|
1
|
Lieberman JA and First MB: Psychotic
disorders. N Engl J Med. 379:270–280. 2018.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Zwicker A, Denovan-Wright EM and Uher R:
Gene-environment interplay in the etiology of psychosis. Psychol
Med. 48:1925–1936. 2018.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Tsuang MT, Bar JL, Stone WS and Faraone
SV: Gene-environment interactions in mental disorders. World
Psychiatry. 3:73–83. 2004.PubMed/NCBI
|
|
4
|
Bell V, Wilkinson S, Greco M, Hendrie C,
Mills B and Deeley Q: What is the functional/organic distinction
actually doing in psychiatry and neurology? Wellcome Open Res.
5(138)2020.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Strimbu K and Tavel JA: What are
biomarkers? Curr Opin HIV AIDS. 5:463–466. 2010.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Domenici E, Willé DR, Tozzi F, Prokopenko
I, Miller S, McKeown A, Brittain C, Rujescu D, Giegling I, Turck
CW, et al: Plasma protein biomarkers for depression and
schizophrenia by multi analyte profiling of case-control
collections. PLoS One. 5(e9166)2010.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Rabinca AA, Buleandra M, Tache F,
Mihailciuc C, Ciobanu AM, Stefanescu DC and Ciucu AA: Voltammetric
method for simultaneous determination of L-Dopa and Benserazide.
Curr Anal Chem. 13:218–224. 2017.
|
|
8
|
Patrascu DG, David V, Balan I, Ciobanu AM,
David IG, Lazar P, Ciurea I, Stamatin I and Ciucu AA: Selective DPV
method of dopamine determination in biological samples containing
ascorbic acid. Anal Lett. 43:1100–1110. 2010.
|
|
9
|
Purves-Tyson TD, Robinson K, Brown AM,
Boerrigter D, Cai HQ, Weissleder C, Owens SJ, Rothmond DA and
Shannon Weickert C: Increased macrophages and C1qA, C3, C4
transcripts in the midbrain of people with schizophrenia. Front
Immunol. 11(2002)2020.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Birnbaum R and Weinberger DR: A genetics
perspective on the role of the (Neuro)Immune system in
schizophrenia. Schizophr Res. 217:105–113. 2020.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Herron JW, Nerurkar L and Cavanagh J:
Neuroimmune biomarkers in mental Illness. Curr Top Behav Neurosci.
40:45–78. 2018.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Fillman SG, Cloonan N, Catts VS, Miller
LC, Wong J, McCrossin T, Cairns M and Weickert CS: Increased
inflammatory markers identified in the dorsolateral prefrontal
cortex of individuals with schizophrenia. Mol Psychiatry.
18:206–214. 2013.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Doorduin J, de Vries EF, Willemsen AT, de
Groot JC, Dierckx RA and Klein HC: Neuroinflammation in
schizophrenia-related psychosis: A PET study. J Nucl Med.
50:1801–1807. 2009.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Kurumaji A, Wakai T and Toru M: Decreases
in peripheral-type benzodiazepine receptors in postmortem brains of
chronic schizophrenics. J Neural Transm. 104:1361–1370.
1997.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Bergink V, Gibney SM and Drexhage HA:
Autoimmunity, inflammation, and psychosis: A search for peripheral
markers. Biol Psychiatry. 75:324–331. 2014.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Maino K, Gruber R, Riedel M, Seitz N,
Schwarz M and Müller N: T- and B-lymphocytes in patients with
schizophrenia in acute psychotic episode and the course of the
treatment. Psychiatry Res. 152:173–180. 2007.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Modabbernia A, Taslimi S, Brietzke E and
Ashrafi M: Cytokine alterations in bipolar disorder: A
meta-analysis of 30 studies. Biol Psychiatry. 74:15–25.
2013.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Goldstein BI, Kemp DE, Soczynska JK and
McIntyre RS: Inflammation and the phenomenology, pathophysiology,
comorbidity, and treatment of bipolar disorder: A systematic review
of the literature. J Clin Psychiatry. 70:1078–1090. 2009.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Hope S, Dieset I, Agartz I, Steen NE,
Ueland T, Melle I, Aukrust P and Andreassen OA: Affective symptoms
are associated with markers of inflammation and immune activation
in bipolar disorders but not in schizophrenia. J Psychiatr Res.
45:1608–1616. 2011.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Miller BJ, Buckley P, Seabolt W, Mellor A
and Kirkpatrick B: Meta-analysis of cytokine alterations in
schizophrenia: Clinical status and antipsychotic effects. Biol
Psychiatry. 70:663–671. 2011.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Craddock RM, Lockstone HE, Rider DA,
Wayland MT, Harris LJ, McKenna PJ and Bahn S: Altered T-cell
function in schizophrenia: A cellular model to investigate
molecular disease mechanisms. PLoS One. 2(e692)2007.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Dean B, Kulkarni J, Copolov DL,
Shrikanthan P, Malone V and Hill C: Dopamine uptake by platelets
from subjects with schizophrenia: A correlation with the delusional
state of the patient. Psychiatry Res. 41:17–24. 1992.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Wilkins MR, Sanchez JC, Gooley AA, Appel
RD, Humphery-Smith I, Hochstrasser DF and Williams KL: Progress
with proteome projects: Why all proteins expressed by a genome
should be identified and how to do it. Biotechnol Genet Eng Rev.
13:19–50. 1996.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Martins-de-Souza D, Guest PC, Rahmoune H
and Bahn S: Proteomic approaches to unravel the complexity of
schizophrenia. Expert Rev Proteomics. 9:97–108. 2012.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Huang JT, Leweke FM, Oxley D, Wang L,
Harris N, Koethe D, Gerth CW, Nolden BM, Gross S, Schreiber D, et
al: Disease biomarkers in cerebrospinal fluid of patients with
first-onset psychosis. PLoS Med. 3(e428)2006.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Shao X, Yan C, Sun D, Fu C, Tian C, Duan L
and Zhu G: Association between glutathione peroxidase-1 (Gpx-1)
polymorphisms and schizophrenia in the Chinese han population.
Neuropsychiatr Dis Treat. 16:2297–2305. 2020.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Tran TV, Dang DK, Tran HQ, Shin EJ, Jang
CG, Yamada K, Nabeshima T and Kim HC: PM377. Role of glutathione
peroxidase-1 gene in the phencyclidine-induced schizophrenia-like
psychosis in mice. Int J Neuropsychopharmacol. 19(38)2016.
|
|
28
|
van Kammen DP, Peters J, Yao J, Neylan T,
Beuger M, Pontius E and O'Connor DT: CSF chromogranin A-like
immunoreactivity in schizophrenia. Assessment of clinical and
biochemical relationships. Schizophr Res. 6:31–39. 1991.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Takahashi N, Ishihara R, Saito S, Maemo N,
Aoyama N, Ji X, Miura H, Ikeda M, Iwata N, Suzuki T, et al:
Association between chromogranin A gene polymorphism and
schizophrenia in the Japanese population. Schizophr Res.
83:179–183. 2006.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Lee SA and Huang KC: Epigenetic profiling
of human brain differential DNA methylation networks in
schizophrenia. BMC Med Genomics. 9(68)2016.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Anderson SA, Volk DW and Lewis DA:
Increased density of microtubule associated protein
2-immunoreactive neurons in the prefrontal white matter of
schizophrenic subjects. Schizophr Res. 19:111–119. 1996.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Law AJ, Weickert CS, Hyde TM, Kleinman JE
and Harrison PJ: Reduced spinophilin but not microtubule-associated
protein 2 expression in the hippocampal formation in schizophrenia
and mood disorders: Molecular evidence for a pathology of dendritic
spines. Am J Psychiatry. 161:1848–1855. 2004.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Farkas N, Lendeckel U, Dobrowolny H, Funke
S, Steiner J, Keilhoff G, Schmitt A, Bogerts B and Bernstein HG:
Reduced density of ADAM 12-immunoreactive oligodendrocytes in the
anterior cingulate white matter of patients with schizophrenia.
World J Biol Psychiatry. 11:556–566. 2010.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Pongrac JL, Middleton FA, Peng L, Lewis
DA, Levitt P and Mirnics K: Heat shock protein 12A shows reduced
expression in the prefrontal cortex of subjects with schizophrenia.
Biol Psychiatry. 56:943–950. 2004.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Buxbaum JD, Georgieva L, Young JJ, Plescia
C, Kajiwara Y, Jiang Y, Moskvina V, Norton N, Peirce T, Williams H,
et al: Molecular dissection of NRG1-ERBB4 signaling implicates
PTPRZ1 as a potential schizophrenia susceptibility gene. Mol
Psychiatry. 13:162–172. 2008.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Huang JT, Wang L, Prabakaran S, Wengenroth
M, Lockstone HE, Koethe D, Gerth CW, Gross S, Schreiber D, Lilley
K, et al: Independent protein-profiling studies show a decrease in
apolipoprotein A1 levels in schizophrenia CSF, brain and peripheral
tissues. Mol Psychiatry. 13:1118–1128. 2008.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Boiko AS, Mednova IA, Kornetova EG, Semke
AV, Bokhan NA, Loonen AJM and Ivanova SA: Apolipoprotein serum
levels related to metabolic syndrome in patients with
schizophrenia. Heliyon. 5(e02033)2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Famitafreshi H and Karimian M:
Prostaglandins as the agents that modulate the course of brain
disorders. Degener Neurol Neuromuscul Dis. 10:1–13. 2020.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Condray R and Yao JK: Cognition, dopamine
and bioactive lipids in schizophrenia. Front Biosci (Schol Ed).
3:298–330. 2011.PubMed/NCBI View
Article : Google Scholar
|
|
40
|
Giusti L, Mantua V, Da Valle Y, Ciregia F,
Ventroni T, Orsolini G, Donadio E, Giannaccini G, Mauri M, Cassano
GB and Lucacchini A: Search for peripheral biomarkers in patients
affected by acutely psychotic bipolar disorder: A proteomic
approach. Mol Biosyst. 10:1246–1254. 2014.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Franceschini A, Szklarczyk D, Frankild S,
Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C
and Jensen LJ: STRING v9.1: Protein-protein interaction networks,
with increased coverage and integration. Nucleic Acids Res. 41
(Database Issue):D808–D815. 2013.PubMed/NCBI View Article : Google Scholar
|
|
42
|
de Witte L, Tomasik J, Schwarz E, Guest
PC, Rahmoune H, Kahn RS and Bahn S: Cytokine alterations in
first-episode schizophrenia patients before and after antipsychotic
treatment. Schizophr Res. 154:23–29. 2014.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Buttarelli FR, Fanciulli A, Pellicano C
and Pontieri FE: The dopaminergic system in peripheral blood
lymphocytes: From physiology to pharmacology and potential
applications to neuropsychiatric disorders. Curr Neuropharmacol.
9:278–288. 2011.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Perez-Costas E, Melendez-Ferro M, Rice MW,
Conley RR and Roberts RC: Dopamine pathology in schizophrenia:
Analysis of total and phosphorylated tyrosine hydroxylase in the
substantia nigra. Front Psychiatry. 3(31)2012.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Liu L, Jia F, Yuan G, Chen Z, Yao J, Li H
and Fang C: Tyrosine hydroxylase, interleukin-1beta and tumor
necrosis factor-alpha are overexpressed in peripheral blood
mononuclear cells from schizophrenia patients as determined by
semi-quantitative analysis. Psychiatry Res. 176:1–7.
2010.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Kessler A and Shinitzky M: Platelets from
schizophrenic patients bear autoimmune antibodies that inhibit
dopamine uptake. Psychobiology. 21:299–306. 1993.
|
|
47
|
Rabey JM, Lerner A, Sigal M, Graff E and
Oberman Z: [3H]dopamine uptake by platelet storage granules in
schizophrenia. Life Sci. 50:65–72. 1992.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Arrúe A, Dávila R, Zumárraga M,
Basterreche N, González-Torres MA, Goienetxea B, Zamalloa MI,
Anguiano JB and Guimón J: GABA and homovanillic acid in the plasma
of Schizophrenic and bipolar I patients. Neurochem Res. 35:247–253.
2010.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Luykx JJ, Bakker SC, Lentjes E, Neeleman
M, Strengman E, Mentink L, DeYoung J, de Jong S, Sul JH, Eskin E,
et al: Genome-wide association study of monoamine metabolite levels
in human cerebrospinal fluid. Mol Psychiatry. 19:228–234.
2014.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Baeza I, Castro-Fornieles J, Deulofeu R,
de la Serna E, Goti J, Salvà J and Bernardo M: Plasma homovanillic
acid differences in clinical subgroups of first episode
schizophrenic patients. Psychiatry Res. 168:110–118.
2009.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Sumiyoshi T, Kurachi M, Kurokawa K,
Yotsutsuji T, Uehara T, Itoh H and Saitoh O: Plasma homovanillic
acid in the prodromal phase of schizophrenia. Biol Psychiatry.
47:428–433. 2000.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Abdolmaleky HM, Cheng KH, Faraone SV,
Wilcox M, Glatt SJ, Gao F, Smith CL, Shafa R, Aeali B, Carnevale J,
et al: Hypomethylation of MB-COMT promoter is a major risk factor
for schizophrenia and bipolar disorder. Hum Mol Genet.
15:3132–3145. 2006.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Melas PA, Rogdaki M, Ösby U, Schalling M,
Lavebratt C and Ekström TJ: Epigenetic aberrations in leukocytes of
patients with schizophrenia: Association of global DNA methylation
with antipsychotic drug treatment and disease onset. FASEB J.
26:2712–2718. 2012.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Cao T, Li N and Cai H: Candidate metabolic
biomarkers for schizophrenia in CNS and periphery: Do any possible
associations exist? Schizophr Res. 226:95–110. 2020.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Abi-Dargham A, Gil R, Krystal J, Baldwin
RM, Seibyl JP, Bowers M, van Dyck CH, Charney DS, Innis RB and
Laruelle M: Increased striatal dopamine transmission in
schizophrenia: Confirmation in a second cohort. Am J Psychiatry.
155:761–767. 1998.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Winton-Brown TT, Fusar-Poli P, Ungless MA
and Howes OD: Dopaminergic basis of salience dysregulation in
psychosis. Trends Neurosci. 37:85–94. 2014.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Catak Z, Kocdemir E, Ugur K, Yardim M,
Sahin İ, Kaya H and Aydin S: A novel biomarker renalase and its
relationship with its substrates in schizophrenia. J Med Biochem.
38:299–305. 2019.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Nagaoka S, Iwamoto N and Arai H:
First-episode neuroleptic-free schizophrenics: Concentrations of
monoamines and their metabolites in plasma and their correlations
with clinical responses to haloperidol treatment. Biol Psychiatry.
41:857–864. 1997.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Abi-Dargham A: Alterations of serotonin
transmission in schizophrenia. Int Rev Neurobiol. 78:133–164.
2007.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Sagud M, Mihaljevic-Peles A, Pivac N,
Jakovljevic M and Muck-Seler D: Platelet serotonin and serum lipids
in psychotic mania. J Affect Disord. 97:247–251. 2007.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Altamura C, Guercetti G and Percudani M:
Dexamethasone suppression test in positive and negative
schizophrenia. Psychiatry Res. 30:69–75. 1989.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Tandon R, Mazzara C, DeQuardo J, Craig KA,
Meador-Woodruff JH, Goldman R and Greden JF: Dexamethasone
suppression test in schizophrenia: Relationship to symptomatology,
ventricular enlargement, and outcome. Biol Psychiatry. 29:953–964.
1991.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Hubbard DB and Miller BJ: Meta-analysis of
blood cortisol levels in individuals with first-episode psychosis.
Psychoneuroendocrinology. 104:269–275. 2019.PubMed/NCBI View Article : Google Scholar
|
|
64
|
van Rijn S, Aleman A, de Sonneville L,
Sprong M, Ziermans T, Schothorst P, van Engeland H and Swaab H:
Neuroendocrine markers of high risk for psychosis: Salivary
testosterone in adolescent boys with prodromal symptoms. Psychol
Med. 41:1815–1822. 2011.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Lodha P and Karia S: Testosterone and
Schizophrenia: A clinical review. Ann Indian Psychiatry. 3:92–96.
2019.
|
|
66
|
Shetti NP, Nayak DS, Reddy KR and
Aminabhvi TM: Graphene Clay-based hybrid nanostructures for
electrochemical sensors and biosensors. In: Graphene-Based
Electrochemical Sensors for Biomolecules. Pandikumar A and
Rameshkumar (eds.) Elsevier, New York, pp235-274, 2019.
|
|
67
|
Elugoke SE, Adekunle SA, Fayemi OE, Akpan
ED, Mamba BB, El-Sayed MS and Ebenso EE: Molecularly imprinted
polymers (MIPs) based electrochemical sensors for the determination
of catecholamine neurotransmitters-Review. Electrochem Sci Adv.
1(e2000026)2021.
|
|
68
|
Gao LL and Gao EQ: Metal-organic
frameworks for electrochemical sensors of neurotransmitters. Coord
Chem Rev. 434(213784)2021.
|
|
69
|
Liu X and Liu Y: Biosensors and sensors
for dopamine detection. VIEW. 2(20200102)2021.
|
|
70
|
Rusheen AE, Gee TA, Jang DP, Blaha CD,
Bennet KE, Lee KH, Heien ML and Oh Y: Evaluation of electrochemical
methods for tonic dopamine detection in vivo. Trends Analyt Chem.
132(116049)2020.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Butler D, Moore D, Glavin NR, Robinson JA
and Ebrahimi A: Facile Post-deposition annealing of graphene ink
enables ultrasensitive electrochemical detection of dopamine. ACS
Appl Mater Interfaces. 13:11185–11194. 2021.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Chang AY, Liu X, Pei Y, Gong C, Arumugam
PU and Wang S: Dopamine sensing with robust carbon nanotube
implanted polymer micropillar array electrodes fabricated by
coupling micromolding and infiltration coating processes.
Electrochim Acta. 368(137632)2021.
|
|
73
|
Brycht M, Baluchová S, Taylor A, Mortet V,
Sedláková S, Klimša L, Kopeček J and Schwarzová-Pecková K:
Comparison of electrochemical performance of various boron-doped
diamond electrodes: Dopamine sensing in biomimicking media used for
cell cultivation. Bioelectrochemistry. 137(107646)2021.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Arif N, Gul S, Sohail M, Rizwan S and
Iqbal M: Synthesis and characterization of layered Nb2C MXene/ZnS
nanocomposites for highly selective electrochemical sensing of
dopamine. Ceram Int. 47:2388–2396. 2021.
|
|
75
|
Dong Y, Liu J and Zheng J: A sensitive
dopamine electrochemical sensor based on hollow zeolitic
imidazolate framework. Colloids Surf A Physicochem Eng Asp.
608(125617)2021.
|
|
76
|
Amiri M, Javar HA and Mahmoudi-Moghaddam
H: Facile green synthesis of NiO/NiCo2O4 nanocomposite as an
efficient electrochemical platform for determination of dopamine.
Electroanalysis. 33:1205–1214. 2021.
|
|
77
|
Shafi PM, Joseph N, Karthik R, Shim JJ,
Bose AC and Ganesh V: Lemon juice-assisted synthesis of LaMnO3
perovskite nanoparticles for electrochemical detection of dopamine.
Microchem J. 164(105945)2021.
|
|
78
|
Morawski FM, Xavier BB, Virgili AH,
Caetano KDS, de Menezes EW, Benvenutti EV, Costa TMH and Arenas LT:
A novel electrochemical platform based on mesoporous silica/titania
and gold nanoparticles for simultaneous determination of
norepinephrine and dopamine. Mater Sci Eng C Mater Biol Appl.
120(111646)2021.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Liu L, Ge Y, Liu X, Ruan J, Cao J, Wei C,
Fang P, Zhou J, Ma J and Tong Z: One-pot ball-milling preparation
of cetylpyridinium chloride/azirconium phosphate composite for
simultaneous detection of ascorbic acid and dopamine. J Alloys
Compd. 860(157927)2021.
|
|
80
|
Kokulnathan T, Ahmed F, Chen SM, Chen TW,
Hasan PMZ, Bilgrami AL and Darwesh R: Rational confinement of
yttrium vanadate within Three-dimensional graphene aerogel:
Electrochemical analysis of monoamine neurotransmitter (Dopamine).
ACS Appl Mater Interfaces. 13:10987–10995. 2021.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Tian J and Wu W: A novel preparation of
water-dispersed graphene and their application to electrochemical
detection of dopamine. Adv Powder Technol. 32:619–629. 2021.
|
|
82
|
Anbumannan V, Kumar RTR and Suresh K:
Enhanced electrochemical detection of dopamine by graphene
oxide/tungsten trioxide nanocomposite. Mater Sci Semicond Process.
127(105696)2021.
|
|
83
|
Han G, Cai J, Liu C, Ren J and Wang X,
Yang J and Wang X: Highly sensitive electrochemical sensor based on
xylan-based Ag@CQDs-rGO nanocomposite for dopamine detection. Appl
Surf Sci. 541(148566)2021.
|
|
84
|
Li R, Liang H, Zhu M, Lai M, Wang S, Zhang
H, Ye H, Zhu R and Zhang W: Electrochemical dual signal sensing
platform for the simultaneous determination of dopamine, uric acid
and glucose based on copper and cerium bimetallic carbon
nanocomposites. Bioelectrochemistry. 139(107745)2021.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Guan Q, Guo H, Xue R, Wang M, Zhao X, Fan
T and Yang W, Xu M and Yang W: Electrochemical sensor based on
covalent organic frameworks-MWCNTNH2/AuNPs for simultaneous
detection of dopamine and uric acid. J Electroanal Chem.
880(114932)2021.
|
|
86
|
Abdi MM, Azli NFWM, Chaibakhsh N, Lim HN,
Tahir PM, Karimi G and Khorram M: Nonenzymatic dopamine biosensor
based on tannin nanocomposite. J Polym Sci. 59:428–438. 2021.
|
|
87
|
Aryal KP and Jeong HK: Simultaneous
determination of ascorbic acid, dopamine, and uric acid with
polyaniline/hemin/reduced graphite oxide composite. Chem Phys Lett.
768(138405)2021.
|
|
88
|
Da Silva LV, dos Santos ND, de Almeida
AKA, dos Santos DDER, Santos ACF, França MC, Lima DJP, Lima PR and
Goulart MOF: A new electrochemical sensor based on oxidized
capsaicin/multi-walled carbon nanotubes/glassy carbon electrode for
the quantification of dopamine, epinephrine, and xanthurenic,
ascorbic and uric acids. J Electroanal Chem. 881(114919)2021.
|
|
89
|
Paulraj P, Rajendran K, Sathamraja A and
Kannaiyan P: Solid phase mechanochemical synthesis of
Poly(o-anisidine) protected Silver nanoparticles for
electrochemical dopamine sensor. Mater Today Commun.
26(102191)2021.
|
|
90
|
Kannan A, Manojkumar S and Radhakrishnan
S: A Facile Fabrication of Poly-ethionine Film on Glassy Carbon
electrode for simultaneous and sensitive detection of dopamine and
paracetamol. Electroanalysis. 33:1175–1184. 2021.
|
|
91
|
Shukla RP, Aroosh M, Matzafi A and
Ben-Yoav H: Partially functional electrode modifications for rapid
detection of dopamine in urine. Adv Funct Mater.
31(2004146)2021.
|
|
92
|
Guan H, Liu B, Gong D, Peng B, Han B and
Zhang N: Direct electrochemical enhanced detection of dopamine
based on peroxidase-like activity of Fe3O4@Au
composite nanoparticles. Microchem J. 164(105943)2021.
|
|
93
|
Howes O, McCutcheon R and Stone J:
Glutamate and dopamine in schizophrenia: An update for the 21st
century. J Psychopharmacol. 29:97–115. 2015.PubMed/NCBI View Article : Google Scholar
|
|
94
|
McCutcheon RA, Abi-Dargham A and Howes OD:
Schizophrenia, dopamine and the striatum: From Biology to Symptoms.
Trends Neurosci. 42:205–220. 2019.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Kaczor AA, Targowska-Duda KM, Silva AG,
Kondej M, Biała G and Castro M:
N-(2-Hydroxyphenyl)-1-(3-(2-oxo-2,3-dihydro-1H-benzimidazol-1yl)propyl)piperidine-4-Carboxamide
(D2AAK4), a Multi-target ligand of aminergic GPCRs, as a potential
antipsychotic. Biomolecules. 10(349)2020.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Bloomfield MAP, McCutcheon RA, Kempton M,
Freeman TP and Howes O: The effects of psychosocial stress on
dopaminergic function and the acute stress response. Elife.
8(e46797)2019.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Jacobsen JPR, Medvedev IO and Caron MG:
The 5-HT deficiency theory of depression: Perspectives from a
naturalistic 5-HT deficiency model, the tryptophan hydroxylase
2Arg439His knockin mouse. Philos Trans R Soc Lond B Biol Sci.
367:2444–2459. 2012.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Ciobanu AM, Rosca T, Vladescu CT, Tihoan
C, Popa MC, Boer MC and Cergan R: Frontal epidural empyema (Pott's
puffy tumor) associated with Mycoplasma and depression. Rom J
Morphol Embryol. 55:1203–1207. 2014.PubMed/NCBI
|