You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Rits S, Olsen BR and Volloch V: Protein-encoding RNA to RNA information transfer in mammalian cells: RNA-dependent mRNA amplification. Identification of chimeric RNA intermediates and putative RNA end products. Ann Integr Mol Med. 1:23–47. 2019.PubMed/NCBI | |
|
Howie H, Rijal CM and Ressler KJ: A review of epigenetic contributions to post-traumatic stress disorder. Dialogues Clin Neurosci. 21:417–428. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Holt CE and Schuman EM: The central dogma decentralized: New perspectives on RNA function and local translation in neurons. Neuron. 80:648–657. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Maydanovych O and Beal PA: Breaking the central dogma by RNA editing. Chem Rev. 106:3397–3411. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Thakur P, Estevez M, Lobue PA, Limbach PA and Addepalli B: Improved RNA modification mapping of cellular non-coding RNAs using C- and U-specific RNases. Analyst. 145:816–827. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Shi H, Wei J and He C: Where, when, and how: Context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell. 74:640–650. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Roundtree IA, Evans ME, Pan T and He C: Dynamic RNA modifications in gene expression regulation. Cell. 169:1187–1200. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Liu J, Dou X, Chen C, Chen C, Liu C, Xu MM, Zhao S, Shen B, Gao Y, Han D and He C: N6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science. 367:580–586. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Zeng C, Huang W, Li Y and Weng H: Roles of METTL3 in cancer: Mechanisms and therapeutic targeting. J Hematol Oncol. 13(117)2020.PubMed/NCBI View Article : Google Scholar | |
|
Shinoda K, Suda A, Otonari K, Futaki S and Imanishi M: Programmable RNA methylation and demethylation using PUF RNA binding proteins. Chem Commun (Camb). 56:1365–1368. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Chen X, Chen X, Zhou Z, Mao Y, Wang Y, Ma Z, Xu W, Qin A and Zhang S: Nirogacestat suppresses RANKL-Induced osteoclast formation in vitro and attenuates LPS-Induced bone resorption in vivo. Exp Cell Res. 382(111470)2019.PubMed/NCBI View Article : Google Scholar | |
|
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 485:201–206. 2012.PubMed/NCBI View Article : Google Scholar | |
|
The RNA methyltransferase METTL3 promotes oncogene translation. Cancer Discov. 6(572)2016.PubMed/NCBI View Article : Google Scholar | |
|
Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, et al: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 10:93–95. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Chen Y, Peng C, Chen J, Chen D, Yang B, He B, Hu W, Zhang Y, Liu H, Dai L, et al: WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol Cancer. 18(127)2019.PubMed/NCBI View Article : Google Scholar | |
|
Li J, Zhu L, Shi Y, Liu J, Lin L and Chen X: m6A demethylase FTO promotes hepatocellular carcinoma tumorigenesis via mediating PKM2 demethylation. Am J Transl Res. 11:6084–6092. 2019.PubMed/NCBI | |
|
Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, et al: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 49:18–29. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Parker MT, Knop K, Sherwood AV, Schurch NJ, Mackinnon K, Gould PD, Hall AJ, Barton GJ and Simpson GG: Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m6A modification. eLife. 9(e49658)2020.PubMed/NCBI View Article : Google Scholar | |
|
Liao S, Sun H and Xu C: YTH Domain: A family of N6-methyladenosine (m6A) readers. Genomics Proteomics Bioinformatics. 16:99–107. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Zhao YL, Liu YH, Wu RF, Bi Z, Yao YX, Liu Q, Wang YZ and Wang XX: Understanding m6A function through uncovering the diversity roles of YTH domain-containing proteins. Mol Biotechnol. 61:355–364. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Li F, Kennedy S, Hajian T, Gibson E, Seitova A, Xu C, Arrowsmith CH and Vedadi M: A radioactivity-based assay for screening human m6A-RNA methyltransferase, METTL3-METTL14 complex, and demethylase ALKBH5. J Biomol Screen. 21:290–297. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Liu Y and Santi DV: m5C RNA and m5C DNA methyl transferases use different cysteine residues as catalysts. Proc Natl Acad Sci USA. 97:8263–8265. 2000.PubMed/NCBI View Article : Google Scholar | |
|
Roovers M, Wouters J, Bujnicki JM, Tricot C, Stalon V, Grosjean H and Droogmans L: A primordial RNA modification enzyme: The case of tRNA (m1A) methyltransferase. Nucleic Scids Res. 32:465–476. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Grabowski P: Physiology of bone. Endocr Dev. 16:32–48. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Scholtysek C, Kronke G and Schett G: Inflammation-associated changes in bone homeostasis. Inflamm Allergy Drug Targets. 11:188–195. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Suominen H: Muscle training for bone strength. Aging Clin Exp Res. 18:85–93. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Fu R, Lv WC, Xu Y, Gong MY, Chen XJ, Jiang N, Xu Y, Yao QQ, Di L, Lu T, et al: Endothelial ZEB1 promotes angiogenesis-dependent bone formation and reverses osteoporosis. Nat Commun. 11(460)2020.PubMed/NCBI View Article : Google Scholar | |
|
Landete-Castillejos T, Kierdorf H, Gomez S, Luna S, García AJ, Cappelli J, Pérez-Serrano M, Pérez-Barbería J, Gallego L and Kierdorf U: Antlers-Evolution, development, structure, composition, and biomechanics of an outstanding type of bone. Bone. 128(115046)2019.PubMed/NCBI View Article : Google Scholar | |
|
Hassan MQ, Tye CE, Stein GS and Lian JB: Non-coding RNAs: Epigenetic regulators of bone development and homeostasis. Bone. 81:746–756. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Bocheva G and Boyadjieva N: Epigenetic regulation of fetal bone development and placental transfer of nutrients: Progress for osteoporosis. Interdiscip Toxicol. 4:167–172. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Adamik J, Roodman GD and Galson DL: Epigenetic-based mechanisms of osteoblast suppression in multiple myeloma bone disease. JBMR Plus. 3(e10183)2019.PubMed/NCBI View Article : Google Scholar | |
|
Marini F, Cianferotti L and Brandi ML: Epigenetic mechanisms in bone biology and osteoporosis: Can they drive therapeutic choices? Int J Mol Sci. 17(1329)2016.PubMed/NCBI View Article : Google Scholar | |
|
Ghayor C and Weber FE: Epigenetic regulation of bone remodeling and its impacts in osteoporosis. Int J Mol Sci. 17(1446)2016.PubMed/NCBI View Article : Google Scholar | |
|
Montecino M, Stein G, Stein J, Zaidi K and Aguilar R: Multiple levels of epigenetic control for bone biology and pathology. Bone. 81:733–738. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Kobayashi M, Ohsugi M, Sasako T, Awazawa M, Umehara T, Iwane A, Kobayashi N, Okazaki Y, Kubota N, Suzuki R, et al: The RNA methyltransferase complex of WTAP, METTL3, and METTL14 regulates mitotic clonal expansion in adipogenesis. Mol Cell Biol. 38:e00116–18. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Zhou L, Yang C, Zhang N, Zhang X, Zhao T and Yu J: Silencing METTL3 inhibits the proliferation and invasion of osteosarcoma by regulating ATAD2. Biomed Pharmacother. 125(109964)2020.PubMed/NCBI View Article : Google Scholar | |
|
Bujnicki JM, Feder M, Radlinska M and Blumenthal RM: Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA:m(6)A methyltransferase. J Mol Evol. 55:431–444. 2002.PubMed/NCBI View Article : Google Scholar | |
|
Scholler E, Weichmann F, Treiber T, Ringle S, Treiber N, Flatley A, Feederle R, Bruckmann A and Meister G: Interactions, localization, and phosphorylation of the m6A generating METTL3-METTL14-WTAP complex. RNA. 24:499–512. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Wang P, Doxtader KA and Nam Y: Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell. 63:306–317. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Lence T, Paolantoni C, Worpenberg L and Roignant JY: Mechanistic insights into m6A RNA enzymes. Biochim Biophys Acta Gene Regul Mech. 1862:222–229. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Haussmann IU, Bodi Z, Sanchez-Moran E, Mongan NP, Archer N, Fray RG and Soller M: m6A potentiates Sxl alternative pre-mRNA splicing for robust drosophila sex determination. Nature. 540:301–304. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H and He C: N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 161:1388–1399. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, et al: N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 505:117–120. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Alarcon CR, Lee H, Goodarzi H, Halberg N and Tavazoie SF: N6-methyladenosine marks primary microRNAs for processing. Nature. 519:482–485. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z, Gong Z, Wang Q, Huang J, Tang C, et al: Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature. 534:575–578. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Meyer KD and Jaffrey SR: Rethinking m6A readers, writers, and erasers. Annu Rev Cell Dev Biol. 33:319–342. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M, Hershkovitz V, Peer E, Mor N, Manor YS, et al: Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science. 347:1002–1006. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Hongay CF and Orr-Weaver TL: Drosophila Inducer of MEiosis 4 (IME4) is required for Notch signaling during oogenesis. Proc Natl Acad Sci USA. 108:14855–14860. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Zhong S, Li H, Bodi Z, Button J, Vespa L, Herzog M and Fray RG: MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell. 20:1278–1288. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Clancy MJ, Shambaugh ME, Timpte CS and Bokar JA: Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: A potential mechanism for the activity of the IME4 gene. Nucleic Acids Res. 30:4509–4518. 2002.PubMed/NCBI View Article : Google Scholar | |
|
Han J, Wang JZ, Yang X, Yu H, Zhou R, Lu HC, Yuan WB, Lu JC, Zhou ZJ, Lu Q, et al: METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer. 18(110)2019.PubMed/NCBI View Article : Google Scholar | |
|
Choe J, Lin S, Zhang W, Liu Q, Wang L, Ramirez-Moya J, Du P, Kim W, Tang S, Sliz P, et al: mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature. 561:556–560. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Liu X, Liu L, Dong Z, Li J, Yu Y, Chen X, Ren F, Cui G and Sun R: Expression patterns and prognostic value of m6A-related genes in colorectal cancer. Am J Transl Res. 11:3972–3991. 2019.PubMed/NCBI | |
|
Visvanathan A, Patil V, Arora A, Hegde AS, Arivazhagan A, Santosh V and Somasundaram K: Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance. Oncogene. 37:522–533. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Wang H, Xu B and Shi J: N6-methyladenosine METTL3 promotes the breast cancer progression via targeting Bcl-2. Gene. 722(144076)2020.PubMed/NCBI View Article : Google Scholar | |
|
Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, Chou T, Chow A, Saletore Y, MacKay M, et al: The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 23:1369–1376. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Lin S, Liu J, Jiang W, Wang P, Sun C, Wang X, Chen Y and Wang H: METTL3 promotes the proliferation and mobility of gastric cancer cells. Open Med (Wars). 14:25–31. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Dahal U, Le K and Gupta M: RNA m6A methyltransferase METTL3 regulates invasiveness of melanoma cells by matrix metallopeptidase 2. Melanoma Res. 29:382–389. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Zheng W, Dong X, Zhao Y, Wang S, Jiang H, Zhang M, Zheng X and Gu M: Multiple functions and mechanisms underlying the role of METTL3 in Human Cancers. Front Oncol. 9(1403)2019.PubMed/NCBI View Article : Google Scholar | |
|
Wu L, Wu D, Ning J, Liu W and Zhang D: Changes of N6-methyladenosine modulators promote breast cancer progression. BMC Cancer. 19(326)2019.PubMed/NCBI View Article : Google Scholar | |
|
Li X, Tang J, Huang W, Wang F, Li P, Qin C, Qin Z, Zou Q, Wei J, Hua L, et al: The M6A methyltransferase METTL3: Acting as a tumor suppressor in renal cell carcinoma. Oncotarget. 8:96103–96116. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Wei W, Huo B and Shi X: miR-600 inhibits lung cancer via downregulating the expression of METTL3. Cancer Manag Res. 11:1177–1187. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Zhang C, Zhang M, Ge S, Huang W, Lin X, Gao J, Gong J and Shen L: Reduced m6A modification predicts malignant phenotypes and augmented Wnt/PI3K-Akt signaling in gastric cancer. Cancer Med. 8:4766–4781. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Iyer LM, Zhang D and Aravind L: Adenine methylation in eukaryotes: Apprehending the complex evolutionary history and functional potential of an epigenetic modification. Bioessays. 38:27–40. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Liu X, Qin J, Gao T, Li C, Chen X, Zeng K, Xu M, He B, Pan B, Xu X, et al: Analysis of METTL3 and METTL14 in hepatocellular carcinoma. Aging (Albany NY). 12:21638–21659. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Buker SM, Gurard-Levin ZA, Wheeler BD, Scholle MD, Case AW, Hirsch JL, Ribich S, Copeland RA and Boriack-Sjodin PA: A mass spectrometric assay of METTL3/METTL14 methyltransferase activity. SLAS Discov. 25:361–371. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Chen X, Xu M, Xu X, Zeng K, Liu X, Pan B, Li C, Sun L, Qin J, Xu T, et al: METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol Cancer. 19(106)2020.PubMed/NCBI View Article : Google Scholar | |
|
Gong PJ, Shao YC, Yang Y, Song WJ, He X, Zeng YF, Huang SR, Wei L and Zhang JW: Analysis of N6-methyladenosine methyltransferase reveals METTL14 and ZC3H13 as tumor suppressor genes in breast cancer. Front Oncol. 10(578963)2020.PubMed/NCBI View Article : Google Scholar | |
|
Gu C, Wang Z, Zhou N, Li G, Kou Y, Luo Y, Wang Y, Yang J and Tian F: Mettl14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N6-methyladenosine of Notch1. Mol Cancer. 18(168)2019.PubMed/NCBI View Article : Google Scholar | |
|
Weng H, Huang H, Wu H, Qin X, Zhao BS, Dong L, Shi H, Skibbe J, Shen C, Hu C, et al: METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification. Cell Stem Cell. 22:191–205 e9. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, et al: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24:177–189. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, Bushkin GG, Mertins P, Ter-Ovanesyan D, Habib N, Cacchiarelli D, et al: Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5' sites. Cell Rep. 8:284–296. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Sorci M, Ianniello Z, Cruciani S, Larivera S, Ginistrelli LC, Capuano E, Marchioni M, Fazi F and Fatica A: METTL3 regulates WTAP protein homeostasis. Cell Death Dis. 9(796)2018.PubMed/NCBI View Article : Google Scholar | |
|
Li H, Su Q, Li B, Lan L, Wang C, Li W, Wang G, Chen W, He Y and Zhang C: High expression of WTAP leads to poor prognosis of gastric cancer by influencing tumour-associated T lymphocyte infiltration. J Cell Mol Med. 24:4452–4465. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Bansal H, Yihua Q, Iyer SP, Ganapathy S, Proia DA, Penalva LO, Uren PJ, Suresh U, Carew JS, Karnad AB, et al: WTAP is a novel oncogenic protein in acute myeloid leukemia. Leukemia. 28:1171–1174. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Horiuchi K, Umetani M, Minami T, Okayama H, Takada S, Yamamoto M, Aburatani H, Reid PC, Housman DE, Hamakubo T and Kodama T: Wilms' tumor 1-associating protein regulates G2/M transition through stabilization of cyclin A2 mRNA. Proc Natl Acad Sci USA. 103:17278–17283. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Wen J, Lv R, Ma H, Shen H, He C, Wang J, Jiao F, Liu H, Yang P, Tan L, et al: Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol Cell. 69:1028–1038 e6. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Zhu D, Zhou J, Zhao J, Jiang G, Zhang X, Zhang Y and Dong M: ZC3H13 suppresses colorectal cancer proliferation and invasion via inactivating Ras-ERK signaling. J Cell Physiol. 234:8899–8907. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Chen J, Yu K, Zhong G and Shen W: Identification of a m6A RNA methylation regulators-based signature for predicting the prognosis of clear cell renal carcinoma. Cancer Cell Int. 20(157)2020.PubMed/NCBI View Article : Google Scholar | |
|
Liu T, Li C, Jin L, Li C and Wang L: The prognostic value of m6A RNA methylation regulators in colon adenocarcinoma. Med Sci Monit. 25:9435–9445. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG and He C: N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 7:885–887. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR and Qian SB: Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature. 526:591–594. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Dina C, Meyre D, Gallina S, Durand E, Körner A, Jacobson P, Carlsson LM, Kiess W, Vatin V, Lecoeur C, et al: Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 39:724–726. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW, et al: A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 316:889–894. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Niu Y, Lin Z, Wan A, Chen H, Liang H, Sun L, Wang Y, Li X, Xiong XF, Wei B, et al: RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Mol Cancer. 18(46)2019.PubMed/NCBI View Article : Google Scholar | |
|
Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, Huang H, Nachtergaele S, Dong L, Hu C, et al: FTO plays an oncogenic role in acute myeloid leukemia as a N6-Methyladenosine RNA demethylase. Cancer Cell. 31:127–141. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Yang S, Wei J, Cui YH, Park G, Shah P, Deng Y, Aplin AE, Lu Z, Hwang S, He C and He YY: m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat Commun. 10(2782)2019.PubMed/NCBI View Article : Google Scholar | |
|
Li J, Han Y, Zhang H, Qian Z, Jia W, Gao Y, Zheng H and Li B: The m6A demethylase FTO promotes the growth of lung cancer cells by regulating the m6A level of USP7 mRNA. Biochem Biophys Res Commun. 512:479–485. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Baltz AG, Munschauer M, Schwanhausser B, Vasile A, Murakawa Y, Schueler M, Youngs N, Penfold-Brown D, Drew K, Milek M, et al: The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell. 46:674–690. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Fedeles BI, Singh V, Delaney JC, Li D and Essigmann JM: The AlkB family of Fe(II)/α-Ketoglutarate-dependent dioxygenases: Repairing nucleic acid alkylation damage and beyond. J Biol Chem. 290:20734–20742. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Pilzys T, Marcinkowski M, Kukwa W, Garbicz D, Dylewska M, Ferenc K, Mieczkowski A, Kukwa A, Migacz E, Wołosz D, et al: ALKBH overexpression in head and neck cancer: Potential target for novel anticancer therapy. Sci Rep. 9(13249)2019.PubMed/NCBI View Article : Google Scholar | |
|
Guo X, Li K, Jiang W, Hu Y, Xiao W, Huang Y, Feng Y, Pan Q and Wan R: RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Mol Cancer. 19(91)2020.PubMed/NCBI View Article : Google Scholar | |
|
Shen C, Sheng Y, Zhu AC, Robinson S, Jiang X, Dong L, Chen H, Su R, Yin Z, Li W, et al: RNA demethylase ALKBH5 selectively promotes tumorigenesis and cancer stem cell self-renewal in acute myeloid leukemia. Cell Stem Cell. 27:64–80.e9. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, Chen Y, Sulman EP, Xie K, Bögler O, et al: m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma Stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 31:591–606.e6. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Zhu Z, Qian Q, Zhao X, Ma L and Chen P: N6-methyladenosine ALKBH5 promotes non-small cell lung cancer progress by regulating TIMP3 stability. Gene. 731(144348)2020.PubMed/NCBI View Article : Google Scholar | |
|
Zhang J, Guo S, Piao HY, Wang Y, Wu Y, Meng XY, Yang D, Zheng ZC and Zhao Y: ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1. J Physiol Biochem. 75:379–389. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Ueda Y, Ooshio I, Fusamae Y, Kitae K, Kawaguchi M, Jingushi K, Hase H, Harada K, Hirata K and Tsujikawa K: AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci Rep. 7(42271)2017.PubMed/NCBI View Article : Google Scholar | |
|
Mohan M, Akula D, Dhillon A, Goyal A and Anindya R: Human RAD51 paralogue RAD51C fosters repair of alkylated DNA by interacting with the ALKBH3 demethylase. Nucleic Acids Res. 47:11729–11745. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Chen Z, Qi M, Shen B, Luo G, Wu Y, Li J, Lu Z, Zheng Z, Dai Q and Wang H: Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. Nucleic Acids Res. 47:2533–2545. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Fu Y, Dominissini D, Rechavi G and He C: Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet. 15:293–306. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Yue Y, Liu J and He C: RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 29:1343–1355. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Zhu T, Roundtree IA, Wang P, Wang X, Wang L, Sun C, Tian Y, Li J, He C and Xu Y: Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine. Cell Res. 24:1493–1496. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Lee Y, Choe J, Park OH and Kim YK: Molecular mechanisms driving mRNA degradation by m6A modification. Trends Genet. 36:177–188. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Li M, Zhao X, Wang W, Shi H, Pan Q, Lu Z, Perez SP, Suganthan R, He C, Bjørås M and Klungland A: Ythdf2-mediated m6A mRNA clearance modulates neural development in mice. Genome Biol. 19(69)2018.PubMed/NCBI View Article : Google Scholar | |
|
Wang H, Zuo H, Liu J, Wen F, Gao Y, Zhu X, Liu B, Xiao F, Wang W, Huang G, et al: Loss of YTHDF2-mediated m6A-dependent mRNA clearance facilitates hematopoietic stem cell regeneration. Cell Res. 28:1035–1038. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Chen M, Wei L, Law CT, Tsang FH, Shen J, Cheng CL, Tsang LH, Ho DW, Chiu DK, Lee JM, et al: RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 67:2254–2270. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Huang T, Liu Z, Zheng Y, Feng T, Gao Q and Zeng W: YTHDF2 promotes spermagonial adhesion through modulating MMPs decay via m6A/mRNA pathway. Cell Death Dis. 11(37)2020.PubMed/NCBI View Article : Google Scholar | |
|
Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB and Jaffrey SR: 5'UTR m(6)A promotes cap-independent translation. Cell. 163:999–1010. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Hu L, Wang J, Huang H, Yu Y, Ding J, Yu Y, Li K, Wei D, Ye Q, Wang F, et al: YTHDF1 regulates pulmonary hypertension through translational control of MAGED1. Am J Respir Crit Care Med. 203:1158–1172. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Shi H, Zhang X, Weng YL, Lu Z, Liu Y, Lu Z, Li J, Hao P, Zhang Y, Zhang F, et al: m6A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature. 563:249–253. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Nishizawa Y, Konno M, Asai A, Koseki J, Kawamoto K, Miyoshi N, Takahashi H, Nishida N, Haraguchi N, Sakai D, et al: Oncogene c-Myc promotes epitranscriptome m6A reader YTHDF1 expression in colorectal cancer. Oncotarget. 9:7476–7486. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Zhao X, Chen Y, Mao Q, Jiang X, Jiang W, Chen J, Xu W, Zhong L and Sun X: Overexpression of YTHDF1 is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Biomark. 21:859–868. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Zhang Y, Wang X, Zhang X, Wang J, Ma Y, Zhang L and Cao X: RNA-binding protein YTHDF3 suppresses interferon-dependent antiviral responses by promoting FOXO3 translation. Proc Natl Acad Sci USA. 116:976–981. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Ni W, Yao S, Zhou Y, Liu Y, Huang P, Zhou A, Liu J, Che L and Li J: Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m6A reader YTHDF3. Mol Cancer. 18(143)2019.PubMed/NCBI View Article : Google Scholar | |
|
Jurczyszak D, Zhang W, Terry SN, Kehrer T, Bermúdez González MC, McGregor E, Mulder LCF, Eckwahl MJ, Pan T and Simon V: HIV protease cleaves the antiviral m6A reader protein YTHDF3 in the viral particle. PLoS Pathog. 16(e1008305)2020.PubMed/NCBI View Article : Google Scholar | |
|
Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, et al: Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell. 61:507–519. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Luxton HJ, Simpson BS, Mills IG, Brindle NR, Ahmed Z, Stavrinides V, Heavey S, Stamm S and Whitaker HC: The oncogene metadherin interacts with the known splicing proteins YTHDC1, Sam68 and T-STAR and plays a novel role in alternative mRNA splicing. Cancers (Basel). 11(1233)2019.PubMed/NCBI View Article : Google Scholar | |
|
Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y, Gregory BD, Schultz RM and Wang PJ: Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet. 14(e1007412)2018.PubMed/NCBI View Article : Google Scholar | |
|
Mao Y, Dong L, Liu XM, Guo J, Ma H, Shen B and Qian SB: m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2. Nat Commun. 10(5332)2019.PubMed/NCBI View Article : Google Scholar | |
|
Tanabe A, Tanikawa K, Tsunetomi M, Takai K, Ikeda H, Konno J, Torigoe T, Maeda H, Kutomi G, Okita K, et al: RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1α mRNA is translated. Cancer Lett. 376:34–42. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Kretschmer J, Rao H, Hackert P, Sloan KE, Hobartner C and Bohnsack MT: The m6A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5'-3' exoribonuclease XRN1. RNA. 24:1339–1350. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Nakano M, Ondo K, Takemoto S, Fukami T and Nakajima M: Methylation of adenosine at the N6 position post-transcriptionally regulates hepatic P450s expression. Biochem Pharmacol. 171(113697)2020.PubMed/NCBI View Article : Google Scholar | |
|
Bailey AS, Batista PJ, Gold RS, Chen YG, de Rooij DG, Chang HY and Fuller MT: The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline. eLife. 6(e26116)2017.PubMed/NCBI View Article : Google Scholar | |
|
Tanabe A, Konno J, Tanikawa K and Sahara H: Transcriptional machinery of TNF-α-inducible YTH domain containing 2 (YTHDC2) gene. Gene. 535:24–32. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Alarcon CR, Goodarzi H, Lee H, Liu X, Tavazoie S and Tavazoie SF: HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell. 162:1299–1308. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL, et al: Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 20:285–295. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Srivastava M and Deal C: Osteoporosis in elderly: Prevention and treatment. Clin Geriatr Med. 18:529–555. 2002.PubMed/NCBI View Article : Google Scholar | |
|
Langdahl BL: Overview of treatment approaches to osteoporosis. Br J Pharmacol. 178:1891–1906. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Rosen CJ and Bouxsein ML: Mechanisms of disease: Is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol. 2:35–43. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Raisz LG: Pathogenesis of osteoporosis: Concepts, conflicts, and prospects. J Clin Invest. 115:3318–3325. 2005.PubMed/NCBI View Article : Google Scholar | |
|
Palmieri D, Valli M, Viglio S, Ferrari N, Ledda B, Volta C and Manduca P: Osteoblasts extracellular matrix induces vessel like structures through glycosylated collagen I. Exp Cell Res. 316:789–799. 2010.PubMed/NCBI View Article : Google Scholar | |
|
DeNichilo MO, Shoubridge AJ, Panagopoulos V, Liapis V, Zysk A, Zinonos I, Hay S, Atkins GJ, Findlay DM and Evdokiou A: Peroxidase enzymes regulate collagen biosynthesis and matrix mineralization by cultured human osteoblasts. Calcif Tissue Int. 98:294–305. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Long F: Building strong bones: Molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol. 13:27–38. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Boyle WJ, Simonet WS and Lacey DL: Osteoclast differentiation and activation. Nature. 423:337–342. 2003.PubMed/NCBI View Article : Google Scholar | |
|
Villaseñor A, Aedo-Martín D, Obeso D, Erjavec I, Rodríguez-Coira J, Buendía I, Ardura JA, Barbas C and Gortazar AR: Metabolomics reveals citric acid secretion in mechanically-stimulated osteocytes is inhibited by high glucose. Sci Rep. 9(2295)2019.PubMed/NCBI View Article : Google Scholar | |
|
Dallas SL, Prideaux M and Bonewald LF: The osteocyte: An endocrine cell... and more. Endocr Rev. 34:658–690. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, Cao J, Xie N, Velletri T, Zhang X, et al: Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death Differ. 23:1128–1139. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Kawai M, Devlin MJ and Rosen CJ: Fat targets for skeletal health. Nat Rev Rheumatol. 5:365–372. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Rosen CJ, Ackert-Bicknell C, Rodriguez JP and Pino AM: Marrow fat and the bone microenvironment: Developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr. 19:109–124. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Scheller EL and Rosen CJ: What's the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health. Ann N Y Acad Sci. 1311:14–30. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Garcia-Gomez MC and Vilahur G: Osteoporosis and vascular calcification: A shared scenario. Clin Investig Arterioscler. 32:33–42. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Chen X, Hua W, Huang X, Chen Y, Zhang J and Li G: Regulatory role of RNA N6-methyladenosine modification in bone biology and osteoporosis. Front Endocrinol (Lausanne). 10(911)2019.PubMed/NCBI View Article : Google Scholar | |
|
Wu Y, Xie L, Wang M, Xiong Q, Guo Y, Liang Y, Li J, Sheng R, Deng P, Wang Y, et al: Mettl3-mediated m6A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nat Commun. 9(4772)2018.PubMed/NCBI View Article : Google Scholar | |
|
Yu J, Shen L, Liu Y, Ming H, Zhu X, Chu M and Lin J: The m6A methyltransferase METTL3 cooperates with demethylase ALKBH5 to regulate osteogenic differentiation through NF-κB signaling. Mol Cell Biochem. 463:203–210. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Tian C, Huang Y, Li Q, Feng Z and Xu Q: Mettl3 regulates osteogenic differentiation and alternative splicing of vegfa in bone marrow mesenchymal stem cells. Int J Mol Sci. 20(551)2019.PubMed/NCBI View Article : Google Scholar | |
|
Busilacchi A, Gigante A, Mattioli-Belmonte M, Manzotti S and Muzzarelli RA: Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration. Carbohydr Polym. 98:665–676. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Hu K and Olsen BR: Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Invest. 126:509–526. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Yan G, Yuan Y, He M, Gong R, Lei H, Zhou H, Wang W, Du W, Ma T, Liu S, et al: m6A methylation of precursor-miR-320/RUNX2 controls osteogenic potential of bone marrow-derived mesenchymal stem cells. Mol Ther Nucleic Acids. 19:421–436. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Li D, Cai L, Meng R, Feng Z and Xu Q: METTL3 modulates osteoclast differentiation and function by controlling RNA stability and nuclear export. Int J Mol Sci. 21(1660)2020.PubMed/NCBI View Article : Google Scholar | |
|
Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, Hewitson KS, Yeo GS, McDonough MA, Cunliffe S, McNeill LA, et al: The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 318:1469–1472. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Eyre DR: Bone biomarkers as tools in osteoporosis management. Spine (Phila Pa 1976). 22 (24 Suppl):17S–24S. 1997.PubMed/NCBI View Article : Google Scholar | |
|
Takada I, Kouzmenko AP and Kato S: Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol. 5:442–447. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Shen GS, Zhou HB, Zhang H, Chen B, Liu ZP, Yuan Y, Zhou XZ and Xu YJ: The GDF11-FTO-PPARγ axis controls the shift of osteoporotic MSC fate to adipocyte and inhibits bone formation during osteoporosis. Biochim Biophys Acta Mol Basis Dis. 1864:3644–3654. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Zhang Q, Riddle RC, Yang Q, Rosen CR, Guttridge DC, Dirckx N, Faugere MC, Farber CR and Clemens TL: The RNA demethylase FTO is required for maintenance of bone mass and functions to protect osteoblasts from genotoxic damage. Proc Natl Acad Sci USA. 116:17980–17989. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Guo Y, Liu H, Yang TL, Li SM, Li SK, Tian Q, Liu YJ and Deng HW: The fat mass and obesity associated gene, FTO, is also associated with osteoporosis phenotypes. PLoS One. 6(e27312)2011.PubMed/NCBI View Article : Google Scholar | |
|
Li Y, Yang F, Gao M, Gong R, Jin M, Liu T, Sun Y, Fu Y, Huang Q, Zhang W, et al: miR-149-3p regulates the switch between adipogenic and osteogenic differentiation of BMSCs by targeting FTO. Mol Ther Nucleic Acids. 17:590–600. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Mannerstrom B, Kornilov R, Abu-Shahba AG, Chowdhury IM, Sinha S, Seppänen-Kaijansinkko R and Kaur S: Epigenetic alterations in mesenchymal stem cells by osteosarcoma-derived extracellular vesicles. Epigenetics. 14:352–364. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Lorenzo J: Cytokines and bone: Osteoimmunology. Handb Exp Pharmacol. 262:177–230. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Zhang Y, Gu X, Li D, Cai L and Xu Q: METTL3 regulates osteoblast differentiation and inflammatory response via Smad signaling and MAPK Signaling. Int J Mol Sci. 21(199)2019.PubMed/NCBI View Article : Google Scholar | |
|
Yu R, Li Q, Feng Z, Cai L and Xu Q: m6A reader YTHDF2 regulates LPS-induced inflammatory response. Int J Mol Sci. 20(1323)2019.PubMed/NCBI View Article : Google Scholar | |
|
Wang T and He C: TNF-α and IL-6: The link between immune and bone system. Curr Drug Targets. 20:213–227. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Mathew AJ and Ravindran V: Infections and arthritis. Best Pract Res Clin Rheumatol. 28:935–959. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Harth M and Nielson WR: Pain and affective distress in arthritis: Relationship to immunity and inflammation. Expert Rev Clin Immunol. 15:541–552. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Parkinson L, Waters DL and Franck L: Systematic review of the impact of osteoarthritis on health outcomes for comorbid disease in older people. Osteoarthritis Cartilage. 25:1751–1770. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H and Carr AJ: Osteoarthritis. Lancet. 386:376–387. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Abramoff B and Caldera FE: Osteoarthritis: Pathology, diagnosis, and treatment options. Med Clin North Am. 104:293–311. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Liossis SN and Tsokos GC: Cellular immunity in osteoarthritis: Novel concepts for an old disease. Clin Diagn Lab Immunol. 5:427–429. 1998.PubMed/NCBI View Article : Google Scholar | |
|
Sakata M, Tsuruha JI, Masuko-Hongo K, Nakamura H, Matsui T, Sudo A, Nishioka K and Kato T: Autoantibodies to osteopontin in patients with osteoarthritis and rheumatoid arthritis. J Rheumatol. 28:1492–1495. 2001.PubMed/NCBI | |
|
Walker J, Gordon T, Lester S, Downie-Doyle S, McEvoy D, Pile K, Waterman S and Rischmueller M: Increased severity of lower urinary tract symptoms and daytime somnolence in primary Sjogren's syndrome. J Rheumatol. 30:2406–2412. 2003.PubMed/NCBI | |
|
Kato T, Xiang Y, Nakamura H and Nishioka K: Neoantigens in osteoarthritic cartilage. Curr Opin Rheumatol. 16:604–608. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Zhao W, Wang T, Luo Q, Chen Y, Leung VY, Wen C, Shah MF, Pan H, Chiu K, Cao X and Lu WW: Cartilage degeneration and excessive subchondral bone formation in spontaneous osteoarthritis involves altered TGF-β signaling. J Orthop Res. 34:763–770. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Liu Q, Li M, Jiang L, Jiang R and Fu B: METTL3 promotes experimental osteoarthritis development by regulating inflammatory response and apoptosis in chondrocyte. Biochem Biophys Res Commun. 516:22–27. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Goldring SR and Goldring MB: The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin Orthop Relat Res. (427 Suppl):S27–S36. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Yang F, Zhou S, Wang C, Huang Y, Li H, Wang Y, Zhu Z, Tang J and Yan M: Epigenetic modifications of interleukin-6 in synovial fibroblasts from osteoarthritis patients. Sci Rep. 7(43592)2017.PubMed/NCBI View Article : Google Scholar | |
|
Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ and Xu J: Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res. 6(15)2018.PubMed/NCBI View Article : Google Scholar | |
|
Li HB, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, Bailis W, Cao G, Kroehling L, Chen Y, et al: m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature. 548:338–342. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Wang J, Yan S, Lu H, Wang S and Xu D: METTL3 attenuates LPS-induced inflammatory response in macrophages via NF-κB signaling pathway. Mediators Inflamm. 2019(3120391)2019.PubMed/NCBI View Article : Google Scholar | |
|
Mo XB, Zhang YH and Lei SF: Genome-wide identification of N6-methyladenosine (m6A) SNPs associated with rheumatoid arthritis. Front Genet. 9(299)2018.PubMed/NCBI View Article : Google Scholar | |
|
Zheng Y, Nie P, Peng D, He Z, Liu M, Xie Y, Miao Y, Zuo Z and Ren J: m6AVar: A database of functional variants involved in m6A modification. Nucleic Acids Res. 46:D139–D145. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, Kavanaugh A, McInnes IB, Solomon DH, Strand V and Yamamoto K: Rheumatoid arthritis. Nat Rev Dis Primers. 4(18001)2018.PubMed/NCBI View Article : Google Scholar | |
|
Kondo Y, Yokosawa M, Kaneko S, Furuyama K, Segawa S, Tsuboi H, Matsumoto I and Sumida T: Review: Transcriptional regulation of CD4+ T cell differentiation in experimentally induced arthritis and rheumatoid arthritis. Arthritis Rheumatol. 70:653–661. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Noack M and Miossec P: Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev. 13:668–677. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Hunt L, Hensor EM, Nam J, Burska AN, Parmar R, Emery P and Ponchel F: T cell subsets: An immunological biomarker to predict progression to clinical arthritis in ACPA-positive individuals. Ann Rheum Dis. 75:1884–1889. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Kumar BV, Connors TJ and Farber DL: Human T cell development, localization, and function throughout life. Immunity. 48:202–213. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Abada A and Elazar Z: Getting ready for building: Signaling and autophagosome biogenesis. Embo Rep. 15:839–852. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Wang DW, Wu LW, Cao Y, Yang L, Liu W, E XQ, Ji G and Bi ZG: A novel mechanism of mTORC1-mediated serine/glycine metabolism in osteosarcoma development. Cell Signal. 29:107–114. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Miao W, Chen J, Jia L, Ma J and Song D: The m6A methyltransferase METTL3 promotes osteosarcoma progression by regulating the m6A level of LEF1. Biochem Biophys Res Commun. 516:719–725. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Nguyen DX, Chiang AC, Zhang XH, Kim JY, Kris MG, Ladanyi M, Gerald WL and Massagué J: WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell. 138:51–62. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Jia P, Wei G, Zhou C, Gao Q, Wu Y, Sun X and Li X: Upregulation of miR-212 inhibits migration and tumorigenicity and inactivates Wnt/β-catenin signaling in human hepatocellular carcinoma. Technol Cancer Res Treat. 17(1533034618765221)2018.PubMed/NCBI View Article : Google Scholar | |
|
Wu L, Zhao JC, Kim J, Jin HJ, Wang CY and Yu J: ERG is a critical regulator of Wnt/LEF1 signaling in prostate cancer. Cancer Res. 73:6068–6079. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Ling Z, Chen L and Zhao J: m6A-dependent up-regulation of DRG1 by METTL3 and ELAVL1 promotes growth, migration, and colony formation in osteosarcoma. Biosci Rep. 40(BSR20200282)2020.PubMed/NCBI View Article : Google Scholar | |
|
Coker H, Wei G and Brockdorff N: m6A modification of non-coding RNA and the control of mammalian gene expression. Biochim Biophys Acta Gene Regul Mech. 1862:310–318. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Li J, Rao B, Yang J, Liu L, Huang M, Liu X, Cui G, Li C, Han Q, Yang H, et al: Dysregulated m6A-related regulators are associated with tumor metastasis and poor prognosis in osteosarcoma. Front Oncol. 10(769)2020.PubMed/NCBI View Article : Google Scholar | |
|
Fan D, Xia Y, Lu C, Ye Q, Xi X, Wang Q, Wang Z, Wang C and Xiao C: Regulatory role of the RNA N6-methyladenosine modification in immunoregulatory cells and immune-related bone homeostasis associated with rheumatoid arthritis. Front Cell Dev Biol. 8(627893)2020.PubMed/NCBI View Article : Google Scholar | |
|
Liu T, Wei Q, Jin J, Luo Q, Liu Y, Yang Y, Cheng C, Li L, Pi J, Si Y, et al: The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 48:3816–3831. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Ma Z and Ji J: N6-methyladenosine (m6A) RNA modification in cancer stem cells. Stem Cells: Sep 27, 2020 (Epub Ahead of Print). | |
|
Patil DP, Pickering BF and Jaffrey SR: Reading m6A in the transcriptome: m6A-binding proteins. Trends Cell Biol. 28:113–127. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Dai DJ, Wang HY, Zhu LY, Jin HC and Wang X: N6-methyladenosine links RNA metabolism to cancer progression. Cell Death Dis. 9(124)2018.PubMed/NCBI View Article : Google Scholar | |
|
Wang HF, Kuang MJ, Han SJ, Wang AB, Qiu J, Wang F, Tan BY and Wang DC: BMP2 modified by the m6A demethylation enzyme ALKBH5 in the ossification of the ligamentum flavum through the AKT signaling pathway. Calcified Tissue Int. 106:486–493. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Zhang W, He L, Liu Z, Ren X, Qi L, Wan L, Wang W, Tu C and Li Z: Multifaceted functions and novel insight into the regulatory role of RNA N6-methyladenosine modification in musculoskeletal disorders. Front Cell Dev Biol. 8(870)2020.PubMed/NCBI View Article : Google Scholar |