Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
September-2021 Volume 22 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2021 Volume 22 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Kir4.1 may represent a novel therapeutic target for diabetic retinopathy (Review)

  • Authors:
    • Xiaoyu Li
    • Jiajun Lv
    • Jiazhi Li
    • Xiang Ren
  • View Affiliations / Copyright

    Affiliations: Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China, Department of Radiotherapy Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 1021
    |
    Published online on: July 15, 2021
       https://doi.org/10.3892/etm.2021.10453
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

As the major cause of irreversible loss of vision in adults, diabetic retinopathy (DR) is one of the most serious complications of diabetes. The imbalance of the retinal microenvironment and destruction of the blood‑retinal barrier have a significant role in the progression of DR. Inward rectifying potassium channel 4.1 (Kir4.1) is located on Müller cells and is closely related to potassium homeostasis, water balance and glutamate clearance in the whole retina. The present review discusses the functions of Kir4.1 in regulating the retinal microenvironment and related biological mechanisms in DR. In the future, Kir4.1 may represent a novel alternative therapeutic target for DR through affecting the retinal microenvironment.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Mohammad HMF, Sami MM, Makary S, Toraih EA, Mohamed AO and El-Ghaiesh SH: Neuroprotective effect of levetiracetam in mouse diabetic retinopathy: Effect on glucose transporter-1 and GAP43 expression. Life Sci. 232(116588)2019.PubMed/NCBI View Article : Google Scholar

2 

Hafner J, Zadrazil M, Grisold A, Ricken G, Krenn M, Kitzmantl D, Pollreisz A, Gleiss A and Schmidt-Erfurth U: Retinal and corneal Neurodegeneration and their association with systemic signs of peripheral neuropathy in type 2 diabetes. Am J Ophthalmol. 209:197–205. 2020.PubMed/NCBI View Article : Google Scholar

3 

Lynch SK and Abramoff MD: Diabetic retinopathy is a neurodegenerative disorder. Vision Res. 139:101–107. 2017.PubMed/NCBI View Article : Google Scholar

4 

Wang W and Lo ACY: Diabetic retinopathy: Pathophysiology and treatments. Int J Mol Sci. 19(1816)2018.PubMed/NCBI View Article : Google Scholar

5 

Dehdashtian E, Mehrzadi S, Yousefi B, Hosseinzadeh A, Reiter RJ, Safa M, Ghaznavi H and Naseripour M: Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci. 193:20–33. 2018.PubMed/NCBI View Article : Google Scholar

6 

He M, Long P, Guo L, Zhang M, Wang S and He H: Fushiming capsule attenuates diabetic rat retina damage via antioxidation and anti-inflammation. Evid Based Complement Alternat Med. 2019(5376439)2019.PubMed/NCBI View Article : Google Scholar

7 

Noël G, Belda M, Guadagno E, Micoud J, Klöcker N and Moukhles H: Dystroglycan and Kir4.1 coclustering in retinal Müller glia is regulated by laminin-1 and requires the PDZ-ligand domain of Kir4.1. J Neurochem. 94:691–702. 2005.PubMed/NCBI View Article : Google Scholar

8 

Coughlin BA, Feenstra DJ and Mohr S: Müller cells and diabetic retinopathy. Vision Res. 139:93–100. 2017.PubMed/NCBI View Article : Google Scholar

9 

Curtis TM, Hamilton R, Yong PH, McVicar CM, Berner A, Pringle R, Uchida K, Nagai R, Brockbank S and Stitt AW: Müller glial dysfunction during diabetic retinopathy in rats is linked to accumulation of advanced glycation end-products and advanced lipoxidation end-products. Diabetologia. 54:690–698. 2011.PubMed/NCBI View Article : Google Scholar

10 

Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN and Reichenbach A: Müller cells in the healthy and diseased retina. Prog Retin Eye Res. 25:397–424. 2006.PubMed/NCBI View Article : Google Scholar

11 

Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I and Kurachi Y: Inwardly rectifying potassium channels: Their structure, function, and physiological roles. Physiol Rev. 90:291–366. 2010.PubMed/NCBI View Article : Google Scholar

12 

Mendez-Gonzalez MP, Kucheryavykh YV, Zayas-Santiago A, Vélez-Carrasco W, Maldonado-Martínez G, Cubano LA, Nichols CG, Skatchkov SN and Eaton MJ: Novel KCNJ10 gene variations compromise function of inwardly rectifying potassium channel 4.1. J Biol Chem. 291:7716–7726. 2016.PubMed/NCBI View Article : Google Scholar

13 

Nwaobi SE and Olsen ML: Correlating Gene-specific DNA methylation changes with expression and transcriptional activity of astrocytic KCNJ10 (Kir4.1). J Vis Exp. (52406)2015.PubMed/NCBI View Article : Google Scholar

14 

Ohno Y, Kinboshi M and Shimizu S: Inwardly rectifying potassium channel Kir4.1 as a novel modulator of BDNF expression in astrocytes. Int J Mol Sci. 19(3313)2018.PubMed/NCBI View Article : Google Scholar

15 

Thuringer D, Chanteloup G, Boucher J, Pernet N, Boudesco C, Jego G, Chatelier A, Bois P, Gobbo J, Cronier L, et al: Modulation of the inwardly rectifying potassium channel Kir4.1 by the pro-invasive miR-5096 in glioblastoma cells. Oncotarget. 8:37681–37693. 2017.PubMed/NCBI View Article : Google Scholar

16 

Govetto A, Hubschman JP, Sarraf D, Figueroa MS, Bottoni F, dell'Omo R, Curcio CA, Seidenari P, Delledonne G, Gunzenhauser R, et al: The role of Müller cells in tractional macular disorders: An optical coherence tomography study and physical model of mechanical force transmission. Br J Ophthalmol. 104:466–472. 2020.PubMed/NCBI View Article : Google Scholar

17 

Eastlake K, Luis J and Limb GA: Potential of Müller glia for retina neuroprotection. Curr Eye Res. 45:339–348. 2020.PubMed/NCBI View Article : Google Scholar

18 

Li X and Liu J, Hoh J and Liu J: Müller cells in pathological retinal angiogenesis. Transl Res. 207:96–106. 2019.PubMed/NCBI View Article : Google Scholar

19 

Rao SB, Katoozi S, Skauli N, Froehner SC, Ottersen OP, Adams ME and Amiry-Moghaddam M: Targeted deletion of β1-syntrophin causes a loss of Kir 4.1 from Müller cell endfeet in mouse retina. Glia. 67:1138–1149. 2019.PubMed/NCBI View Article : Google Scholar

20 

Joly S, Dodd DA, Grewe BF and Pernet V: Reticulon 4A/Nogo-A influences the distribution of Kir4.1 but is not essential for potassium conductance in retinal Müller glia. Neurosci Lett. 627:168–177. 2016.PubMed/NCBI View Article : Google Scholar

21 

Nwaobi SE, Cuddapah VA, Patterson KC, Randolph AC and Olsen ML: The role of glial-specific Kir4.1 in normal and pathological states of the CNS. Acta Neuropathol. 132:1–21. 2016.PubMed/NCBI View Article : Google Scholar

22 

Kofuji P, Biedermann B, Siddharthan V, Raap M, Iandiev I, Milenkovic I, Thomzig A, Veh RW, Bringmann A and Reichenbach A: Kir potassium channel subunit expression in retinal glial cells: Implications for spatial potassium buffering. Glia. 39:292–303. 2002.PubMed/NCBI View Article : Google Scholar

23 

Pannicke T, Iandiev I, Wurm A, Uckermann O, vom Hagen F, Reichenbach A, Wiedemann P, Hammes HP and Bringmann A: Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes. 55:633–639. 2006.PubMed/NCBI View Article : Google Scholar

24 

Sibille J, Dao Duc K, Holcman D and Rouach N: The neuroglial potassium cycle during neurotransmission: Role of Kir4.1 channels. PLoS Comput Biol. 11(e1004137)2015.PubMed/NCBI View Article : Google Scholar

25 

Mori F, Hikichi T, Takahashi J, Nagaoka T and Yoshida A: Dysfunction of active transport of blood-retinal barrier in patients with clinically significant macular edema in type 2 diabetes. Diabetes Care. 25:1248–1249. 2002.PubMed/NCBI View Article : Google Scholar

26 

Wang Y and Qin ZH: Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis. 15:1382–1402. 2010.PubMed/NCBI View Article : Google Scholar

27 

Li F, Eriksen J, Finer-Moore J, Chang R, Nguyen P, Bowen A, Myasnikov A, Yu Z, Bulkley D, Cheng Y, et al: Ion transport and regulation in a synaptic vesicle glutamate transporter. Science. 368:893–897. 2020.PubMed/NCBI View Article : Google Scholar

28 

Pavić A, Holmes AOM, Postis VLG and Goldman A: Glutamate transporters: A broad review of the most recent archaeal and human structures. Biochem Soc Trans. 47:1197–1207. 2019.PubMed/NCBI View Article : Google Scholar

29 

Ma M, Zhao S, Zhang J, Sun T, Fan Y and Zheng Z: High glucose-induced TRPC6 channel activation decreases glutamate uptake in rat retinal Müller cells. Front Pharmacol. 10(1668)2019.PubMed/NCBI View Article : Google Scholar

30 

Kharade SV, Kurata H, Bender AM, Blobaum AL, Figueroa EE, Duran A, Kramer M, Days E, Vinson P, Flores D, et al: Discovery, characterization, and effects on renal fluid and electrolyte excretion of the Kir4.1 potassium channel pore blocker, VU0134992. Mol Pharmacol. 94:926–937. 2018.PubMed/NCBI View Article : Google Scholar

31 

Frizzo ME: Can a selective serotonin reuptake inhibitor act as a glutamatergic modulator? Curr Ther Res Clin Exp. 87:9–12. 2017.PubMed/NCBI View Article : Google Scholar

32 

Kucheryavykh YV, Kucheryavykh LY, Nichols CG, Maldonado HM, Baksi K, Reichenbach A, Skatchkov SN and Eaton MJ: Downregulation of Kir4.1 inward rectifying potassium channel subunits by RNAi impairs potassium transfer and glutamate uptake by cultured cortical astrocytes. Glia. 55:274–281. 2007.PubMed/NCBI View Article : Google Scholar

33 

Smith AJ and Verkman AS: Superresolution imaging of Aquaporin-4 cluster size in antibody-stained paraffin brain sections. Biophys J. 109:2511–2522. 2015.PubMed/NCBI View Article : Google Scholar

34 

Djukic B, Casper KB, Philpot BD, Chin LS and McCarthy KD: Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J Neurosci. 27:11354–11365. 2007.PubMed/NCBI View Article : Google Scholar

35 

Reichenbach A and Bringmann A: New functions of Müller cells. Glia. 61:651–678. 2013.PubMed/NCBI View Article : Google Scholar

36 

Rübsam A, Parikh S and Fort PE: Role of inflammation in diabetic retinopathy. Int J Mol Sci. 19(942)2018.PubMed/NCBI View Article : Google Scholar

37 

Vujosevic S, Micera A, Bini S, Berton M, Esposito G and Midena E: Aqueous humor biomarkers of Müller cell activation in diabetic eyes. Invest Ophthalmol Vis Sci. 56:3913–3918. 2015.PubMed/NCBI View Article : Google Scholar

38 

Li XM, Wendu RL, Yao J, Ren Y, Zhao YX, Cao GF, Qin J and Yan B: Abnormal glutamate metabolism in the retina of aquaporin 4 (AQP4) knockout mice upon light damage. Neurol Sci. 35:847–853. 2014.PubMed/NCBI View Article : Google Scholar

39 

Zhang Y, Xu G, Ling Q and Da C: Expression of aquaporin 4 and Kir4.1 in diabetic rat retina: Treatment with minocycline. J Int Med Res. 39:464–479. 2011.PubMed/NCBI View Article : Google Scholar

40 

Setkowicz Z, Kosonowska E and Janeczko K: Inflammation in the developing rat modulates astroglial reactivity to seizures in the mature brain. J Anat. 231:366–379. 2017.PubMed/NCBI View Article : Google Scholar

41 

Frigerio F, Frasca A, Weissberg I, Parrella S, Friedman A, Vezzani A and Noé FM: Long-lasting pro-ictogenic effects induced in vivo by rat brain exposure to serum albumin in the absence of concomitant pathology. Epilepsia. 53:1887–1897. 2012.PubMed/NCBI View Article : Google Scholar

42 

Das A, Wallace GC IV, Holmes C, McDowell ML, Smith JA, Marshall JD, Bonilha L, Edwards JC, Glazier SS, Ray SK and Banik NL: Hippocampal tissue of patients with refractory temporal lobe epilepsy is associated with astrocyte activation, inflammation, and altered expression of channels and receptors. Neuroscience. 220:237–246. 2012.PubMed/NCBI View Article : Google Scholar

43 

Wu J, Ding D, Wang X, Li Q, Sun Y, Li L and Wang Y: Regulation of aquaporin 4 expression by lipoxin A4 in astrocytes stimulated by lipopolysaccharide. Cell Immunol. 344(103959)2019.PubMed/NCBI View Article : Google Scholar

44 

Li Y, Lu H, Lv X, Tang Q, Li W, Zhu H and Long Y: Blockade of aquaporin 4 inhibits irradiation-induced pulmonary inflammation and modulates macrophage polarization in mice. Inflammation. 41:2196–2205. 2018.PubMed/NCBI View Article : Google Scholar

45 

Pisani F, Cammalleri M, Dal Monte M, Locri F, Mola MG, Nicchia GP, Frigeri A, Bagnoli P and Svelto M: Potential role of the methylation of VEGF gene promoter in response to hypoxia in oxygen-induced retinopathy: Beneficial effect of the absence of AQP4. J Cell Mol Med. 22:613–627. 2018.PubMed/NCBI View Article : Google Scholar

46 

Zurolo E, de Groot M, Iyer A, Anink J, van Vliet EA, Heimans JJ, Reijneveld JC, Gorter JA and Aronica E: Regulation of Kir4.1 expression in astrocytes and astrocytic tumors: A role for interleukin-1 β. J Neuroinflammation. 9(280)2012.PubMed/NCBI View Article : Google Scholar

47 

Hassan I, Luo Q, Majumdar S, Dominguez JM II, Busik JV and Bhatwadekar AD: Tumor necrosis factor Alpha (TNF-α) disrupts Kir4.1 channel expression resulting in Müller cell dysfunction in the retina. Invest Ophthalmol Vis Sci. 58:2473–2482. 2017.PubMed/NCBI View Article : Google Scholar

48 

Lin Z, Huang P, Huang S, Guo L, Xu X, Shen X, Xie B and Zhong Y: Effect of adenosine and adenosine receptor antagonists on retinal Müller cell inwardly rectifying potassium channels under exogenous glutamate stimulation. Biomed Res Int. 2018(2749257)2018.PubMed/NCBI View Article : Google Scholar

49 

Saeed Dar M: Functional role for mouse cerebellar NO/cGMP/KATP pathway in ethanol-induced ataxia. Alcohol Clin Exp Res. 38:100–107. 2014.PubMed/NCBI View Article : Google Scholar

50 

Skowrońska K, Obara-Michlewska M, Zielińska M and Albrecht J: NMDA receptors in astrocytes: In search for roles in neurotransmission and astrocytic homeostasis. Int J Mol Sci. 20(309)2019.PubMed/NCBI View Article : Google Scholar

51 

Gonzalez J, Jurado-Coronel JC, Ávila MF, Sabogal A, Capani F and Barreto GE: NMDARs in neurological diseases: A potential therapeutic target. Int J Neurosci. 125:315–327. 2015.PubMed/NCBI View Article : Google Scholar

52 

Jimenez-Blasco D, Santofimia-Castaño P, Gonzalez A, Almeida A and Bolaños JP: Astrocyte NMDA receptors' activity sustains neuronal survival through a Cdk5-Nrf2 pathway. Cell Death Differ. 22:1877–1889. 2015.PubMed/NCBI View Article : Google Scholar

53 

Skowrońska K, Obara-Michlewska M, Czarnecka A, Dąbrowska K, Zielińska M and Albrecht J: Persistent overexposure to N-Methyl-D-Aspartate (NMDA) calcium-dependently downregulates glutamine synthetase, aquaporin 4, and Kir4.1 channel in mouse cortical astrocytes. Neurotox Res. 35:271–280. 2019.PubMed/NCBI View Article : Google Scholar

54 

Dvorzhak A, Vagner T, Kirmse K and Grantyn R: Functional indicators of glutamate transport in single striatal astrocytes and the influence of Kir4.1 in normal and huntington mice. J Neurosci. 36:4959–4975. 2016.PubMed/NCBI View Article : Google Scholar

55 

Minkel HR, Anwer TZ, Arps KM, Brenner M and Olsen ML: Elevated GFAP induces astrocyte dysfunction in caudal brain regions: A potential mechanism for hindbrain involved symptoms in type II Alexander disease. Glia. 63:2285–2297. 2015.PubMed/NCBI View Article : Google Scholar

56 

Yang Z, Huang P, Liu X, Huang S, Deng L, Jin Z, Xu S, Shen X, Luo X and Zhong Y: Effect of adenosine and adenosine receptor antagonist on Müller cell potassium channel in Rat chronic ocular hypertension models. Sci Rep. 5(11294)2015.PubMed/NCBI View Article : Google Scholar

57 

Wang ZF and Yang XL: Glutamate receptor-mediated retinal neuronal injury in experimental glaucoma. Sheng Li Xue Bao. 68:483–491. 2016.PubMed/NCBI(In Chinese).

58 

Vogler S, Pannicke T, Hollborn M, Grosche A, Busch S, Hoffmann S, Wiedemann P, Reichenbach A, Hammes HP and Bringmann A: Müller cell reactivity in response to photoreceptor degeneration in rats with defective polycystin-2. PLoS One. 8(e61631)2014.PubMed/NCBI View Article : Google Scholar

59 

Yong PH, Zong H, Medina RJ, Limb GA, Uchida K, Stitt AW and Curtis TM: Evidence supporting a role for N-(3-formyl-3,4-dehydropiperidino)lysine accumulation in Müller glia dysfunction and death in diabetic retinopathy. Mol Vis. 16:2524–2538. 2010.PubMed/NCBI

60 

Alrashdi SF, Deliyanti D, Talia DM and Wilkinson-Berka JL: Endothelin-2 injures the blood-retinal barrier and macroglial Müller cells: Interactions with angiotensin ii, aldosterone, and NADPH oxidase. Am J Pathol. 188:805–817. 2018.PubMed/NCBI View Article : Google Scholar

61 

Aragonès G, Rowan S, G Francisco S, Yang W, Weinberg J, Taylor A and Bejarano E: Glyoxalase system as a therapeutic target against diabetic retinopathy. Antioxidants (Basel). 9(1062)2020.PubMed/NCBI View Article : Google Scholar

62 

Thompson K, Chen J, Luo Q, Xiao Y, Cummins TR and Bhatwadekar AD: Advanced glycation end (AGE) product modification of laminin downregulates Kir4.1 in retinal Müller cells. PLoS One. 13(e0193280)2018.PubMed/NCBI View Article : Google Scholar

63 

Neusch C, Rozengurt N, Jacobs RE, Lester HA and Kofuji P: Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination. J Neurosci. 21:5429–5438. 2001.PubMed/NCBI View Article : Google Scholar

64 

Pannicke T, Frommherz I, Biedermann B, Wagner L, Sauer K, Ulbricht E, Härtig W, Krügel U, Ueberham U, Arendt T, et al: Differential effects of P2Y1 deletion on glial activation and survival of photoreceptors and amacrine cells in the ischemic mouse retina. Cell Death Dis. 5(e1353)2014.PubMed/NCBI View Article : Google Scholar

65 

Milton M and Smith PD: It's all about timing: The involvement of Kir4.1 channel regulation in acute ischemic stroke pathology. Front Cell Neurosci. 12(36)2018.PubMed/NCBI View Article : Google Scholar

66 

Zaika O, Palygin O, Tomilin V, Mamenko M, Staruschenko A and Pochynyuk O: Insulin and IGF-1 activate Kir4.1/5.1 channels in cortical collecting duct principal cells to control basolateral membrane voltage. Am J Physiol Renal Physiol. 310:F311–F321. 2016.PubMed/NCBI View Article : Google Scholar

67 

Nitulescu GM, Van De Venter M, Nitulescu G, Ungurianu A, Juzenas P, Peng Q, Olaru OT, Grădinaru D, Tsatsakis A, Tsoukalas D, et al: The Akt pathway in oncology therapy and beyond (Review). Int J Oncol. 53:2319–2331. 2018.PubMed/NCBI View Article : Google Scholar

68 

Serin Y and Acar Tek N: Effect of circadian rhythm on metabolic processes and the regulation of energy balance. Ann Nutr Metab. 74:322–330. 2019.PubMed/NCBI View Article : Google Scholar

69 

Lemmer B and Oster H: The role of circadian rhythms in the hypertension of diabetes mellitus and the metabolic syndrome. Curr Hypertens Rep. 20(43)2018.PubMed/NCBI View Article : Google Scholar

70 

Di R, Luo Q, Mathew D and Bhatwadekar AD: Diabetes alters diurnal rhythm of electroretinogram in db/db mice. Yale J Biol Med. 92:155–167. 2019.PubMed/NCBI

71 

Wang Q, Tikhonenko M, Bozack SN, Lydic TA, Yan L, Panchy NL, McSorley KM, Faber MS, Yan Y, Boulton ME, et al: Changes in the daily rhythm of lipid metabolism in the diabetic retina. PLoS One. 9(e95028)2014.PubMed/NCBI View Article : Google Scholar

72 

Luo Q, Xiao Y, Alex A, Cummins TR and Bhatwadekar AD: The diurnal rhythm of insulin receptor substrate-1 (IRS-1) and Kir4.1 in diabetes: Implications for a clock gene Bmal1. Invest Ophthalmol Vis Sci. 60:1928–1936. 2019.PubMed/NCBI View Article : Google Scholar

73 

Wang Y, An H, Liu T, Qin C, Sesaki H, Guo S, Radovick S, Hussain M, Maheshwari A, Wondisford FE, et al: Metformin improves mitochondrial respiratory activity through activation of AMPK. Cell Rep. 29:1511–1523.e5. 2019.PubMed/NCBI View Article : Google Scholar

74 

Alex A, Luo Q, Mathew D, Di R and Bhatwadekar AD: Metformin corrects abnormal circadian rhythm and Kir4.1 channels in diabetes. Invest Ophthalmol Vis Sci. 61(46)2020.PubMed/NCBI View Article : Google Scholar

75 

Schultze SM, Hemmings BA, Niessen M and Tschopp O: PI3K/AKT, MAPK and AMPK signalling: Protein kinases in glucose homeostasis. Expert Rev Mol Med. 14(e1)2012.PubMed/NCBI View Article : Google Scholar

76 

Lechner J, O'Leary OE and Stitt AW: The pathology associated with diabetic retinopathy. Vision Res. 139:7–14. 2017.PubMed/NCBI View Article : Google Scholar

77 

Stefanini FR, Badaró E, Falabella P, Koss M, Farah ME and Maia M: Anti-VEGF for the management of diabetic macular edema. J Immunol Res. 2014(632307)2014.PubMed/NCBI View Article : Google Scholar

78 

Lai TW, Zhang S and Wang YT: Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Prog Neurobiol. 115:157–188. 2014.PubMed/NCBI View Article : Google Scholar

79 

Welters A, Klüppel C, Mrugala J, Wörmeyer L, Meissner T, Mayatepek E, Heiss C, Eberhard D and Lammert E: NMDAR antagonists for the treatment of diabetes mellitus-Current status and future directions. Diabetes Obes Metab. 19 (Suppl 1):S95–S106. 2017.PubMed/NCBI View Article : Google Scholar

80 

Bai N, Aida T, Yanagisawa M, Katou S, Sakimura K, Mishina M and Tanaka K: NMDA receptor subunits have different roles in NMDA-induced neurotoxicity in the retina. Mol Brain. 6(34)2013.PubMed/NCBI View Article : Google Scholar

81 

Fuwa M, Kageyama M, Ohashi K, Sasaoka M, Sato R, Tanaka M and Tashiro K: Nafamostat and sepimostat identified as novel neuroprotective agents via NR2B N-methyl-D-aspartate receptor antagonism using a rat retinal excitotoxicity model. Sci Rep. 9(20409)2019.PubMed/NCBI View Article : Google Scholar

82 

Han N, Yu L, Song Z, Luo L and Wu Y: Agmatine protects Müller cells from high-concentration glucose-induced cell damage via N-methyl-D-aspartic acid receptor inhibition. Mol Med Rep. 12:1098–1106. 2015.PubMed/NCBI View Article : Google Scholar

83 

Ozaki H, Inoue R, Matsushima T, Sasahara M, Hayashi A and Mori H: Serine racemase deletion attenuates neurodegeneration and microvascular damage in diabetic retinopathy. PLoS One. 13(e0190864)2018.PubMed/NCBI View Article : Google Scholar

84 

Chen H, Ji Y, Yan X, Su G, Chen L and Xiao J: Berberine attenuates apoptosis in rat retinal Müller cells stimulated with high glucose via enhancing autophagy and the AMPK/mTOR signaling. Biomed Pharmacother. 108:1201–1207. 2018.PubMed/NCBI View Article : Google Scholar

85 

Barialai L, Strecker MI, Luger AL, Jäger M, Bruns I, Sittig ACM, Mildenberger IC, Heller SM, Delaidelli A, Lorenz NI, et al: AMPK activation protects astrocytes from hypoxia-induced cell death. Int J Mol Med. 45:1385–1396. 2020.PubMed/NCBI View Article : Google Scholar

86 

Ulbricht E, Pannicke T, Hollborn M, Raap M, Goczalik I, Iandiev I, Härtig W, Uhlmann S, Wiedemann P, Reichenbach A, et al: Proliferative gliosis causes mislocation and inactivation of inwardly rectifying K(+) (Kir) channels in rabbit retinal glial cells. Exp Eye Res. 86:305–313. 2008.PubMed/NCBI View Article : Google Scholar

87 

Sene A, Tadayoni R, Pannicke T, Wurm A, El Mathari B, Benard R, Roux MJ, Yaffe D, Mornet D, Reichenbach A, et al: Functional implication of Dp71 in osmoregulation and vascular permeability of the retina. PLoS One. 4(e7329)2009.PubMed/NCBI View Article : Google Scholar

88 

Vacca O, Charles-Messance H, El Mathari B, Sene A, Barbe P, Fouquet S, Aragón J, Darche M, Giocanti-Aurégan A, Paques M, et al: AAV-mediated gene therapy in Dystrophin-Dp71 deficient mouse leads to blood-retinal barrier restoration and oedema reabsorption. Hum Mol Genet. 25:3070–3079. 2016.PubMed/NCBI View Article : Google Scholar

89 

Siqueiros-Marquez L, Bénard R, Vacca O, Charles-Messance H, Bolaños-Jimenez R, Guilloneau X, Sennlaub F, Montañez C, Sahel JA, Rendon A, et al: Protection of glial Müller cells by dexamethasone in a mouse model of surgically induced blood-retinal barrier breakdown. Invest Ophthalmol Vis Sci. 58:876–886. 2017.PubMed/NCBI View Article : Google Scholar

90 

Liu XQ, Kobayashi H, Jin ZB, Wada A and Nao IN: Differential expression of Kir4.1 and aquaporin 4 in the retina from endotoxin-induced uveitis rat. Mol Vis. 13:309–317. 2007.PubMed/NCBI

91 

Sun W, Li T, Ma H, Lin S, Xie M, Luo Y, Tian R and Tang S: The effect of K+ channel opener pinacidil on the transmembrane potassi channel protein Kir4.1 of retinal Müller cells in vitro and diabetic rats. Panminerva Med. 62:268–270. 2020.PubMed/NCBI View Article : Google Scholar

92 

Jung E and Kim J: Aloin inhibits Müller cells swelling in a rat model of thioacetamide-induced hepatic retinopathy. Molecules. 23(2806)2018.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li X, Lv J, Li J and Ren X: Kir4.1 may represent a novel therapeutic target for diabetic retinopathy (Review). Exp Ther Med 22: 1021, 2021.
APA
Li, X., Lv, J., Li, J., & Ren, X. (2021). Kir4.1 may represent a novel therapeutic target for diabetic retinopathy (Review). Experimental and Therapeutic Medicine, 22, 1021. https://doi.org/10.3892/etm.2021.10453
MLA
Li, X., Lv, J., Li, J., Ren, X."Kir4.1 may represent a novel therapeutic target for diabetic retinopathy (Review)". Experimental and Therapeutic Medicine 22.3 (2021): 1021.
Chicago
Li, X., Lv, J., Li, J., Ren, X."Kir4.1 may represent a novel therapeutic target for diabetic retinopathy (Review)". Experimental and Therapeutic Medicine 22, no. 3 (2021): 1021. https://doi.org/10.3892/etm.2021.10453
Copy and paste a formatted citation
x
Spandidos Publications style
Li X, Lv J, Li J and Ren X: Kir4.1 may represent a novel therapeutic target for diabetic retinopathy (Review). Exp Ther Med 22: 1021, 2021.
APA
Li, X., Lv, J., Li, J., & Ren, X. (2021). Kir4.1 may represent a novel therapeutic target for diabetic retinopathy (Review). Experimental and Therapeutic Medicine, 22, 1021. https://doi.org/10.3892/etm.2021.10453
MLA
Li, X., Lv, J., Li, J., Ren, X."Kir4.1 may represent a novel therapeutic target for diabetic retinopathy (Review)". Experimental and Therapeutic Medicine 22.3 (2021): 1021.
Chicago
Li, X., Lv, J., Li, J., Ren, X."Kir4.1 may represent a novel therapeutic target for diabetic retinopathy (Review)". Experimental and Therapeutic Medicine 22, no. 3 (2021): 1021. https://doi.org/10.3892/etm.2021.10453
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team