|
1
|
Mohammad HMF, Sami MM, Makary S, Toraih
EA, Mohamed AO and El-Ghaiesh SH: Neuroprotective effect of
levetiracetam in mouse diabetic retinopathy: Effect on glucose
transporter-1 and GAP43 expression. Life Sci.
232(116588)2019.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Hafner J, Zadrazil M, Grisold A, Ricken G,
Krenn M, Kitzmantl D, Pollreisz A, Gleiss A and Schmidt-Erfurth U:
Retinal and corneal Neurodegeneration and their association with
systemic signs of peripheral neuropathy in type 2 diabetes. Am J
Ophthalmol. 209:197–205. 2020.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Lynch SK and Abramoff MD: Diabetic
retinopathy is a neurodegenerative disorder. Vision Res.
139:101–107. 2017.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Wang W and Lo ACY: Diabetic retinopathy:
Pathophysiology and treatments. Int J Mol Sci.
19(1816)2018.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Dehdashtian E, Mehrzadi S, Yousefi B,
Hosseinzadeh A, Reiter RJ, Safa M, Ghaznavi H and Naseripour M:
Diabetic retinopathy pathogenesis and the ameliorating effects of
melatonin; involvement of autophagy, inflammation and oxidative
stress. Life Sci. 193:20–33. 2018.PubMed/NCBI View Article : Google Scholar
|
|
6
|
He M, Long P, Guo L, Zhang M, Wang S and
He H: Fushiming capsule attenuates diabetic rat retina damage via
antioxidation and anti-inflammation. Evid Based Complement Alternat
Med. 2019(5376439)2019.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Noël G, Belda M, Guadagno E, Micoud J,
Klöcker N and Moukhles H: Dystroglycan and Kir4.1 coclustering in
retinal Müller glia is regulated by laminin-1 and requires the
PDZ-ligand domain of Kir4.1. J Neurochem. 94:691–702.
2005.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Coughlin BA, Feenstra DJ and Mohr S:
Müller cells and diabetic retinopathy. Vision Res. 139:93–100.
2017.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Curtis TM, Hamilton R, Yong PH, McVicar
CM, Berner A, Pringle R, Uchida K, Nagai R, Brockbank S and Stitt
AW: Müller glial dysfunction during diabetic retinopathy in rats is
linked to accumulation of advanced glycation end-products and
advanced lipoxidation end-products. Diabetologia. 54:690–698.
2011.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Bringmann A, Pannicke T, Grosche J,
Francke M, Wiedemann P, Skatchkov SN, Osborne NN and Reichenbach A:
Müller cells in the healthy and diseased retina. Prog Retin Eye
Res. 25:397–424. 2006.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Hibino H, Inanobe A, Furutani K, Murakami
S, Findlay I and Kurachi Y: Inwardly rectifying potassium channels:
Their structure, function, and physiological roles. Physiol Rev.
90:291–366. 2010.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Mendez-Gonzalez MP, Kucheryavykh YV,
Zayas-Santiago A, Vélez-Carrasco W, Maldonado-Martínez G, Cubano
LA, Nichols CG, Skatchkov SN and Eaton MJ: Novel KCNJ10 gene
variations compromise function of inwardly rectifying potassium
channel 4.1. J Biol Chem. 291:7716–7726. 2016.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Nwaobi SE and Olsen ML: Correlating
Gene-specific DNA methylation changes with expression and
transcriptional activity of astrocytic KCNJ10 (Kir4.1). J Vis Exp.
(52406)2015.PubMed/NCBI View
Article : Google Scholar
|
|
14
|
Ohno Y, Kinboshi M and Shimizu S: Inwardly
rectifying potassium channel Kir4.1 as a novel modulator of BDNF
expression in astrocytes. Int J Mol Sci. 19(3313)2018.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Thuringer D, Chanteloup G, Boucher J,
Pernet N, Boudesco C, Jego G, Chatelier A, Bois P, Gobbo J, Cronier
L, et al: Modulation of the inwardly rectifying potassium channel
Kir4.1 by the pro-invasive miR-5096 in glioblastoma cells.
Oncotarget. 8:37681–37693. 2017.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Govetto A, Hubschman JP, Sarraf D,
Figueroa MS, Bottoni F, dell'Omo R, Curcio CA, Seidenari P,
Delledonne G, Gunzenhauser R, et al: The role of Müller cells in
tractional macular disorders: An optical coherence tomography study
and physical model of mechanical force transmission. Br J
Ophthalmol. 104:466–472. 2020.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Eastlake K, Luis J and Limb GA: Potential
of Müller glia for retina neuroprotection. Curr Eye Res.
45:339–348. 2020.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Li X and Liu J, Hoh J and Liu J: Müller
cells in pathological retinal angiogenesis. Transl Res. 207:96–106.
2019.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Rao SB, Katoozi S, Skauli N, Froehner SC,
Ottersen OP, Adams ME and Amiry-Moghaddam M: Targeted deletion of
β1-syntrophin causes a loss of Kir 4.1 from Müller cell endfeet in
mouse retina. Glia. 67:1138–1149. 2019.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Joly S, Dodd DA, Grewe BF and Pernet V:
Reticulon 4A/Nogo-A influences the distribution of Kir4.1 but is
not essential for potassium conductance in retinal Müller glia.
Neurosci Lett. 627:168–177. 2016.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Nwaobi SE, Cuddapah VA, Patterson KC,
Randolph AC and Olsen ML: The role of glial-specific Kir4.1 in
normal and pathological states of the CNS. Acta Neuropathol.
132:1–21. 2016.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Kofuji P, Biedermann B, Siddharthan V,
Raap M, Iandiev I, Milenkovic I, Thomzig A, Veh RW, Bringmann A and
Reichenbach A: Kir potassium channel subunit expression in retinal
glial cells: Implications for spatial potassium buffering. Glia.
39:292–303. 2002.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Pannicke T, Iandiev I, Wurm A, Uckermann
O, vom Hagen F, Reichenbach A, Wiedemann P, Hammes HP and Bringmann
A: Diabetes alters osmotic swelling characteristics and membrane
conductance of glial cells in rat retina. Diabetes. 55:633–639.
2006.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Sibille J, Dao Duc K, Holcman D and Rouach
N: The neuroglial potassium cycle during neurotransmission: Role of
Kir4.1 channels. PLoS Comput Biol. 11(e1004137)2015.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Mori F, Hikichi T, Takahashi J, Nagaoka T
and Yoshida A: Dysfunction of active transport of blood-retinal
barrier in patients with clinically significant macular edema in
type 2 diabetes. Diabetes Care. 25:1248–1249. 2002.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Wang Y and Qin ZH: Molecular and cellular
mechanisms of excitotoxic neuronal death. Apoptosis. 15:1382–1402.
2010.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Li F, Eriksen J, Finer-Moore J, Chang R,
Nguyen P, Bowen A, Myasnikov A, Yu Z, Bulkley D, Cheng Y, et al:
Ion transport and regulation in a synaptic vesicle glutamate
transporter. Science. 368:893–897. 2020.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Pavić A, Holmes AOM, Postis VLG and
Goldman A: Glutamate transporters: A broad review of the most
recent archaeal and human structures. Biochem Soc Trans.
47:1197–1207. 2019.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Ma M, Zhao S, Zhang J, Sun T, Fan Y and
Zheng Z: High glucose-induced TRPC6 channel activation decreases
glutamate uptake in rat retinal Müller cells. Front Pharmacol.
10(1668)2019.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Kharade SV, Kurata H, Bender AM, Blobaum
AL, Figueroa EE, Duran A, Kramer M, Days E, Vinson P, Flores D, et
al: Discovery, characterization, and effects on renal fluid and
electrolyte excretion of the Kir4.1 potassium channel pore blocker,
VU0134992. Mol Pharmacol. 94:926–937. 2018.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Frizzo ME: Can a selective serotonin
reuptake inhibitor act as a glutamatergic modulator? Curr Ther Res
Clin Exp. 87:9–12. 2017.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Kucheryavykh YV, Kucheryavykh LY, Nichols
CG, Maldonado HM, Baksi K, Reichenbach A, Skatchkov SN and Eaton
MJ: Downregulation of Kir4.1 inward rectifying potassium channel
subunits by RNAi impairs potassium transfer and glutamate uptake by
cultured cortical astrocytes. Glia. 55:274–281. 2007.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Smith AJ and Verkman AS: Superresolution
imaging of Aquaporin-4 cluster size in antibody-stained paraffin
brain sections. Biophys J. 109:2511–2522. 2015.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Djukic B, Casper KB, Philpot BD, Chin LS
and McCarthy KD: Conditional knock-out of Kir4.1 leads to glial
membrane depolarization, inhibition of potassium and glutamate
uptake, and enhanced short-term synaptic potentiation. J Neurosci.
27:11354–11365. 2007.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Reichenbach A and Bringmann A: New
functions of Müller cells. Glia. 61:651–678. 2013.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Rübsam A, Parikh S and Fort PE: Role of
inflammation in diabetic retinopathy. Int J Mol Sci.
19(942)2018.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Vujosevic S, Micera A, Bini S, Berton M,
Esposito G and Midena E: Aqueous humor biomarkers of Müller cell
activation in diabetic eyes. Invest Ophthalmol Vis Sci.
56:3913–3918. 2015.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Li XM, Wendu RL, Yao J, Ren Y, Zhao YX,
Cao GF, Qin J and Yan B: Abnormal glutamate metabolism in the
retina of aquaporin 4 (AQP4) knockout mice upon light damage.
Neurol Sci. 35:847–853. 2014.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Zhang Y, Xu G, Ling Q and Da C: Expression
of aquaporin 4 and Kir4.1 in diabetic rat retina: Treatment with
minocycline. J Int Med Res. 39:464–479. 2011.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Setkowicz Z, Kosonowska E and Janeczko K:
Inflammation in the developing rat modulates astroglial reactivity
to seizures in the mature brain. J Anat. 231:366–379.
2017.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Frigerio F, Frasca A, Weissberg I,
Parrella S, Friedman A, Vezzani A and Noé FM: Long-lasting
pro-ictogenic effects induced in vivo by rat brain exposure to
serum albumin in the absence of concomitant pathology. Epilepsia.
53:1887–1897. 2012.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Das A, Wallace GC IV, Holmes C, McDowell
ML, Smith JA, Marshall JD, Bonilha L, Edwards JC, Glazier SS, Ray
SK and Banik NL: Hippocampal tissue of patients with refractory
temporal lobe epilepsy is associated with astrocyte activation,
inflammation, and altered expression of channels and receptors.
Neuroscience. 220:237–246. 2012.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Wu J, Ding D, Wang X, Li Q, Sun Y, Li L
and Wang Y: Regulation of aquaporin 4 expression by lipoxin A4 in
astrocytes stimulated by lipopolysaccharide. Cell Immunol.
344(103959)2019.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Li Y, Lu H, Lv X, Tang Q, Li W, Zhu H and
Long Y: Blockade of aquaporin 4 inhibits irradiation-induced
pulmonary inflammation and modulates macrophage polarization in
mice. Inflammation. 41:2196–2205. 2018.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Pisani F, Cammalleri M, Dal Monte M, Locri
F, Mola MG, Nicchia GP, Frigeri A, Bagnoli P and Svelto M:
Potential role of the methylation of VEGF gene promoter in response
to hypoxia in oxygen-induced retinopathy: Beneficial effect of the
absence of AQP4. J Cell Mol Med. 22:613–627. 2018.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Zurolo E, de Groot M, Iyer A, Anink J, van
Vliet EA, Heimans JJ, Reijneveld JC, Gorter JA and Aronica E:
Regulation of Kir4.1 expression in astrocytes and astrocytic
tumors: A role for interleukin-1 β. J Neuroinflammation.
9(280)2012.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Hassan I, Luo Q, Majumdar S, Dominguez JM
II, Busik JV and Bhatwadekar AD: Tumor necrosis factor Alpha
(TNF-α) disrupts Kir4.1 channel expression resulting in Müller cell
dysfunction in the retina. Invest Ophthalmol Vis Sci. 58:2473–2482.
2017.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Lin Z, Huang P, Huang S, Guo L, Xu X, Shen
X, Xie B and Zhong Y: Effect of adenosine and adenosine receptor
antagonists on retinal Müller cell inwardly rectifying potassium
channels under exogenous glutamate stimulation. Biomed Res Int.
2018(2749257)2018.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Saeed Dar M: Functional role for mouse
cerebellar NO/cGMP/KATP pathway in ethanol-induced ataxia. Alcohol
Clin Exp Res. 38:100–107. 2014.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Skowrońska K, Obara-Michlewska M,
Zielińska M and Albrecht J: NMDA receptors in astrocytes: In search
for roles in neurotransmission and astrocytic homeostasis. Int J
Mol Sci. 20(309)2019.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Gonzalez J, Jurado-Coronel JC, Ávila MF,
Sabogal A, Capani F and Barreto GE: NMDARs in neurological
diseases: A potential therapeutic target. Int J Neurosci.
125:315–327. 2015.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Jimenez-Blasco D, Santofimia-Castaño P,
Gonzalez A, Almeida A and Bolaños JP: Astrocyte NMDA receptors'
activity sustains neuronal survival through a Cdk5-Nrf2 pathway.
Cell Death Differ. 22:1877–1889. 2015.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Skowrońska K, Obara-Michlewska M,
Czarnecka A, Dąbrowska K, Zielińska M and Albrecht J: Persistent
overexposure to N-Methyl-D-Aspartate (NMDA) calcium-dependently
downregulates glutamine synthetase, aquaporin 4, and Kir4.1 channel
in mouse cortical astrocytes. Neurotox Res. 35:271–280.
2019.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Dvorzhak A, Vagner T, Kirmse K and Grantyn
R: Functional indicators of glutamate transport in single striatal
astrocytes and the influence of Kir4.1 in normal and huntington
mice. J Neurosci. 36:4959–4975. 2016.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Minkel HR, Anwer TZ, Arps KM, Brenner M
and Olsen ML: Elevated GFAP induces astrocyte dysfunction in caudal
brain regions: A potential mechanism for hindbrain involved
symptoms in type II Alexander disease. Glia. 63:2285–2297.
2015.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Yang Z, Huang P, Liu X, Huang S, Deng L,
Jin Z, Xu S, Shen X, Luo X and Zhong Y: Effect of adenosine and
adenosine receptor antagonist on Müller cell potassium channel in
Rat chronic ocular hypertension models. Sci Rep.
5(11294)2015.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Wang ZF and Yang XL: Glutamate
receptor-mediated retinal neuronal injury in experimental glaucoma.
Sheng Li Xue Bao. 68:483–491. 2016.PubMed/NCBI(In Chinese).
|
|
58
|
Vogler S, Pannicke T, Hollborn M, Grosche
A, Busch S, Hoffmann S, Wiedemann P, Reichenbach A, Hammes HP and
Bringmann A: Müller cell reactivity in response to photoreceptor
degeneration in rats with defective polycystin-2. PLoS One.
8(e61631)2014.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Yong PH, Zong H, Medina RJ, Limb GA,
Uchida K, Stitt AW and Curtis TM: Evidence supporting a role for
N-(3-formyl-3,4-dehydropiperidino)lysine accumulation in Müller
glia dysfunction and death in diabetic retinopathy. Mol Vis.
16:2524–2538. 2010.PubMed/NCBI
|
|
60
|
Alrashdi SF, Deliyanti D, Talia DM and
Wilkinson-Berka JL: Endothelin-2 injures the blood-retinal barrier
and macroglial Müller cells: Interactions with angiotensin ii,
aldosterone, and NADPH oxidase. Am J Pathol. 188:805–817.
2018.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Aragonès G, Rowan S, G Francisco S, Yang
W, Weinberg J, Taylor A and Bejarano E: Glyoxalase system as a
therapeutic target against diabetic retinopathy. Antioxidants
(Basel). 9(1062)2020.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Thompson K, Chen J, Luo Q, Xiao Y, Cummins
TR and Bhatwadekar AD: Advanced glycation end (AGE) product
modification of laminin downregulates Kir4.1 in retinal Müller
cells. PLoS One. 13(e0193280)2018.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Neusch C, Rozengurt N, Jacobs RE, Lester
HA and Kofuji P: Kir4.1 potassium channel subunit is crucial for
oligodendrocyte development and in vivo myelination. J Neurosci.
21:5429–5438. 2001.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Pannicke T, Frommherz I, Biedermann B,
Wagner L, Sauer K, Ulbricht E, Härtig W, Krügel U, Ueberham U,
Arendt T, et al: Differential effects of P2Y1 deletion on glial
activation and survival of photoreceptors and amacrine cells in the
ischemic mouse retina. Cell Death Dis. 5(e1353)2014.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Milton M and Smith PD: It's all about
timing: The involvement of Kir4.1 channel regulation in acute
ischemic stroke pathology. Front Cell Neurosci.
12(36)2018.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Zaika O, Palygin O, Tomilin V, Mamenko M,
Staruschenko A and Pochynyuk O: Insulin and IGF-1 activate
Kir4.1/5.1 channels in cortical collecting duct principal cells to
control basolateral membrane voltage. Am J Physiol Renal Physiol.
310:F311–F321. 2016.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Nitulescu GM, Van De Venter M, Nitulescu
G, Ungurianu A, Juzenas P, Peng Q, Olaru OT, Grădinaru D, Tsatsakis
A, Tsoukalas D, et al: The Akt pathway in oncology therapy and
beyond (Review). Int J Oncol. 53:2319–2331. 2018.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Serin Y and Acar Tek N: Effect of
circadian rhythm on metabolic processes and the regulation of
energy balance. Ann Nutr Metab. 74:322–330. 2019.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Lemmer B and Oster H: The role of
circadian rhythms in the hypertension of diabetes mellitus and the
metabolic syndrome. Curr Hypertens Rep. 20(43)2018.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Di R, Luo Q, Mathew D and Bhatwadekar AD:
Diabetes alters diurnal rhythm of electroretinogram in db/db mice.
Yale J Biol Med. 92:155–167. 2019.PubMed/NCBI
|
|
71
|
Wang Q, Tikhonenko M, Bozack SN, Lydic TA,
Yan L, Panchy NL, McSorley KM, Faber MS, Yan Y, Boulton ME, et al:
Changes in the daily rhythm of lipid metabolism in the diabetic
retina. PLoS One. 9(e95028)2014.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Luo Q, Xiao Y, Alex A, Cummins TR and
Bhatwadekar AD: The diurnal rhythm of insulin receptor substrate-1
(IRS-1) and Kir4.1 in diabetes: Implications for a clock gene
Bmal1. Invest Ophthalmol Vis Sci. 60:1928–1936. 2019.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Wang Y, An H, Liu T, Qin C, Sesaki H, Guo
S, Radovick S, Hussain M, Maheshwari A, Wondisford FE, et al:
Metformin improves mitochondrial respiratory activity through
activation of AMPK. Cell Rep. 29:1511–1523.e5. 2019.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Alex A, Luo Q, Mathew D, Di R and
Bhatwadekar AD: Metformin corrects abnormal circadian rhythm and
Kir4.1 channels in diabetes. Invest Ophthalmol Vis Sci.
61(46)2020.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Schultze SM, Hemmings BA, Niessen M and
Tschopp O: PI3K/AKT, MAPK and AMPK signalling: Protein kinases in
glucose homeostasis. Expert Rev Mol Med. 14(e1)2012.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Lechner J, O'Leary OE and Stitt AW: The
pathology associated with diabetic retinopathy. Vision Res.
139:7–14. 2017.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Stefanini FR, Badaró E, Falabella P, Koss
M, Farah ME and Maia M: Anti-VEGF for the management of diabetic
macular edema. J Immunol Res. 2014(632307)2014.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Lai TW, Zhang S and Wang YT:
Excitotoxicity and stroke: Identifying novel targets for
neuroprotection. Prog Neurobiol. 115:157–188. 2014.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Welters A, Klüppel C, Mrugala J, Wörmeyer
L, Meissner T, Mayatepek E, Heiss C, Eberhard D and Lammert E:
NMDAR antagonists for the treatment of diabetes mellitus-Current
status and future directions. Diabetes Obes Metab. 19 (Suppl
1):S95–S106. 2017.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Bai N, Aida T, Yanagisawa M, Katou S,
Sakimura K, Mishina M and Tanaka K: NMDA receptor subunits have
different roles in NMDA-induced neurotoxicity in the retina. Mol
Brain. 6(34)2013.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Fuwa M, Kageyama M, Ohashi K, Sasaoka M,
Sato R, Tanaka M and Tashiro K: Nafamostat and sepimostat
identified as novel neuroprotective agents via NR2B
N-methyl-D-aspartate receptor antagonism using a rat retinal
excitotoxicity model. Sci Rep. 9(20409)2019.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Han N, Yu L, Song Z, Luo L and Wu Y:
Agmatine protects Müller cells from high-concentration
glucose-induced cell damage via N-methyl-D-aspartic acid receptor
inhibition. Mol Med Rep. 12:1098–1106. 2015.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Ozaki H, Inoue R, Matsushima T, Sasahara
M, Hayashi A and Mori H: Serine racemase deletion attenuates
neurodegeneration and microvascular damage in diabetic retinopathy.
PLoS One. 13(e0190864)2018.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Chen H, Ji Y, Yan X, Su G, Chen L and Xiao
J: Berberine attenuates apoptosis in rat retinal Müller cells
stimulated with high glucose via enhancing autophagy and the
AMPK/mTOR signaling. Biomed Pharmacother. 108:1201–1207.
2018.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Barialai L, Strecker MI, Luger AL, Jäger
M, Bruns I, Sittig ACM, Mildenberger IC, Heller SM, Delaidelli A,
Lorenz NI, et al: AMPK activation protects astrocytes from
hypoxia-induced cell death. Int J Mol Med. 45:1385–1396.
2020.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Ulbricht E, Pannicke T, Hollborn M, Raap
M, Goczalik I, Iandiev I, Härtig W, Uhlmann S, Wiedemann P,
Reichenbach A, et al: Proliferative gliosis causes mislocation and
inactivation of inwardly rectifying K(+) (Kir) channels in rabbit
retinal glial cells. Exp Eye Res. 86:305–313. 2008.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Sene A, Tadayoni R, Pannicke T, Wurm A, El
Mathari B, Benard R, Roux MJ, Yaffe D, Mornet D, Reichenbach A, et
al: Functional implication of Dp71 in osmoregulation and vascular
permeability of the retina. PLoS One. 4(e7329)2009.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Vacca O, Charles-Messance H, El Mathari B,
Sene A, Barbe P, Fouquet S, Aragón J, Darche M, Giocanti-Aurégan A,
Paques M, et al: AAV-mediated gene therapy in Dystrophin-Dp71
deficient mouse leads to blood-retinal barrier restoration and
oedema reabsorption. Hum Mol Genet. 25:3070–3079. 2016.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Siqueiros-Marquez L, Bénard R, Vacca O,
Charles-Messance H, Bolaños-Jimenez R, Guilloneau X, Sennlaub F,
Montañez C, Sahel JA, Rendon A, et al: Protection of glial Müller
cells by dexamethasone in a mouse model of surgically induced
blood-retinal barrier breakdown. Invest Ophthalmol Vis Sci.
58:876–886. 2017.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Liu XQ, Kobayashi H, Jin ZB, Wada A and
Nao IN: Differential expression of Kir4.1 and aquaporin 4 in the
retina from endotoxin-induced uveitis rat. Mol Vis. 13:309–317.
2007.PubMed/NCBI
|
|
91
|
Sun W, Li T, Ma H, Lin S, Xie M, Luo Y,
Tian R and Tang S: The effect of K+ channel opener
pinacidil on the transmembrane potassi channel protein Kir4.1 of
retinal Müller cells in vitro and diabetic rats. Panminerva Med.
62:268–270. 2020.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Jung E and Kim J: Aloin inhibits Müller
cells swelling in a rat model of thioacetamide-induced hepatic
retinopathy. Molecules. 23(2806)2018.PubMed/NCBI View Article : Google Scholar
|