|
1
|
Peterson JA: Osteoporosis overview.
Geriatr Nurs. 22:17–21. 2001.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Wang C, Meng H, Wang X, Zhao C, Peng J and
Wang Y: Differentiation of bone marrow mesenchymal stem cells in
osteoblasts and adipocytes and its role in treatment of
osteoporosis. Med Sci Monit. 22:226–233. 2016.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Kiernan J, Davies JE and Stanford WL:
Concise review: Musculoskeletal stem cells to treat age-related
osteoporosis. Stem Cells Transl Med. 6:1930–1939. 2017.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Fu X, Liu G, Halim A, Ju Y, Luo Q and Song
AG: Mesenchymal stem cell migration and tissue repair. Cells.
8(784)2019.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Mo J, Yang R, Li F, He B, Zhang X, Zhao Y,
Shen Z and Chen P: Geraniin promotes osteogenic differentiation of
bone marrow mesenchymal stem cells (BMSCs) via activating
β-catenin: A comparative study between BMSCs from normal and
osteoporotic rats. J Nat Med. 73:262–272. 2019.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Luo Y, Zhang Y, Miao G, Zhang Y, Liu Y and
Huang Y: Runx1 regulates osteogenic differentiation of BMSCs by
inhibiting adipogenesis through Wnt/β-catenin pathway. Arch Oral
Biol. 97:176–184. 2019.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Ganguly P, El-Jawhari JJ, Giannoudis PV,
Burska AN, Ponchel F and Jones EA: Age-related changes in bone
marrow mesenchymal stromal cells: A potential impact on
osteoporosis and osteoarthritis development. Cell Transplant.
26:1520–1529. 2017.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Baker N, Boyette LB and Tuan RS:
Characterization of bone marrow-derived mesenchymal stem cells in
aging. Bone. 70:37–47. 2015.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Chen Q, Shou P, Zheng C, Jiang M, Cao G,
Yang Q, Cao J, Xie N, Velletri T, Zhang X, et al: Fate decision of
mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death
Differ. 23:1128–1139. 2016.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Ducy P: The role of osteocalcin in the
endocrine cross-talk between bone remodelling and energy
metabolism. Diabetologia. 54:1291–1297. 2011.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Zoch ML, Clemens TL and Riddle RC: New
insights into the biology of osteocalcin. Bone. 82:42–49.
2016.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Iwamoto J, Takeda T and Sato Y: Effects of
vitamin K2 on osteoporosis. Curr Pharm Des. 10:2557–2576.
2004.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Berezovska O, Yildirim G, Budell WC,
Yagerman S, Pidhaynyy B, Bastien C, van der Meulen MCH and Dowd TL:
Osteocalcin affects bone mineral and mechanical properties in
female mice. Bone. 128(115031)2019.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Neve A, Corrado A and Cantatore FP:
Osteocalcin: Skeletal and extra-skeletal effects. J Cell Physiol.
228:1149–1153. 2013.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Le VD and Marcil V: Osteocalcin and
glucose metabolism: Assessment of human studies. Med Sci (Paris).
33:417–422. 2017.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Liu Z and Yang J: Uncarboxylated
osteocalcin promotes osteogenic differentiation of mouse bone
marrow-derived mesenchymal stem cells by activating the
Erk-Smad/β-catenin signalling pathways. Cell Biochem Funct.
38:87–96. 2020.PubMed/NCBI View
Article : Google Scholar
|
|
17
|
Choi SM, Lee KM, Ryu SB, Park YJ, Hwang
YG, Baek D, Choi Y, Park KH, Park KD and Lee JW: Enhanced articular
cartilage regeneration with SIRT1-activated MSCs using
gelatin-based hydrogel. Cell Death Dis. 9(866)2018.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Chen Y, Zhou F, Liu H, Li J, Che H, Shen J
and Luo E: SIRT1, a promising regulator of bone homeostasis. Life
Sci. 269(119041)2021.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Simic P, Zainabadi K, Bell E, Sykes DB,
Saez B, Lotinun S, Baron R, Scadden D, Schipani E and Guarente L:
SIRT1 regulates differentiation of mesenchymal stem cells by
deacetylating β-catenin. EMBO Mol Med. 5:430–440. 2013.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Zhou Y, Song T and Peng J, Zhou Z, Wei H,
Zhou R, Jiang S and Peng J: SIRT1 suppresses adipogenesis by
activating Wnt/β-catenin signaling in vivo and in vitro.
Oncotarget. 7:77707–77720. 2016.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Zainabadi K, Liu CJ and Guarente L: SIRT1
is a positive regulator of the master osteoblast transcription
factor, RUNX2. PLoS One. 12(e0178520)2017.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Qu P, Wang L, Min Y, McKennett L, Keller
JR and Lin PC: Vav1 regulates mesenchymal stem cell differentiation
decision between adipocyte and chondrocyte via Sirt1. Stem Cells.
34:1934–1946. 2016.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Ha J, Guan KL and Kim J: AMPK and
autophagy in glucose/glycogen metabolism. Mol Aspects Med.
46:46–62. 2015.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Wang Y, Chen G, Yan J, Chen X, He F, Zhu
C, Zhang J, Lin J, Pan G, Yu J, et al: Upregulation of SIRT1 by
kartogenin enhances antioxidant functions and promotes osteogenesis
in human mesenchymal stem cells. Oxid Med Cell Longev.
2018(1368142)2018.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Chen H, Liu X, Chen H, Cao J, Zhang L, Hu
X and Wang J: Role of SIRT1 and AMPK in mesenchymal stem cells
differentiation. Ageing Res Rev. 13:55–64. 2014.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Shelly M, Cancedda L, Heilshorn S, Sumbre
G and Poo MM: LKB1/STRAD promotes axon initiation during neuronal
polarization. Cell. 129:565–577. 2007.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Liu J and Yang J: Uncarboxylated
osteocalcin inhibits high glucose-induced ROS production and
stimulates osteoblastic differentiation by preventing the
activation of PI3K/Akt in MC3T3-E1 cells. Int J Mol Med.
37:173–181. 2016.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Kim JH, Park S, Kim HW and Jang JH:
Recombinant expression of mouse osteocalcin protein in Escherichia
coli. Biotechnol Lett. 29:1631–1635. 2007.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Cai Y, Liu T, Fang F, Xiong C and Shen S:
Comparisons of mouse mesenchymal stem cells in primary adherent
culture of compact bone fragments and whole bone marrow. Stem Cells
Int. 2015(708906)2015.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Liu G, Bi Y, Shen B, Yang H, Zhang Y, Wang
X, Liu H, Lu Y, Liao J, Chen X and Chu Y: SIRT1 limits the function
and fate of myeloid-derived suppressor cells in tumors by
orchestrating HIF-1α-dependent glycolysis. Cancer Res. 74:727–737.
2014.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Amini E, Nassireslami E, Payandemehr B,
Khodagholi F, Foolad F, Khalaj S, Hamedani MP, Azimi L and
Sharifzadeh M: Paradoxical role of PKA inhibitor on
amyloidβ-induced memory deficit. Physiol Behav. 149:76–85.
2015.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Liu X, Chhipa RR, Nakano I and Dasgupta B:
The AMPK inhibitor compound C is a potent AMPK-independent
antiglioma agent. Mol Cancer Ther. 13:596–605. 2014.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Hasegawa T: Ultrastructure and biological
function of matrix vesicles in bone mineralization. Histochem Cell
Biol. 149:289–304. 2018.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Ishikane S, Ikushima E, Igawa K, Tomooka K
and Takahashi-Yanaga F: Differentiation-inducing factor-1
potentiates adipogenic differentiation and attenuates the
osteogenic differentiation of bone marrow-derived mesenchymal stem
cells. Biochim Biophys Acta Mol Cell Res.
1868(118909)2021.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Li D, Zhang R, Zhu W, Xue Y, Zhang Y,
Huang Q, Liu M and Liu Y: S100A16 inhibits osteogenesis but
stimulates adipogenesis. Mol Biol Rep. 40:3465–3473.
2013.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Picard F, Kurtev M, Chung N, Topark-Ngarm
A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW and
Guarente L: Sirt1 promotes fat mobilization in white adipocytes by
repressing PPAR-gamma. Nature. 429:771–776. 2004.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Huang Y, Zhu X, Chen K, Lang H, Zhang Y,
Hou P, Ran L, Zhou M, Zheng J, Yi L, et al: Resveratrol prevents
sarcopenic obesity by reversing mitochondrial dysfunction and
oxidative stress via the PKA/LKB1/AMPK pathway. Aging.
11:2217–2240. 2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Chen Y, Zhang LS, Ren JL, Zhang YR, Wu N,
Jia MZ, Yu YR, Ning ZP, Tang CS and Qi YF:
Intermedin1-53 attenuates aging-associated vascular
calcification in rats by upregulating sirtuin 1. Aging.
12:5651–5674. 2020.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Hu L, Yin C, Zhao F, Ali A, Ma J and Qian
A: Mesenchymal stem cells: Cell fate decision to osteoblast or
adipocyte and application in osteoporosis treatment. Int J Mol Sci.
19(360)2018.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Qadir A, Liang S, Wu Z, Chen Z, Hu L and
Qian A: Senile osteoporosis: The involvement of differentiation and
senescence of bone marrow stromal cells. Int J Mol Sci.
21(349)2020.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Yang X, Yang J, Lei P and Wen T: LncRNA
MALAT1 shuttled by bone marrow-derived mesenchymal stem
cells-secreted exosomes alleviates osteoporosis through mediating
microRNA-34c/SATB2 axis. Aging. 11:8777–8791. 2019.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Blair HC, Larrouture QC, Li Y, Lin H,
Beer-Stoltz D, Liu L, Tuan RS, Robinson LJ, Schlesinger PH and
Nelson DJ: Osteoblast differentiation and bone matrix formation in
vivo and in vitro. Tissue Eng Part B Rev. 23:268–280.
2017.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Florencio-Silva R, Sasso GR, Sasso-Cerri
E, Simões MJ and Cerri PS: Biology of bone tissue: Structure,
function, and factors that influence bone cells. Biomed Res Int.
2015(421746)2015.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Li JY, Wei X, Sun Q, Zhao XQ, Zheng CY,
Bai CX, Du J, Zhang Z, Zhu LG and Jia YS: MicroRNA-449b-5p promotes
the progression of osteoporosis by inhibiting osteogenic
differentiation of BMSCs via targeting Satb2. Eur Rev Med Pharmacol
Sci. 23:6394–6403. 2019.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Li M, Xie Z, Li J, Lin J, Zheng G, Liu W,
Tang S, Cen S, Ye G, Li Z, et al: GAS5 protects against
osteoporosis by targeting UPF1/SMAD7 axis in osteoblast
differentiation. Elife. 9(e59079)2020.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Zhou J, Nie H, Liu P, Wang Z, Yao B and
Yang L: Down-regulation of miR-339 promotes differentiation of
BMSCs and alleviates osteoporosis by targeting DLX5. Eur Rev Med
Pharmacol Sci. 23:29–36. 2019.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Ding RB, Bao J and Deng CX: Emerging roles
of SIRT1 in fatty liver diseases. Int J Biol Sci. 13:852–867.
2017.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Imperatore F, Maurizio J, Vargas Aguilar
S, Busch CJ, Favret J, Kowenz-Leutz E, Cathou W, Gentek R, Perrin
P, Leutz A, et al: SIRT1 regulates macrophage self-renewal. EMBO J.
36:2353–2372. 2017.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Mu N, Lei Y, Wang Y, Wang Y, Duan Q, Ma G,
Liu X and Su L: Inhibition of SIRT1/2 upregulates HSPA5 acetylation
and induces pro-survival autophagy via ATF4-DDIT4-mTORC1 axis in
human lung cancer cells. Apoptosis. 24:798–811. 2019.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Strycharz J, Rygielska Z, Swiderska E,
Drzewoski J, Szemraj J, Szmigiero L and Sliwinska A: SIRT1 as a
therapeutic target in diabetic complications. Curr Med Chem.
25:1002–1035. 2018.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Wang X, Chen L and Peng W: Protective
effects of resveratrol on osteoporosis via activation of the
SIRT1-NF-κB signaling pathway in rats. Exp Ther Med. 14:5032–5038.
2017.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Chang HC and Guarente L: SIRT1 and other
sirtuins in metabolism. Trends Endocrinol Metab. 25:138–145.
2014.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Yuan HF, Zhai C, Yan XL, Zhao DD, Wang JX,
Zeng Q, Chen L, Nan X, He LJ, Li ST, et al: SIRT1 is required for
long-term growth of human mesenchymal stem cells. J Mol Med (Berl).
90:389–400. 2012.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Han X, Liu L, Wang F, Zhao X, Zhao D, Dai
X and Li Y: Reconstruction of tissue-engineered bone with bone
marrow mesenchymal stem cells and partially deproteinized bone in
vitro. Cell Biol Int. 36:1049–1053. 2012.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Chang Y, Yu D, Chu W, Liu Z, Li H and Zhai
Z: LncRNA expression profiles and the negative regulation of
lncRNA-NOMMUT037835.2 in osteoclastogenesis. Bone.
130(115072)2020.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Song J, Li J, Yang F, Ning G, Zhen L, Wu
L, Zheng Y, Zhang Q, Lin D, Xie C and Peng L: Nicotinamide
mononucleotide promotes osteogenesis and reduces adipogenesis by
regulating mesenchymal stromal cells via the SIRT1 pathway in aged
bone marrow. Cell Death Dis. 10(336)2019.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Wang H, Hu Z, Wu J, Mei Y, Zhang Q, Zhang
H, Miao D and Sun W: Sirt1 promotes osteogenic differentiation and
increases alveolar bone mass via Bmi1 activation in mice. J Bone
Miner Res. 34:1169–1181. 2019.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Domazetovic V, Marcucci G, Pierucci F,
Bruno G, Di Cesare Mannelli L, Ghelardini C, Brandi ML, Iantomasi
T, Meacci E and Vincenzini MT: Blueberry juice protects osteocytes
and bone precursor cells against oxidative stress partly through
SIRT1. FEBS Open Bio. 9:1082–1096. 2019.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Edwards JR, Perrien DS, Fleming N, Nyman
JS, Ono K, Connelly L, Moore MM, Lwin ST, Yull FE, Mundy GR and
Elefteriou F: Silent information regulator (Sir)T1 inhibits NF-κB
signaling to maintain normal skeletal remodeling. J Bone Miner Res.
28:960–969. 2013.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Feng G, Zheng K, Song D, Xu K, Huang D,
Zhang Y, Cao P, Shen S, Zhang J, Feng X and Zhang D: SIRT1 was
involved in TNF-α-promoted osteogenic differentiation of human
DPSCs through Wnt/β-catenin signal. In Vitro Cell Dev Biol Anim.
52:1001–1011. 2016.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Constanze B, Popper B, Aggarwal BB and
Shakibaei M: Evidence that TNF-β suppresses osteoblast
differentiation of mesenchymal stem cells and resveratrol reverses
it through modulation of NF-κB, Sirt1 and Runx2. Cell Tissue Res.
381:83–98. 2020.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Hong W, Wei Z, Qiu Z, Li Z, Fu C, Ye Z and
Xu X: Atorvastatin promotes bone formation in aged apoE(-/-) mice
through the Sirt1-Runx2 axis. J Orthop Surg Res.
15(303)2020.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Komori T, Yagi H, Nomura S, Yamaguchi A,
Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, et al:
Targeted disruption of Cbfa1 results in a complete lack of bone
formation owing to maturational arrest of osteoblasts. Cell.
89:755–764. 1997.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Lv ZT, Liang S, Chen K, Zhang JM, Cheng P,
Guo JC, Yang Q, Zhou CH, Liao H and Chen AM: FNDC4 inhibits
RANKL-induced osteoclast formation by suppressing NF-κB Activation
and CXCL10 expression. Biomed Res Int. 2018(3936257)2018.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Kauppinen A, Suuronen T, Ojala J,
Kaarniranta K and Salminen A: Antagonistic crosstalk between NF-κB
and SIRT1 in the regulation of inflammation and metabolic
disorders. Cell Signal. 25:1939–1948. 2013.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Zhou H, Shang L, Li X, Zhang X, Gao G, Guo
C, Chen B, Liu Q, Gong Y and Shao C: Resveratrol augments the
canonical Wnt signaling pathway in promoting osteoblastic
differentiation of multipotent mesenchymal cells. Ex Cell Res.
315:2953–2962. 2009.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Shakibaei M, Shayan P, Busch F, Aldinger
C, Buhrmann C, Lueders C and Mobasheri A: Resveratrol mediated
modulation of Sirt-1/Runx2 promotes osteogenic differentiation of
mesenchymal stem cells: Potential role of Runx2 deacetylation. PLoS
One. 7(e35712)2012.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Zainabadi K: Drugs targeting SIRT1, a new
generation of therapeutics for osteoporosis and other bone related
disorders? Pharmacol Resh. 143:97–105. 2019.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Lieben L, Callewaert F and Bouillon R:
Bone and metabolism: A complex crosstalk. Horm Res. 71 (Suppl
1):S134–S138. 2009.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Confavreux CB: Bone: From a reservoir of
minerals to a regulator of energy metabolism. Kidney Int Suppl.
79:S14–S19. 2011.PubMed/NCBI View Article : Google Scholar
|
|
71
|
De Toni L, De Filippis V, Tescari S,
Ferigo M, Ferlin A, Scattolini V, Avogaro A, Vettor R and Foresta
C: Uncarboxylated osteocalcin stimulates 25-hydroxy vitamin D
production in Leydig cell line through a GPRC6a-dependent pathway.
Endocrinology. 155:4266–4274. 2014.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Gao J, Bai T, Ren L, Ding Y, Zhong X, Wang
H, Guo Y, Li J, Liu Y and Zhang Y: The PLC/PKC/Ras/MEK/Kv channel
pathway is involved in uncarboxylated osteocalcin-regulated insulin
secretion in rats. Peptides. 86:72–79. 2016.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Guedes JAC, Esteves JV, Morais MR, Zorn TM
and Furuya DT: Osteocalcin improves insulin resistance and
inflammation in obese mice: Participation of white adipose tissue
and bone. Bone. 115:68–82. 2018.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Miyamoto T, Oguma Y, Sato Y, Kobayashi T,
Ito E, Tani M, Miyamoto K, Nishiwaki Y, Ishida H, Otani T, et al:
Elevated creatine kinase and lactic acid dehydrogenase and
decreased osteocalcin and uncarboxylated osteocalcin are associated
with bone stress injuries in young female athletes. Sci Rep.
8(18019)2018.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Kim KM, Lim S, Moon JH, Jin H, Jung KY,
Shin CS, Park KS, Jang HC and Choi SH: Lower uncarboxylated
osteocalcin and higher sclerostin levels are significantly
associated with coronary artery disease. Bone. 83:178–183.
2016.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Hayashi Y, Kawakubo-Yasukochi T, Mizokami
A, Hazekawa M, Yakura T, Naito M, Takeuchi H, Nakamura S and Hirata
M: Uncarboxylated osteocalcin induces antitumor immunity against
mouse melanoma cell growth. J Cancer. 8:2478–2486. 2017.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Tsao YT, Huang YJ, Wu HH, Liu YA, Liu YS
and Lee OK: Osteocalcin mediates biomineralization during
osteogenic maturation in human mesenchymal stromal cells. Int J Mol
Sci. 18(159)2017.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Lee YC, Chan YH, Hsieh SC, Lew WZ and Feng
SW: Comparing the osteogenic potentials and bone regeneration
capacities of bone marrow and dental pulp mesenchymal stem cells in
a rabbit calvarial bone defect model. Int J Mol Sci.
20(5015)2019.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Zhang J, Zhang W, Dai J, Wang X and Shen
SG: Overexpression of Dlx2 enhances osteogenic differentiation of
BMSCs and MC3T3-E1 cells via direct upregulation of Osteocalcin and
Alp. Int J Oral Sci. 11(12)2019.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Fratzl-Zelman N, Glantschnig H, Rumpler M,
Nader A, Ellinger A and Varga F: The expression of matrix
metalloproteinase-13 and osteocalcin in mouse osteoblasts is
related to osteoblastic differentiation and is modulated by
1,25-dihydroxyvitamin D3 and thyroid hormones. Cell Biol Int.
27:459–468. 2003.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Roach HI: Why does bone matrix contain
non-collagenous proteins? The possible roles of osteocalcin,
osteonectin, osteopontin and bone sialoprotein in bone
mineralisation and resorption. Cell Biol Int. 18:617–628.
1994.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Chung JE, Park JH, Yun JW, Kang YH, Park
BW, Hwang SC, Cho YC, Sung IY, Woo DK and Byun JH: Cultured human
periosteum-derived cells can differentiate into osteoblasts in a
perioxisome proliferator-activated receptor gamma-mediated fashion
via bone morphogenetic protein signaling. Int J Med Sci.
13:806–818. 2016.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Yu PB, Hong CC, Sachidanandan C, Babitt
JL, Deng DY, Hoyng SA, Lin HY, Bloch KD and Peterson RT:
Dorsomorphin inhibits BMP signals required for embryogenesis and
iron metabolism. Nat Chem Biol. 4:33–41. 2008.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Ingersoll MA, Spanbroek R, Lottaz C,
Gautier EL, Frankenberger M, Hoffmann R, Lang R, Haniffa M, Collin
M, Tacke F, et al: Comparison of gene expression profiles between
human and mouse monocyte subsets. Blood. 115:e10–e19.
2010.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Uder C, Brückner S, Winkler S, Tautenhahn
HM and Christ B: Mammalian MSC from selected species: Features and
applications. Cytometry A. 93:32–49. 2018.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Couchourel D, Aubry I, Delalandre A,
Lavigne M, Martel-Pelletier J, Pelletier JP and Lajeunesse D:
Altered mineralization of human osteoarthritic osteoblasts is
attributable to abnormal type I collagen production. Arthritis
Rheum. 60:1438–1450. 2009.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Glaser DL and Kaplan FS: Osteoporosis.
Definition and clinical presentation. Spine (Phila Pa 1976). 22
(Suppl 24):12S–16S. 1997.PubMed/NCBI View Article : Google Scholar
|