|
1
|
Yim HJ, Lim HC, Hong JY, Shin SI, Chung
JH, Herr Y and Shin SY: Primary stability of implants with
peri-implant bone defects of various widths: An in vitro
investigation. J Periodontal Implant Sci. 49:39–46. 2019.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Moy PK, Medina D, Shetty V and Aghaloo TL:
Dental implant failure rates and associated risk factors. Int J
Oral Maxillofac Implants. 20:569–577. 2005.PubMed/NCBI
|
|
3
|
Urban IA, Montero E, Monje A and
Sanz-Sánchez I: Effectiveness of vertical ridge augmentation
interventions: A systematic review and meta-analysis. J Clin
Periodontol. 46 (Suppl 21):S319–S339. 2019.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Elnayef B, Monje A, Gargallo-Albiol J,
Galindo-Moreno P, Wang HL and Hernández-Alfaro F: Vertical ridge
augmentation in the atrophic mandible: A Systematic review and
meta-analysis. Int J Oral Maxillofac Implants. 32:291–312.
2017.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Wang HL and Boyapati L: ‘PASS’ principles
for predictable bone regeneration. Implant Dent. 15:8–17.
2006.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Artzi Z, Nemcovsky CE, Tal H, Weinberg E,
Weinreb M, Prasad H, Rohrer MD and Kozlovsky A: Simultaneous versus
two-stage implant placement and guided bone regeneration in the
canine: Histomorphometry at 8 and 16 months. J Clin Periodontol.
37:1029–1038. 2010.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Kon K, Shiota M, Ozeki M and Kasugai S:
The effect of graft bone particle size on bone augmentation in a
rabbit cranial vertical augmentation model: A microcomputed
tomography study. Int J Oral Maxillofac Implants. 29:402–406.
2014.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Kim JW, Jeong IH, Lee KI, Jung UW, Kim CS,
Choi SH, Cho KS and Yun JH: Volumetric bone regenerative efficacy
of biphasic calcium phosphate-collagen composite block loaded with
rhBMP-2 in vertical bone augmentation model of a rabbit calvarium.
J Biomed Mater Res A. 100:3304–3313. 2012.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Nkenke E and Neukam FW: Autogenous bone
harvesting and grafting in advanced jaw resorption: Morbidity,
resorption and implant survival. Eur J Oral Implantol. 7 (Suppl
2):S203–S217. 2014.PubMed/NCBI
|
|
10
|
Zigdon-Giladi H, Bick T, Morgan EF,
Lewinson D and Machtei EE: Peripheral blood-derived endothelial
progenitor cells enhance vertical bone formation. Clin Implant Dent
Relat Res. 17:83–92. 2015.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Rachmiel A, Shilo D, Aizenbud D and Emodi
O: Vertical alveolar distraction osteogenesis of the atrophic
posterior mandible before dental implant insertion. J Oral
Maxillofac Surg. 75:1164–1175. 2017.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Tamimi F, Torres J, Gbureck U,
Lopez-Cabarcos E, Bassett DC, Alkhraisat MH and Barralet JE:
Craniofacial vertical bone augmentation: A comparison between 3D
printed monolithic monetite blocks and autologous onlay grafts in
the rabbit. Biomaterials. 30:6318–6326. 2009.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Giesenhagen B, Martin N, Donkiewicz P,
Perić Kačarević Ž, Smeets R, Jung O, Schnettler R and Barbeck M:
Vertical bone augmentation in a single-tooth gap with an allogenic
bone ring: Clinical considerations. J Esthet Restor Dent.
30:480–483. 2018.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Giesenhagen B, Martin N, Jung O and
Barbeck M: Bone augmentation and simultaneous implant placement
with allogenic bone rings and analysis of its purification success.
Materials (Basel). 12(1291)2019.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Stevens MR, Emam HA, Alaily ME and Sharawy
M: Implant bone rings. One-stage three-dimensional bone transplant
technique: A case report. J Oral Implantol. 36:69–74.
2010.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Nakahara K, Haga-Tsujimura M, Sawada K,
Kobayashi E, Mottini M, Schaller B and Saulacic N: Single-staged
vs. two-staged implant placement using bone ring technique in
vertically deficient alveolar ridges-Part 1: Histomorphometric and
micro-CT analysis. Clin Oral Implants Res. 27:1384–1391.
2016.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Nakahara K, Haga-Tsujimura M, Sawada K,
Kobayashi E, Schaller B and Saulacic N: Single-staged vs.
two-staged implant placement in vertically deficient alveolar
ridges using bone ring technique-Part 2: Implant osseointegration.
Clin Oral Implants Res. 28:e31–e38. 2017.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Sakkas A, Wilde F, Heufelder M, Winter K
and Schramm A: Autogenous bone grafts in oral implantology-is it
still a ‘gold standard’? A consecutive review of 279 patients with
456 clinical procedures. Int J Implant Dent. 3(23)2017.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Yang Y, Cheng Y, Peng S, Xu L, He C, Qi F,
Zhao M and Shuai C: Microstructure evolution and texture tailoring
of reduced graphene oxide reinforced Zn scaffold. Bioact Mater.
6:1230–1241. 2021.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Zeeshan S, Corneliu S and Michael G: Bone
replacement materials and techniques used for achieving vertical
alveolar bone augmentation. Materials. 8:2953–2993. 2015.
|
|
21
|
Donos N, Dereka X and Mardas N:
Experimental models for guided bone regeneration in healthy and
medically compromised conditions. Periodontol. 68:99–121.
2015.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Li Y, Chen SK, Li L, Qin L, Wang XL and
Lai YX: Bone defect animal models for testing efficacy of bone
substitute biomaterials. J Orthop Translat. 3:95–104.
2015.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Newman E, Turner AS and Wark JD: The
potential of sheep for the study of osteopenia: Current status and
comparison with other animal models. Bone. 16 (Suppl 4):277S–284S.
1995.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Gomes PS and Fernandes MH: Rodent models
in bone-related research: The relevance of calvarial defects in the
assessment of bone regeneration strategies. Lab Anim. 45:14–24.
2011.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Schlegel KA, Lang FJ, Donath K, Kulow JT
and Wiltfang J: The monocortical critical size bone defect as an
alternative experimental model in testing bone substitute
materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod.
102:7–13. 2006.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Aerssens J, Boonen S, Lowet G and Dequeker
J: Interspecies differences in bone composition, density, and
quality: Potential implications for in vivo bone research.
Endocrinology. 139:663–670. 1998.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Hoornaert A, Maazouz Y, Pastorino D,
Aparicio C, de Pinieux G, Fellah BH, Ginebra MP and Layrolle P:
Vertical bone regeneration with synthetic biomimetic calcium
phosphate onto the calvaria of rats. Tissue Eng Part C Methods.
25:1–11. 2019.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Zhang P, Ding L and Kasugai S: Effect of
doxycycline doped bone substitute on vertical bone augmentation on
rat calvaria. Dent Mater J. 38:211–217. 2019.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Shino H, Hasuike A, Arai Y, Honda M,
Isokawa K and Sato S: Melatonin enhances vertical bone augmentation
in rat calvaria secluded spaces. Med Oral Patol Oral Cir Bucal.
21:e122–e126. 2016.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Zigdon H, Lewinson D, Bick T and Machtei
EE: Vertical bone augmentation using different osteoconductive
scaffolds combined with barrier domes in the rat calvarium. Clin
Implant Dent Relat Res. 16:138–144. 2014.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Zigdon-Giladi H, Lewinson D, Bick T and
Machtei EE: Mesenchymal stem cells combined with barrier domes
enhance vertical bone formation. J Clin Periodontol. 40:196–202.
2013.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Hao J, Chou J, Kuroda S, Otsuka M, Kasugai
S and Lang NP: Strontium hydroxyapatite in situ gel-forming
system-a new approach for minimally invasive bone augmentation.
Clin Oral Implants Res. 26:581–585. 2015.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Hao J, Chou J, Kuroda S, Otsuka M, Kasugai
S and Lang NP: Injectable simvastatin gel for minimally invasive
periosteal distraction: In vitro and in vivo studies in rat. Clin
Oral Implants Res. 29:227–234. 2018.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Berendsen AD and Olsen BR: Bone
development. Bone. 80:14–18. 2015.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Marger L, Barone A, Martinelli-Kläy CP,
Schaub L, Strasding M, Mekki M, Sailer I, Scherrer SS and Durual S:
Calvarial model of bone augmentation in rabbit for assessment of
bone growth and neovascularization in bone substitution materials.
J Vis Exp: Aug 13, 2019 doi: 10.3791/59976.
|
|
36
|
Verna C, Dalstra M, Wikesjö UM and
Trombelli L: Healing patterns in calvarial bone defects following
guided bone regeneration in rats. A micro-CT scan analysis. J Clin
Periodontol. 29:865–870. 2002.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Lundgren D, Lundgren AK, Sennerby L and
Nyman S: Augmentation of intramembraneous bone beyond the skeletal
envelope using an occlusive titanium barrier. An experimental study
in the rabbit. Clin Oral Implants Res. 6:67–72. 1995.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Bigham-Sadegh A and Oryan A: Selection of
animal models for pre-clinical strategies in evaluating the
fracture healing, bone graft substitutes and bone tissue
regeneration and engineering. Connect Tissue Res. 56:175–194.
2015.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Zakaria O, Madi M and Kasugai S: A novel
osteogenesis technique: The expansible guided bone regeneration. J
Tissue Eng. 3(2041731412441194)2012.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Kim JM, Kim JH, Lee BH and Choi SH:
Vertical bone augmentation using three-dimensionally printed cap in
the rat calvarial partial defect. In Vivo. 32:1111–1117.
2018.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Lee SH, Lim P and Yoon HJ: The influence
of cortical perforation on guided bone regeneration using synthetic
bone substitutes: A study of rabbit cranial defects. Int J Oral
Maxillofac Implants. 29:464–471. 2014.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Majzoub Z, Berengo M, Giardino R, Aldini
NN and Cordioli G: Role of intramarrow penetration in osseous
repair: A pilot study in the rabbit calvaria. J Periodontol.
70:1501–1510. 1999.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Kinard LA, Dahlin RL, Henslee AM, Spicer
PP, Chu CY, Tabata Y, van den Beucken JJ, Jansen JA, Young S, Wong
ME, et al: Tissue response to composite hydrogels for vertical bone
augmentation in the rat. J Biomed Mater Res A. 102:2079–2088.
2014.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Gilsanz V, Roe TF, Gibbens DT, Schulz EE,
Carlson ME, Gonzalez O and Boechat MI: Effect of sex steroids on
peak bone density of growing rabbits. Am J Physiol. 255:e416–e421.
1988.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Castañeda S, Largo R, Calvo E,
Rodríguez-Salvanés F, Marcos ME, Díaz-Curiel M and Herrero-Beaumont
G: Bone mineral measurements of subchondral and trabecular bone in
healthy and osteoporotic rabbits. Skeletal Radiol. 35:34–41.
2006.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Campillo VE, Langonnet S, Pierrefeu A and
Chaux-Bodard AG: Anatomic and histological study of the rabbit
mandible as an experimental model for wound healing and surgical
therapies. Lab Anim. 48:273–277. 2014.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Namli H, Erdogan Ö, Gönlüşen G, Kahraman
OE, Aydin HM, Karabag S and Tatli U: Vertical bone augmentation
using bone marrow-derived stem cells: An in vivo study in the
rabbit calvaria. Implant Dent. 25:54–62. 2016.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Polo CI, Sendyk WR, Correa L, Sendyk D,
Deboni MCZ and Naclério-Homem MDG: Synergism between recombinant
human bone morphogenetic protein 2/absorbable collagen sponge and
bone substitutes favors vertical bone augmentation and the
resorption rate of the biomaterials: Histomorphometric and 3D
microcomputed tomography analysis. J Periodontol. 91:1295–1306.
2020.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Sudheesh Kumar PT, Hashimi S, Saifzadeh S,
Ivanovski S and Vaquette C: Additively manufactured biphasic
construct loaded with BMP-2 for vertical bone regeneration: A pilot
study in rabbit. Mater Sci Eng C Mater Biol Appl. 92:554–564.
2018.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Lee JS, Lee JS, Kang MH, Jung UW, Choi SH
and Cho KS: Proof-of-concept study of vertical augmentation using
block-type allogenic bone grafts: A preclinical experimental study
on rabbit calvaria. J Biomed Mater Res B Appl Biomater.
106:2700–2707. 2018.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Sheikh Z, Drager J, Zhang YL, Abdallah MN,
Tamimi F and Barralet J: Controlling bone graft substitute
microstructure to improve bone augmentation. Adv Healthc Mater.
5:1646–1655. 2016.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Sheikh Z, Chen G, Thévenin M, Young RN,
Grynpas MD and Glogauer M: A novel anabolic conjugate (C3) in the
matrix of dicalcium phosphate onlay block grafts for achieving
vertical bone augmentation: An experimental study on rabbit
calvaria. Int J Oral Maxillofac Implants. 34:e51–e63.
2019.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Tamimi F, Torres J, Al-Abedalla K,
Lopez-Cabarcos E, Alkhraisat MH, Bassett DC, Gbureck U and Barralet
JE: Osseointegration of dental implants in 3D-printed synthetic
onlay grafts customized according to bone metabolic activity in
recipient site. Biomaterials. 35:5436–5445. 2014.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Draenert FG, Kammerer PW, Palarie V and
Wagner W: Vertical bone augmentation with simultaneous dental
implantation using crestal biomaterial rings: A rabbit animal
study. Clin Implant Dent Relat Res. 14 (Suppl 1):e169–e174.
2012.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Kim YJ, de Molon RS, Horiguti FR, Contador
GP, Coelho MA, Mascarenhas VI, de Souza Faloni AP, Cirelli JA and
Sendyk WR: Vertical bone augmentation using deproteinized bovine
bone mineral, absorbable collagen sponge, and recombinant human
bone morphogenetic protein-2: An in vivo study in rabbits. Int J
Oral Maxillofac Implants. 33:512–522. 2018.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Veis A, Dabarakis N, Koutrogiannis C,
Barlas I, Petsa E and Romanos G: Evaluation of vertical bone
regeneration using block and particulate forms of Bio-oss bone
graft: A histologic study in the rabbit mandible. J Oral Implantol.
41:e66–e72. 2015.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Pripatnanont P, Balabid F, Pongpanich S
and Vongvatcharanon S: Effect of osteogenic periosteal distraction
by a modified Hyrax device with and without platelet-rich fibrin on
bone formation in a rabbit model: A pilot study. Int J Oral
Maxillofac Surg. 44:656–663. 2015.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Thoma DS, Kruse A, Ghayor C, Jung RE and
Weber FE: Bone augmentation using a synthetic hydroxyapatite/silica
oxide-based and a xenogenic hydroxyapatite-based bone substitute
materials with and without recombinant human bone morphogenetic
protein-2. Clin Oral Implants Res. 26:592–598. 2015.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Lai CH, Zhou L, Wang ZL, Lu HB and Gao Y:
Use of a collagen membrane loaded with recombinant human bone
morphogenetic protein-2 with collagen-binding domain for vertical
guided bone regeneration. J Periodontol. 84:950–957.
2013.PubMed/NCBI View Article : Google Scholar
|
|
60
|
de Molon RS, Sakakura CE, Faeda RS,
Sartori R, Palhares D, Margonar R and Marcantonio E Jr: Effect of
the long-term administration of Cyclosporine A on bone healing
around osseointegrated titanium implants: A histomorphometric study
in the rabbit tibia. Microsc Res Tech. 80:1000–1008.
2017.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Cohen DJ, Cheng A, Kahn A, Aviram M,
Whitehead AJ, Hyzy SL, Clohessy RM, Boyan BD and Schwartz Z: Novel
osteogenic Ti-6Al-4V device for restoration of dental function in
patients with large bone deficiencies: Design, development and
implementation. Sci Rep. 6(20493)2016.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Wancket LM: Animal models for evaluation
of bone implants and devices: Comparative bone structure and common
model uses. Vet Pathol. 52:842–850. 2015.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Reitan K and Kvam E: Comparative behavior
of human and animal tissue during experimental tooth movement.
Angle Orthod. 41:1–14. 1971.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Kimmel DB and Jee WS: A quantitative
histologic study of bone turnover in young adult beagles. Anat Rec.
203:31–45. 1982.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Carrel JP, Wiskott A, Scherrer S and
Durual S: Large bone vertical augmentation using a
three-dimensional printed TCP/HA bone graft: A pilot study in dog
mandible. Clin Implant Dent Relat Res. 18:1183–1192.
2016.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Teng F, Wei L, Yu D, Deng L, Zheng Y, Lin
H and Liu Y: Vertical bone augmentation with simultaneous
implantation using deproteinized bovine bone block functionalized
with a slow delivery of BMP-2. Clin Oral Implants Res. 31:215–228.
2020.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Schwarz F, Mihatovic I, Popal-Jensen I,
Parvini P and Sader R: Influence of autoclavation on the efficacy
of extracted tooth roots used for vertical alveolar ridge
augmentation. J Clin Periodontol. 46:502–509. 2019.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Parvini P, Schwarz F, Hüfner MK, Rauch N,
Nienkemper M and Becker K: Microstructural volumetric analysis of
vertical alveolar ridge augmentation using autogenous tooth roots.
Clin Implant Dent Relat Res. 22:647–653. 2020.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Parvini P, Schliephake C, Al-Maawi S,
Schwarz K, Sader R, Ghanaati S and Schwarz F: Histomorphometrical
assessment of vertical alveolar ridge augmentation using extracted
tooth roots in the canine. Clin Oral Investig. 24:317–323.
2020.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Hsu YT, Al-Hezaimi K, Galindo-Moreno P,
O'Valle F, Al-Rasheed A and Wang HL: Effects of recombinant human
bone morphogenetic protein-2 on vertical bone augmentation in a
canine model. J Periodontol. 88:896–905. 2017.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Xuan F, Lee CU, Son JS, Fang Y, Jeong SM
and Choi BH: Vertical ridge augmentation using xenogenous bone
blocks: A comparison between the flap and tunneling procedures. J
Oral Maxillofac Surg. 72:1660–1670. 2014.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Esposito M, Trullenque-Eriksson A, Vila
CN, Peñarrocha M, García A, Sánchez A, Muñoz-Guzón F and Martínez
Martín JM: Vertical osseodistraction with a new intraosseous
alveolar distractor prototype for dental implant rehabilitation: A
pilot study in dogs. Int J Oral Maxillofac Implants. 32:838–848.
2017.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Terbish M, Yoo SH, Kim HJ, Yu HS, Hwang
CJ, Baik HS and Cha JY: Accelerated bone formation in distracted
alveolar bone after injection of recombinant human bone
morphogenetic protein-2. J Periodontol. 86:1078–1086.
2015.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Kaner D, Zhao H, Terheyden H and Friedmann
A: Improvement of microcirculation and wound healing in vertical
ridge augmentation after pre-treatment with self-inflating soft
tissue expanders-a randomized study in dogs. Clin Oral Implants
Res. 26:720–724. 2015.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Kaner D, Zhao H, Arnold W, Terheyden H and
Friedmann A: Pre-augmentation soft tissue expansion improves
scaffold-based vertical bone regeneration-a randomized study in
dogs. Clin Oral Implants Res. 28:640–647. 2017.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Sawada K, Nakahara K, Haga-Tsujimura M,
Iizuka T, Fujioka-Kobayashi M, Igarashi K and Saulacic N:
Comparison of three block bone substitutes for bone regeneration:
Long-term observation in the beagle dog. Odontology. 106:398–407.
2018.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Bianchini MA, Pontual MA, Bez L, Benfatti
CA, Boabaid F, Somerman MJ and Magini RS: The use of bovine screws
to promote bone formation using a tibia model in dogs. Oral Surg
Oral Med Oral Pathol Oral Radiol. 116:e215–e220. 2013.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Pearce AI, Richards RG, Milz S, Schneider
E and Pearce SG: Animal models for implant biomaterial research in
bone: A review. Eur Cell Mater. 13:1–10. 2007.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Khojasteh A, Behnia H, Hosseini FS,
Dehghan MM, Abbasnia P and Abbas FM: The effect of PCL-TCP scaffold
loaded with mesenchymal stem cells on vertical bone augmentation in
dog mandible: A preliminary report. J Biomed Mater Res B Appl
Biomater. 101:848–854. 2013.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Mosekilde L, Weisbrode SE, Safron JA,
Stills HF, Jankowsky ML, Ebert DC, Danielsen CC, Sogaard CH, Franks
AF, Stevens ML, et al: Calcium-restricted ovariectomized Sinclair
S-1 minipigs: An animal model of osteopenia and trabecular plate
perforation. Bone. 14:379–382. 1993.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Harper RA, Pfeiffer FM and Choma TJ: The
minipig as a potential model for pedicle screw fixation:
Morphometry and mechanics. J Orthop Surg Res.
14(246)2019.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Bonucci E and Ballanti P:
Osteoporosis-bone remodeling and animal models. Toxicol Pathol.
42:957–969. 2014.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Moest T, Koehler F, Prechtl C, Schmitt C,
Watzek G and Schlegel KA: Bone formation in peri-implant defects
grafted with microparticles: A pilot animal experimental study. J
Clin Periodontol. 41:990–998. 2014.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Reichert JC, Saifzadeh S, Wullschleger ME,
Epari DR, Schütz MA, Duda GN, Schell H, van Griensven M, Redl H and
Hutmacher DW: The challenge of establishing preclinical models for
segmental bone defect research. Biomaterials. 30:2149–2163.
2009.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Schorn L, Sproll C, Ommerborn M, Naujoks
C, Kübler NR and Depprich R: Vertical bone regeneration using
rhBMP-2 and VEGF. Head Face Med. 13(11)2017.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Moest T, Frabschka J, Kesting MR, Schmitt
CM, Frohwitter G, Lutz R and Schlegel KA: Osseous ingrowth in
allogeneic bone blocks applied for vertical bone augmentation: A
preclinical randomised controlled study. Clin Oral Investig.
24:2867–2879. 2020.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Freilich M, Wen B, Shafer D, Schleier P,
Dard M, Pendrys D, Ortiz D and Kuhn L: Implant-guided vertical bone
growth in the mini-pig. Clin Oral Implants Res. 23:751–757.
2012.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Wen B, Shafer D, Schleier P, Pendrys D,
Kuhn L and Freilich M: Implant-guided supracrestal alveolar bone
growth using scaffolds, BMP-2, and novel scaffold-retaining device.
Clin Oral Implants Res. 28:1411–1420. 2017.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Jinno Y, Jimbo R, Lindström M, Sawase T,
Lilin T and Becktor JP: Vertical bone augmentation using ring
technique with three different materials in the sheep mandible
bone. Int J Oral Maxillofac Implants. 33:1057–1063. 2018.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Moussa M, Carrel JP, Scherrer S,
Cattani-Lorente M, Wiskott A and Durual S: Medium-term function of
a 3D printed TCP/HA structure as a new osteoconductive scaffold for
vertical bone augmentation: A simulation by BMP-2 activation.
Materials. 8:2174–2190. 2015.
|
|
91
|
Eitel F, Klapp F, Jacobson W and
Schweiberer L: Bone regeneration in animals and in man. A
contribution to understanding the relative value of animal
experiments to human pathophysiology. Arch Orthop Trauma Surg.
99:59–64. 1981.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Carrel JP, Wiskott A, Moussa M, Rieder P,
Scherrer S and Durual S: A 3D printed TCP/HA structure as a new
osteoconductive scaffold for vertical bone augmentation. Clin Oral
Implants Res. 27:55–62. 2016.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Benlidayi ME, Tatli U, Salimov F, Tükel HC
and Yüksel O: Comparison of autogenous and allograft bone rings in
surgically created vertical bone defects around implants in a sheep
model. Clin Oral Implants Res. 29:1155–1162. 2018.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Çolpak HA, Gönen ZB, Özdamar S, Alkan A
and Kütük N: Vertical ridge augmentation using guided bone
regeneration procedure and dental pulp derived mesenchymal stem
cells with simultaneous dental implant placement: A histologic
study in a sheep model. J Stomatol Oral Maxillofac Surg.
120:216–223. 2019.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Hurtig MB, Buschmann MD, Fortier LA,
Hoemann CD, Hunziker EB, Jurvelin JS, Mainil-Varlet P, McIlwraith
CW, Sah RL and Whiteside RA: Preclinical studies for cartilage
repair: Recommendations from the international cartilage repair
society. Cartilage. 2:137–152. 2011.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Hoemann C, Kandel R, Roberts S, Saris DB,
Creemers L, Mainil-Varlet P, Méthot S, Hollander AP and Buschmann
MD: International cartilage repair society (ICRS) recommended
guidelines for histological endpoints for cartilage repair studies
in animal models and clinical trials. Cartilage. 2:153–172.
2011.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Polo CI, Lima JL, De Lucca L, Piacezzi CB,
Naclério-Homem Mda G, Arana-Chavez VE and Sendyk WR: Effect of
recombinant human bone morphogenetic protein 2 associated with a
variety of bone substitutes on vertical guided bone regeneration in
rabbit calvarium. J Periodontol. 84:360–370. 2013.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Greenstein G, Greenstein B, Cavallaro J
and Tarnow D: The role of bone decortication in enhancing the
results of guided bone regeneration: A literature review. J
Periodontol. 80:175–189. 2009.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Kim DH, Cha JK, Song YW, Woo KM and Jung
UW: Bone augmentation using small molecules with biodegradable
calcium sulfate particles in a vertical onlay graft model in the
rabbit calvarium. J Biomed Mater Res B Appl Biomater.
108:1343–1350. 2020.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Kim JW, Jung IH, Lee KI, Jung UW, Kim CS,
Choi SH, Cho KS and Yun JH: Volumetric bone regenerative efficacy
of biphasic calcium phosphate-collagen composite block loaded with
rhBMP-2 in vertical bone augmentation model of a rabbit calvarium.
J Biomed Mater Res A. 100:3304–3313. 2012.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Zere E, Einy S, Asbi T, Aizenbud Y,
Gutmacher Z, Katzhandler E and Aizenbud D: Orthodontic extraction
space closure with and without socket preservation: A comparative
case analysis. Quintessence Int. 50:306–314. 2019.PubMed/NCBI View Article : Google Scholar
|