J., Qin, Y., Lin, C., Huang, X., Zhang, F."MTHFD2 facilitates breast cancer cell proliferation via the AKT signaling pathway". Experimental and Therapeutic Medicine 22, no. 1 (2021): 703. https://doi.org/10.3892/etm.2021.10135
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team