|
1
|
Harris SR, Carrillo M and Fujioka K:
Binge-eating disorder and type 2 diabetes: A Review. Endocr Pract:
December 20, 2020. doi: 10.1016/j.eprac.2020.10.005.
|
|
2
|
Wang Y, Li YB, Yin JJ, Wang Y, Zhu LB, Xie
GY and Pan SH: Autophagy regulates inflammation following oxidative
injury in diabetes. Autophagy. 9:272–277. 2013.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Chen ZF, Li YB, Han JY, Yin JJ, Wang Y,
Zhu LB and Xie GY: Liraglutide prevents high glucose level induced
insulinoma cells apoptosis by targeting autophagy. Chin Med J
(Engl). 126:937–941. 2013.PubMed/NCBI
|
|
4
|
Zhu LB, Cao MM, Wang J, Su Y, Jiang W, Liu
GD and Li YB: Role of autophagy in LPS-induced inflammation in
INS-1 cells. Mol Med Rep. 19:5211–5218. 2019.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Fan M, Jiang H, Zhang Y, Ma Y, Li L and Wu
J: Liraglutide enhances autophagy and promotes pancreatic β cell
proliferation to ameliorate type 2 diabetes in high-fat-fed and
streptozotocin-treated mice. Med Sci Monit. 24:2310–2316.
2018.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Melmed L, Polonsky KS, Reed Larsen P and
Kronenberg H: Chapter on pathogenesis of type 2 diabetes-Williams
Textbook of Endocrinology. 13th edition. Elsevier, 2016.
|
|
7
|
Zhang N, Cao MM, Liu H, Xie GY and Li YB:
Autophagy regulates insulin resistance following endoplasmic
reticulum stress in diabetes. J Physiol Biochem. 71:319–327.
2015.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Li Q, Jia S, Xu L, Li B and Chen N:
Metformin-induced autophagy and irisin improves INS-1 cell function
and survival in high-glucose environment via AMPK/SIRT1/PGC-1α
signal pathway. Food Sci Nutr. 7:1695–1703. 2019.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Cheng STW, Li SYT and Leung PS: Fibroblast
growth factor 21 stimulates pancreatic islet autophagy via
inhibition of AMPK-mTOR signaling. Int J Mol Sci 20: 2517. doi:
10.3390/ijms20102517.
|
|
10
|
Lee YH, Kim J, Park K and Lee MS: β-cell
autophagy: Mechanism and role in β-cell dysfunction. Mol Metab.
27S:S92–S103. 2019.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Wu Q, Hu Y, Jiang M, Wang F and Gong G:
Effect of autophagy regulated by Sirt1/FoxO1 pathway on the release
of factors promoting thrombosis from vascular endothelial cells.
Int J Mol Sci. 20(4132)2019.PubMed/NCBI View Article : Google Scholar : doi:
10.3390/ijms20174132.
|
|
12
|
He W, Zhang A, Qi L, Na C, Jiang R, Fan Z
and Chen J: FOXO1, a potential therapeutic target, regulates
autophagic Flux, oxidative stress, mitochondrial dysfunction, and
apoptosis in human cholangiocarcinoma QBC939 cells. Cell Physiol
Biochem. 45:1506–1514. 2018.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Kitamura T: The role of FOXO1 in β-cell
failure and type 2 diabetes mellitus. Nat Rev Endocrinol.
9:615–623. 2013.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Xing YQ, Li A, Yang Y, Li XX, Zhang LN and
Guo HC: The regulation of FOXO1 and its role in disease
progression. Life Sci. 193:124–131. 2018.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Cheng Z: The FoxO-autophagy axis in health
and disease. Trends Endocrinol Metab. 30:658–671. 2019.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Chen B, Zhou W, Zhao W, Yuan P, Tang C,
Wang G, Leng J, Ma J, Wang X, Hui Y, et al: Oxaliplatin reverses
the GLP-1R-mediated promotion of intrahepatic cholangiocarcinoma by
altering FoxO1 signaling. Oncol Lett. 18:1989–1998. 2019.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Kamei Y, Miura S, Suzuki M, et al:
Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal
muscle mass, down-regulated Type I (slow twitch/red muscle) fiber
genes, and impaired glycemic control. J Biol Chem.
2004;279(39):41114‐41123. doi:10.1074/jbc.M400674200.
|
|
18
|
Nakae J, Cao Y, Oki M, et al: Forkhead
transcription factor FoxO1 in adipose tissue regulates energy
storage and expenditure. Diabetes. 2008;57(3):563‐576.
doi:10.2337/db07-0698.
|
|
19
|
Gu L, Ding X, Wang Y, et al: Spexin
alleviates insulin resistance and inhibits hepatic gluconeogenesis
via the FoxO1/PGC-1α pathway in high-fat-diet-induced rats and
insulin resistant cells. Int J Biol Sci. 2019;15(13):2815‐2829.
Published 2019 Nov 1. doi:10.7150/ijbs.31781.
|
|
20
|
Kitamura YI, Kitamura T, Kruse JP, Raum
JC, Stein R, Gu W and Accili D: FoxO1 protects against pancreatic
beta cell failure through NeuroD and MafA induction. Cell Metab.
2:153–163. 2005.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Kobayashi M, Kikuchi O, Sasaki T, Kim HJ,
Yokota-Hashimoto H, Lee YS, Amano K, Kitazumi T, Susanti VY,
Kitamura YI, et al: FoxO1 as a double-edged sword in the pancreas:
Analysis of pancreas- and β-cell-specific FoxO1 knockout mice. Am J
Physiol Endocrinol Metab. 302:E603–E613. 2012.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Gerst F, Kaiser G, Panse M, Sartorius T,
Pujol A, Hennige AM, Machicao F, Lammers R, Bosch F, Häring HU, et
al: Protein kinase Cδ regulates nuclear export of FOXO1 through
phosphorylation of the chaperone 14-3-3ζ. Diabetologia.
58:2819–2831. 2015.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Kaiser G, Gerst F, Michael D, Berchtold S,
Friedrich B, Strutz-Seebohm N, Lang F, Häring HU and Ullrich S:
Regulation of forkhead box O1 (FOXO1) by protein kinase B and
glucocorticoids: Different mechanisms of induction of beta cell
death in vitro. Diabetologia. 56:1587–1595. 2013.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Kitamura T, Nakae J, Kitamura Y, Kido Y,
Biggs WH III, Wright CV, White MF, Arden KC and Accili D: The
forkhead transcription factor Foxo1 links insulin signaling to Pdx1
regulation of pancreatic beta cell growth. J Clin Invest.
110:1839–1847. 2002.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Mo X, Wang X, Ge Q and Bian F: The effects
of SIRT1/FoxO1 on LPS induced INS-1 cells dysfunction. Stress.
22:70–82. 2019.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Boughanem H, Cabrera-Mulero A,
Millán-Gómez M, Garrido-Sánchez L, Cardona F, Tinahones FJ,
Moreno-Santos I and Macías-González M: Transcriptional analysis of
FOXO1, C/EBP-α and PPAR-γ2 genes and their association with
obesity-related insulin resistance. Genes. 10(706)2019.PubMed/NCBI View Article : Google Scholar :
doi.org/10.3390/genes10090706.
|
|
27
|
Samuel VT, Choi CS, Phillips TG, Romanelli
AJ, Geisler JG, Bhanot S, McKay R, Monia B, Shutter JR, Lindberg
RA, et al: Targeting foxo1 in mice using antisense oligonucleotide
improves hepatic and peripheral insulin action. Diabetes.
55:2042–2050. 2006.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Yang L, Li P, Fu S, Calay ES and
Hotamisligil GS: Defective hepatic autophagy in obesity promotes ER
stress and causes insulin resistance. Cell Metab. 11:467–478.
2010.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Rivera JF, Costes S, Gurlo T, Glabe CG and
Butler PC: Autophagy defends pancreatic β cells from human islet
amyloid polypeptide-induced toxicity. J Clin Invest. 124:3489–3500.
2014.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Quan W, Hur KY, Lim Y, Oh SH, Lee JC, Kim
KH, Kim GH, Kim SW, Kim HL, Lee MK, et al: Autophagy deficiency in
beta cells leads to compromised unfolded protein response and
progression from obesity to diabetes in mice. Diabetologia.
55:392–403. 2012.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Bachar-Wikstrom E, Wikstrom JD, Ariav Y,
Tirosh B, Kaiser N, Cerasi E and Leibowitz G: Stimulation of
autophagy improves endoplasmic reticulum stress-induced diabetes.
Diabetes. 62:1227–1237. 2013.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Riahi Y, Wikstrom JD, Bachar-Wikstrom E,
Polin N, Zucker H, Lee MS, Quan W, Haataja L, Liu M, Arvan P, et
al: Erratum to: Autophagy is a major regulator of beta cell insulin
homeostasis. Diabetologia. 59:1575–1576. 2016.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Yin JJ, Li YB, Wang Y, Liu GD, Wang J, Zhu
XO and Pan SH: The role of autophagy in endoplasmic reticulum
stress-induced pancreatic β cell death. Autophagy. 8:158–164.
2012.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Priyadarshini M, Cole C, Oroskar G, Ludvik
AE, Wicksteed B, He C and Layden BT: Free fatty acid receptor 3
differentially contributes to β-cell compensation under high-fat
diet and streptozotocin stress. Am J Physiol Regul Integr Comp
Physiol. 318:R691–R700. 2020.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Huang C, Wang HY, Wang ME, Hsu MC, Wu YS,
Jiang YF, Wu LS, Jong DS and Chiu CH: Kisspeptin-activated
autophagy independently suppresses non-glucose-stimulated insulin
secretion from pancreatic β-cells. Sci Rep. 9(17451)2019.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Zhou J, Kang X, Luo Y, Yuan Y, Wu Y, Wang
M and Liu D: Glibenclamide-induced autophagy inhibits its insulin
secretion-improving function in β cells. Int J Endocrinol.
2019(1265175)2019.PubMed/NCBI View Article : Google Scholar :
doi.org/10.1155/2019/1265175.
|
|
37
|
Yamamoto S, Kuramoto K, Wang N, Situ X,
Priyadarshini M, Zhang W, Cordoba-Chacon J, Layden BT and He C:
Autophagy differentially regulates insulin production and insulin
sensitivity. Cell Rep. 23:3286–3299. 2018.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Ebato C, Uchida T, Arakawa M, Komatsu M,
Ueno T, Komiya K, Azuma K, Hirose T, Tanaka K, Kominami E, et al:
Autophagy is important in islet homeostasis and compensatory
increase of beta cell mass in response to high-fat diet. Cell
Metab. 8:325–332. 2008.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Jung HS, Chung KW, Won Kim J, Kim J,
Komatsu M, Tanaka K, Nguyen YH, Kang TM, Yoon KH, Kim JW, et al:
Loss of autophagy diminishes pancreatic beta cell mass and function
with resultant hyperglycemia. Cell Metab. 8:318–324.
2008.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Galicia-Garcia U, Benito-Vicente A, Jebari
S, Larrea-Sebal A, Siddiqi H, Uribe KB, Ostolaza H and Martín C:
Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci.
21(21)2020.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Frendo-Cumbo S, Jaldin-Fincati JR, Coyaud
E, Laurent EMN, Townsend LK, Tan JMJ, Xavier RJ, Pillon NJ, Raught
B, Wright DC, et al: Deficiency of the autophagy gene ATG16L1
induces insulin resistance through KLHL9/KLHL13/CUL3-mediated IRS1
degradation. J Biol Chem. 294:16172–16185. 2019.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Chan YK, Sung HK, Jahng JW, Kim GH, Han M
and Sweeney G: Lipocalin-2 inhibits autophagy and induces insulin
resistance in H9c2 cells. Mol Cell Endocrinol. 430:68–76.
2016.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Guo Q, Xu L, Li H, Sun H, Liu J, Wu S and
Zhou B: Progranulin causes adipose insulin resistance via increased
autophagy resulting from activated oxidative stress and endoplasmic
reticulum stress. Lipids Health Dis. 16(25)2017.PubMed/NCBI View Article : Google Scholar : doi.org/10.1186/s12944-017-0425-6.
|
|
44
|
Barlow AD and Thomas DC: Autophagy in
diabetes: Β-cell dysfunction, insulin resistance, and
complications. DNA Cell Biol. 34:252–260. 2015.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Chen ZF, Li YB, Han JY, Wang J, Yin JJ, Li
JB and Tian H: The double-edged effect of autophagy in pancreatic
beta cells and diabetes. Autophagy. 7:12–16. 2011.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Buteau J and Accili D: Regulation of
pancreatic beta-cell function by the forkhead protein FoxO1.
Diabetes Obes Metab. 9 (Suppl 2):140–146. 2007.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Kitamura T and Ido Kitamura Y: Role of
FoxO proteins in pancreatic beta cells. Endocr J. 54:507–515.
2007.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Talchai SC and Accili D: Legacy effect of
Foxo1 in pancreatic endocrine progenitors on adult β-cell mass and
function. Diabetes. 64:2868–2879. 2015.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Cai H, Jiang Z, Yang X, Lin J, Cai Q and
Li X: Circular RNA HIPK3 contributes to hyperglycemia and insulin
homeostasis by sponging miR-192-5p and upregulating transcription
factor forkhead box O1. Endocr J. 67:397–408. 2020.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Robertson RP, Harmon J, Tran PO, Tanaka Y
and Takahashi H: Glucose toxicity in beta-cells: Type 2 diabetes,
good radicals gone bad, and the glutathione connection. Diabetes.
52:581–587. 2003.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Zhang T, Kim DH, Xiao X, Lee S, Gong Z,
Muzumdar R, Calabuig-Navarro V, Yamauchi J, Harashima H, Wang R, et
al: FoxO1 plays an important role in regulating β-cell compensation
for insulin resistance in male mice. Endocrinology. 157:1055–1070.
2016.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Kibbe C, Chen J, Xu G, Jing G and Shalev
A: FOXO1 competes with carbohydrate response element-binding
protein (ChREBP) and inhibits thioredoxin-interacting protein
(TXNIP) transcription in pancreatic beta cells. J Biol Chem.
288:23194–23202. 2013.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Kim HJ, Kobayashi M, Sasaki T, Kikuchi O,
Amano K, Kitazumi T, Lee YS, Yokota-Hashimoto H, Susanti VY,
Kitamura YI, et al: Overexpression of FoxO1 in the hypothalamus and
pancreas causes obesity and glucose intolerance. Endocrinology.
153:659–671. 2012.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Zhang X, Yong W, Lv J, Zhu Y, Zhang J,
Chen F, Zhang R, Yang T, Sun Y and Han X: Inhibition of forkhead
box O1 protects pancreatic beta-cells against dexamethasone-induced
dysfunction. Endocrinology. 150:4065–4073. 2009.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Kong X, Zhang L, Hua X and Ma X:
Squamosamide derivative FLZ protects pancreatic β-cells from
glucotoxicity by stimulating Akt-FOXO1 pathway. J Diabetes Res.
2015(803986)2015.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Liu XD, Ruan JX, Xia JH, Yang SL, Fan JH
and Li K: The study of regulatory effects of Pdx-1, MafA and
NeuroD1 on the activity of porcine insulin promoter and the
expression of human islet amyloid polypeptide. Mol Cell Biochem.
394:59–66. 2014.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Shao S, Liu Z, Yang Y, Zhang M and Yu X:
SREBP-1c, Pdx-1, and GLP-1R involved in palmitate-EPA regulated
glucose-stimulated insulin secretion in INS-1 cells. J Cell
Biochem. 111:634–642. 2010.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Zhang F, Ma D, Zhao W, Wang D, Liu T, Liu
Y, Yang Y, Liu Y, Mu J, Li B, et al: Obesity-induced overexpression
of miR-802 impairs insulin transcription and secretion. Nat Commun.
11(1822)2020.PubMed/NCBI View Article : Google Scholar : doi:
10.1038/s41467-020-15529-w.
|
|
59
|
Kim DH, Zhang T, Ringquist S and Dong HH:
Targeting FoxO1 for hypertriglyceridemia. Curr Drug Targets.
12:1245–1255. 2011.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Matsumoto M, Han S, Kitamura T and Accili
D: Dual role of transcription factor FoxO1 in controlling hepatic
insulin sensitivity and lipid metabolism. J Clin Invest.
116:2464–2472. 2006.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Wang S, Ai H, Liu L, Zhang X, Gao F, Zheng
L, Yi J, Sun L, Yu C, Zhao H, et al: Micro-RNA-27a/b negatively
regulates hepatic gluconeogenesis by targeting FOXO1. Am J Physiol
Endocrinol Metab. 317:E911–E924. 2019.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Penniman CM, Suarez Beltran PA, Bhardwaj
G, Junck TL, Jena J, Poro K, Hirshman MF, Goodyear LJ and O'Neill
BT: Loss of FoxOs in muscle reveals sex-based differences in
insulin sensitivity but mitigates diet-induced obesity. Mol Metab.
30:203–220. 2019.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Zhang W, Patil S, Chauhan B, Guo S, Powell
DR, Le J, Klotsas A, Matika R, Xiao X, Franks R, et al: FoxO1
regulates multiple metabolic pathways in the liver: Effects on
gluconeogenic, glycolytic, and lipogenic gene expression. J Biol
Chem. 281:10105–10117. 2006.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Zhang K, Li L, Qi Y, Zhu X, Gan B, DePinho
RA, Averitt T and Guo S: Hepatic suppression of Foxo1 and Foxo3
causes hypoglycemia and hyperlipidemia in mice. Endocrinology.
153:631–646. 2012.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Du K, Herzig S, Kulkarni RN and Montminy
M: TRB3: A tribbles homolog that inhibits Akt/PKB activation by
insulin in liver. Science. 300:1574–1577. 2003.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Greer EL, Oskoui PR, Banko MR, Maniar JM,
Gygi MP, Gygi SP and Brunet A: The energy sensor AMP-activated
protein kinase directly regulates the mammalian FOXO3 transcription
factor. J Biol Chem. 282:30107–30119. 2007.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Caselli C: Role of adiponectin system in
insulin resistance. Mol Genet Metab. 113:155–160. 2014.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Yaghootkar H, Lamina C, Scott RA, Dastani
Z, Hivert MF, Warren LL, Stancáková A, Buxbaum SG, Lyytikäinen LP,
Henneman P, et al: GENESIS Consortium; RISC Consortium: Mendelian
randomization studies do not support a causal role for reduced
circulating adiponectin levels in insulin resistance and type 2
diabetes. Diabetes. 62:3589–3598. 2013.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Wang A, Li T, An P, Yan W, Zheng H, Wang B
and Mu Y: Exendin-4 upregulates adiponectin level in adipocytes via
Sirt1/Foxo-1 signaling pathway. PLoS One.
12(e0169469)2017.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Sanchez AM, Bernardi H, Py G and Candau
RB: Autophagy is essential to support skeletal muscle plasticity in
response to endurance exercise. Am J Physiol Regul Integr Comp
Physiol. 307:R956–R969. 2014.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Jash S and Puri V: FoxO1-autophagy axis
regulates lipid droplet growth via FSP27. Cell Cycle. 15:2856–2857.
2016.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Zhao Y, Yang J, Liao W, Liu X, Zhang H,
Wang S, Wang D, Feng J, Yu L and Zhu WG: Cytosolic FoxO1 is
essential for the induction of autophagy and tumour suppressor
activity. Nat Cell Biol. 12:665–675. 2010.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Liu L, Zheng LD, Zou P, Brooke J, Smith C,
Long YC, Almeida FA, Liu D and Cheng Z: FoxO1 antagonist suppresses
autophagy and lipid droplet growth in adipocytes. Cell Cycle.
15:2033–2041. 2016.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Ren H, Shao Y, Wu C, Ma X, Lv C and Wang
Q: Metformin alleviates oxidative stress and enhances autophagy in
diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Mol Cell
Endocrinol. 500(110628)2020.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Wang J, Shen L, Hong H, Li J, Wang H and
Li X: Atrasentan alleviates high glucose-induced podocyte injury by
the microRNA-21/forkhead box O1 axis. Eur J Pharmacol. 852:142–150.
2019.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Guo X, Lin H, Liu J, Wang D, Li D, Jiang
C, Tang Y, Wang J, Zhang T, Li Y, et al: 1,25-Dihydroxyvitamin D
attenuates diabetic cardiac autophagy and damage by vitamin D
receptor-mediated suppression of FoxO1 translocation. J Nutr
Biochem. 80(108380)2020.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Sengupta A, Molkentin JD and Yutzey KE:
FoxO transcription factors promote autophagy in cardiomyocytes. J
Biol Chem. 284:28319–28331. 2009.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Ning Y, Li Z and Qiu Z: FOXO1 silence
aggravates oxidative stress-promoted apoptosis in cardiomyocytes by
reducing autophagy. J Toxicol Sci. 40:637–645. 2015.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Wang B, Yang Q, Sun YY, Xing YF, Wang YB,
Lu XT, Bai WW, Liu XQ and Zhao YX: Resveratrol-enhanced autophagic
flux ameliorates myocardial oxidative stress injury in diabetic
mice. J Cell Mol Med. 18:1599–1611. 2014.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Li Y, Jiang J, Liu W, Wang H, Zhao L, Liu
S, Li P, Zhang S, Sun C, Wu Y, et al: microRNA-378 promotes
autophagy and inhibits apoptosis in skeletal muscle. Proc Natl Acad
Sci USA. 115:E10849–E10858. 2018.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Yang M, Lin Y and Wang Y and Wang Y:
High-glucose induces cardiac myocytes apoptosis through Foxo1 /GRK2
signaling pathway. Biochem Biophys Res Commun. 513:154–158.
2019.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Liu HY, Han J, Cao SY, Hong T, Zhuo D, Shi
J, Liu Z and Cao W: Hepatic autophagy is suppressed in the presence
of insulin resistance and hyperinsulinemia: Inhibition of
FoxO1-dependent expression of key autophagy genes by insulin. J
Biol Chem. 284:31484–31492. 2009.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Xiong X, Tao R, DePinho RA and Dong XC:
The autophagy-related gene 14 (Atg14) is regulated by forkhead box
O transcription factors and circadian rhythms and plays a critical
role in hepatic autophagy and lipid metabolism. J Biol Chem.
287:39107–39114. 2012.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Lettieri Barbato D, Tatulli G, Aquilano K
and Ciriolo MR: FoxO1 controls lysosomal acid lipase in adipocytes:
implication of lipophagy during nutrient restriction and metformin
treatment. Cell Death Dis. 4(e861)2013.PubMed/NCBI View Article : Google Scholar : doi.org/10.1038/cddis.2013.404.
|