|
1
|
Friedman SL: Liver fibrosis-from bench to
bedside. J Hepatol. 38 (Suppl 1):S38–S53. 2003.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Hernandez-Gea V and Friedman SL:
Pathogenesis of liver fibrosis. Annu Rev Pathol. 6:425–456.
2011.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Cao L, Nicosia J, Larouche J, Zhang Y,
Bachman H, Brown AC, Holmgren L and Barker TH: Detection of an
integrin-binding mechanoswitch within fibronectin during tissue
formation and fibrosis. ACS Nano. 11:7110–7117. 2017.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Kong D, Zhang F, Zhang Z, Lu Y and Zheng
S: Clearance of activated stellate cells for hepatic fibrosis
regression: Molecular basis and translational potential. Biomed
Pharmacother. 67:246–250. 2013.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Friedman SL: Fibrogenic cell reversion
underlies fibrosis regression in liver. Proc Natl Acad Sci USA.
109:9230–9231. 2012.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Schuppan D: Structure of the extracellular
matrix in normal and fibrotic liver: Collagens and glycoproteins.
Semin Liver Dis. 10:1–10. 1990.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Herrera J, Henke CA and Bitterman PB:
Extracellular matrix as a driver of progressive fibrosis. J Clin
Invest. 128:45–53. 2018.PubMed/NCBI View
Article : Google Scholar
|
|
8
|
Anthony PP, Ishak KG, Nayak NC, Poulsen
HE, Scheuer PJ and Sobin LH: The morphology of cirrhosis.
Recommendations on definition, nomenclature, and classification by
a working group sponsored by the World Health Organization. J Clin
Pathol. 31:395–414. 1978.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Ginès P, Cárdenas A, Arroyo V and Rodés J:
Management of cirrhosis and ascites. N Engl J Med. 350:1646–1654.
2004.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Zhou WC, Zhang QB and Qiao L: Pathogenesis
of liver cirrhosis. World J Gastroenterol. 20:7312–7324.
2014.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Friedman SL, Roll FJ, Boyles J and Bissell
DM: Hepatic lipocytes: The principal collagen-producing cells of
normal rat liver. Proc Natl Acad Sci USA. 82:8681–8685.
1985.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Moreira RK: Hepatic stellate cells and
liver fibrosis. Arch Pathol Lab Med. 131:1728–1734. 2007.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Yin C, Evason KJ, Asahina K and Stainier
DY: Hepatic stellate cells in liver development, regeneration, and
cancer. J Clin Invest. 123:1902–1910. 2013.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Bataller R and Brenner DA: Hepatic
stellate cells as a target for the treatment of liver fibrosis.
Semin Liver Dis. 21:437–451. 2001.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Tsuchida T and Friedman SL: Mechanisms of
hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol.
14:397–411. 2017.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Lanzoni G, Cardinale V and Carpino G: The
hepatic, biliary, and pancreatic network of stem/progenitor cell
niches in humans: A new reference frame for disease and
regeneration. Hepatology. 64:277–286. 2016.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Kitade M, Kaji K and Yoshiji H:
Relationship between hepatic progenitor cell-mediated liver
regeneration and non-parenchymal cells. Hepatol Res. 46:1187–1193.
2016.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Boulter L, Govaere O, Bird TG, Radulescu
S, Ramachandran P, Pellicoro A, Ridgway RA, Seo SS, Spee B, Van
Rooijen N, et al: Macrophage-derived Wnt opposes Notch signaling to
specify hepatic progenitor cell fate in chronic liver disease. Nat
Med. 18:572–579. 2012.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Carpino G, Renzi A, Franchitto A,
Cardinale V, Onori P, Reid L, Alvaro D and Gaudio E:
Stem/progenitor cell niches involved in hepatic and biliary
regeneration. Stem Cells Int. 2016(3658013)2016.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Grimaldi V, De Pascale MR, Zullo A,
Soricelli A, Infante T, Mancini FP and Napoli C: Evidence of
epigenetic tags in cardiac fibrosis. J Cardiol. 69:401–408.
2017.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Kopp F and Mendell JT: Functional
classification and experimental dissection of long noncoding RNAs.
Cell. 172:393–407. 2018.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Khorkova O, Hsiao J and Wahlestedt C:
Basic biology and therapeutic implications of lncRNA. Adv Drug
Deliv Rev. 87:15–24. 2015.PubMed/NCBI View Article : Google Scholar
|
|
23
|
El Khodiry A, Afify M and El Tayebi HM:
Behind the curtain of non-coding RNAs; long non-coding RNAs
regulating hepatocarcinogenesis. World J Gastroenterol. 24:549–572.
2018.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Iyer MK, Niknafs YS, Malik R, Singhal U,
Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, et
al: The landscape of long noncoding RNAs in the human
transcriptome. Nat Genet. 47:199–208. 2015.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Djebali S, Davis CA, Merkel A, Dobin A,
Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F,
et al: Landscape of transcription in human cells. Nature.
489:101–108. 2012.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Fatica A and Bozzoni I: Long non-coding
RNAs: New players in cell differentiation and development. Nat Rev
Genet. 15:7–21. 2014.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Ponting CP, Oliver PL and Reik W:
Evolution and functions of long noncoding RNAs. Cell. 136:629–641.
2009.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Jiang X, Lei R and Ning Q: Circulating
long noncoding RNAs as novel biomarkers of human diseases. Biomark
Med. 10:757–769. 2016.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Hellerbrand C, Stefanovic B, Giordano F,
Burchardt ER and Brenner DA: The role of TGFbeta1 in initiating
hepatic stellate cell activation in vivo. J Hepatol. 30:77–87.
1999.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Inagaki Y and Okazaki I: Emerging insights
into Transforming growth factor beta Smad signal in hepatic
fibrogenesis. Gut. 56:284–292. 2007.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Dooley S and ten Dijke P: TGF-β in
progression of liver disease. Cell Tissue Res. 347:245–256.
2012.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Fabregat I, Moreno-Càceres J, Sánchez A,
Dooley S, Dewidar B, Giannelli G and Ten Dijke P: IT-LIVER
Consortium. TGF-β signalling and liver disease. FEBS J.
283:2219–2232. 2016.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Breitkopf K, Godoy P, Ciuclan L, Singer MV
and Dooley S: TGF-beta/Smad signaling in the injured liver. Z
Gastroenterol. 44:57–66. 2006.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Friedman SL: Hepatic stellate cells:
Protean, multifunctional, and enigmatic cells of the liver. Physiol
Rev. 88:125–172. 2008.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Border WA and Noble NA: Evidence that
TGF-beta should be a therapeutic target in diabetic nephropathy.
Kidney Int. 54:1390–1391. 1998.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Fu N, Niu X, Wang Y, Du H, Wang B, Du J,
Li Y, Wang R, Zhang Y, Zhao S, et al: Role of LncRNA-activated by
transforming growth factor beta in the progression of hepatitis C
virus-related liver fibrosis. Discov Med. 22:29–42. 2016.PubMed/NCBI
|
|
37
|
Zhang K, Han X, Zhang Z, Zheng L, Hu Z,
Yao Q, Cui H, Shu G, Si M, Li C, et al: The liver-enriched
lnc-LFAR1 promotes liver fibrosis by activating TGFβ and Notch
pathways. Nat Commun. 8(144)2017.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Zheng J, Mao Y, Dong P, Huang Z and Yu F:
Long noncoding RNA HOTTIP mediates SRF expression through sponging
miR-150 in hepatic stellate cells. J Cell Mol Med. 23:1572–1580.
2019.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Li Z, Wang J, Zeng Q, Hu C, Zhang J, Wang
H, Yan J, Li H and Yu Z: Long noncoding RNA HOTTIP promotes mouse
hepatic stellate cell activation via downregulating miR-148a. Cell
Physiol Biochem. 51:2814–2828. 2018.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Jung KH, Zhang J, Zhou C, Shen H, Gagea M,
Rodriguez-Aguayo C, Lopez-Berestein G, Sood AK and Beretta L:
Differentiation therapy for hepatocellular carcinoma: Multifaceted
effects of miR-148a on tumor growth and phenotype and liver
fibrosis. Hepatology. 63:864–879. 2016.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Keniry A, Oxley D, Monnier P, Kyba M,
Dandolo L, Smits G and Reik W: The H19 lincRNA is a developmental
reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell
Biol. 14:659–665. 2012.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Chen X, Yamamoto M, Fujii K, Nagahama Y,
Ooshio T, Xin B, Okada Y, Furukawa H and Nishikawa Y: Differential
reactivation of fetal/neonatal genes in mouse liver tumors induced
in cirrhotic and non-cirrhotic conditions. Cancer Sci. 106:972–981.
2015.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Zhang L, Zhou F, Drabsch Y, Gao R,
Snaar-Jagalska BE, Mickanin C, Huang H, Sheppard KA, Porter JA, Lu
CX and ten Dijke P: USP4 is regulated by AKT phosphorylation and
directly deubiquitylates TGF-β type I receptor. Nat Cell Biol.
14:717–726. 2012.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Zhu J, Luo Z, Pan Y, Zheng W, Li W, Zhang
Z, Xiong P, Xu D, Du M, Wang B, et al: H19/miR-148a/USP4 axis
facilitates liver fibrosis by enhancing TGF-β signaling in both
hepatic stellate cells and hepatocytes. J Cell Physiol.
234:9698–9710. 2019.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Zhou B, Yuan W and Li X: LncRNA Gm5091
alleviates alcoholic hepatic fibrosis by sponging miR-27b/23b/24 in
mice. Cell Biol Int. 42:1330–1339. 2018.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Rogler CE, Matarlo JS, Kosmyna B, Fulop D
and Rogler LE: Knockdown of miR-23, miR-27, and miR-24 alters fetal
liver development and blocks fibrosis in mice. Gene Expr.
17:99–114. 2017.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Zhu D, Lyu L, Shen P, Wang J, Chen J, Sun
X, Chen L, Zhang L, Zhou Q and Duan Y: rSjP40 protein promotes
PPARγ expression in LX-2 cells through microRNA-27b. FASEB J.
32:4798–4803. 2018.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Clemson CM, Hutchinson JN, Sara SA,
Ensminger AW, Fox AH, Chess A and Lawrence JB: An architectural
role for a nuclear noncoding RNA: NEAT1 RNA is essential for the
structure of paraspeckles. Mol Cell. 33:717–726. 2009.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Kong Y, Huang T, Zhang H, Zhang Q, Ren J,
Guo X, Fan H and Liu L: The lncRNA NEAT1/miR-29b/Atg9a axis
regulates IGFBPrP1-induced autophagy and activation of mouse
hepatic stellate cells. Life Sci. 237(116902)2019.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Yu F, Jiang Z, Chen B, Dong P and Zheng J:
NEAT1 accelerates the progression of liver fibrosis via regulation
of microRNA-122 and Kruppel-like factor 6. J Mol Med (Berl).
95:1191–1202. 2017.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Zeng C, Wang YL, Xie C, Sang Y, Li TJ,
Zhang M, Wang R, Zhang Q, Zheng L and Zhuang SM: Identification of
a novel TGF-β-miR-122-fibronectin 1/serum response factor signaling
cascade and its implication in hepatic fibrogenesis. Oncotarget.
6:12224–12233. 2015.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Kim Y, Ratziu V, Choi SG, Lalazar A,
Theiss G, Dang Q, Kim SJ and Friedman SL: Transcriptional
activation of transforming growth factor beta1 and its receptors by
the Kruppel-like factor Zf9/core promoter-binding protein and Sp1.
Potential mechanisms for autocrine fibrogenesis in response to
injury. J Biol Chem. 273:33750–33758. 1998.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Tsai WC, Hsu SD, Hsu CS, Lai TC, Chen SJ,
Shen R, Huang Y, Chen HC, Lee CH, Tsai TF, et al: MicroRNA-122
plays a critical role in liver homeostasis and
hepatocarcinogenesis. J Clin Invest. 122:2884–2897. 2012.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Zhang K, Han Y, Hu Z, Zhang Z, Shao S, Yao
Q, Zheng L, Wang J, Han X, Zhang Y, et al: SCARNA10, a
nuclear-retained long non-coding RNA, promotes liver fibrosis and
serves as a potential biomarker. Theranostics. 9:3622–3638.
2019.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Tu X, Zhang H, Zhang J, Zhao S, Zheng X,
Zhang Z, Zhu J, Chen J, Dong L, Zang Y, et al: MicroRNA-101
suppresses liver fibrosis by targeting the TGFβ signalling pathway.
J Pathol. 234:46–59. 2014.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Rapicavoli NA, Qu K, Zhang J, Mikhail M,
Laberge RM and Chang HY: A mammalian pseudogene lncRNA at the
interface of inflammation and anti-inflammatory therapeutics.
Elife. 2(e00762)2013.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Nusslein-Volhard C and Wieschaus E:
Mutations affecting segment number and polarity in
Drosophila. Nature. 287:795–801. 1980.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Omenetti A, Choi S, Michelotti G and Diehl
AM: Hedgehog signaling in the liver. J Hepatol. 54:366–373.
2011.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Machado MV and Diehl AM: Hedgehog
signalling in liver pathophysiology. J Hepatol. 68:550–562.
2018.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Gorojankina T: Hedgehog signaling pathway:
A novel model and molecular mechanisms of signal transduction. Cell
Mol Life Sci. 73:1317–1332. 2016.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Sicklick JK, Li YX, Melhem A, Schmelzer E,
Zdanowicz M, Huang J, Caballero M, Fair JH, Ludlow JW, McClelland
RE, et al: Hedgehog signaling maintains resident hepatic
progenitors throughout life. Am J Physiol Gastrointest Liver
Physiol. 290:G859–G870. 2006.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Xie G, Choi SS, Syn WK, Michelotti GA,
Swiderska M, Karaca G, Chan IS, Chen Y and Diehl AM: Hedgehog
signalling regulates liver sinusoidal endothelial cell
capillarisation. Gut. 62:299–309. 2013.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Syn WK, Agboola KM, Swiderska M,
Michelotti GA, Liaskou E, Pang H, Xie G, Philips G, Chan IS, Karaca
GF, et al: NKT-associated hedgehog and osteopontin drive
fibrogenesis in non-alcoholic fatty liver disease. Gut.
61:1323–1329. 2012.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Yang L, Wang Y, Mao H, Fleig S, Omenetti
A, Brown KD, Sicklick JK, Li YX and Diehl AM: Sonic hedgehog is an
autocrine viability factor for myofibroblastic hepatic stellate
cells. J Hepatol. 48:98–106. 2008.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Gao L, Zhang Z, Zhang P, Yu M and Yang T:
Role of canonical Hedgehog signaling pathway in liver. Int J Biol
Sci. 14:1636–1644. 2018.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Chen Y, Choi SS, Michelotti GA, Chan IS,
Swiderska-Syn M, Karaca GF, Xie G, Moylan CA, Garibaldi F, Premont
R, et al: Hedgehog controls hepatic stellate cell fate by
regulating metabolism. Gastroenterology. 143:1319–1329.e11.
2012.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Briscoe J and Thérond PP: The mechanisms
of Hedgehog signalling and its roles in development and disease.
Nat Rev Mol Cell Biol. 14:416–429. 2013.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Syn WK, Jung Y, Omenetti A, Abdelmalek M,
Guy CD, Yang L, Wang J, Witek RP, Fearing CM, Pereira TA, et al:
Hedgehog-mediated epithelial-to-mesenchymal transition and
fibrogenic repair in nonalcoholic fatty liver disease.
Gastroenterology. 137:1478–1488.e8. 2009.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Sicklick JK, Li YX, Choi SS, Qi Y, Chen W,
Bustamante M, Huang J, Zdanowicz M, Camp T, Torbenson MS, et al:
Role for hedgehog signaling in hepatic stellate cell activation and
viability. Lab Invest. 85:1368–1380. 2005.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Omenetti A, Yang L, Li YX, McCall SJ, Jung
Y, Sicklick JK, Huang J, Choi S, Suzuki A and Diehl AM:
Hedgehog-mediated mesenchymal-epithelial interactions modulate
hepatic response to bile duct ligation. Lab Invest. 87:499–514.
2007.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Choi SS, Syn WK, Karaca GF, Omenetti A,
Moylan CA, Witek RP, Agboola KM, Jung Y, Michelotti GA and Diehl
AM: Leptin promotes the myofibroblastic phenotype in hepatic
stellate cells by activating the hedgehog pathway. J Biol Chem.
285:36551–36560. 2010.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Choi SS, Omenetti A, Witek RP, Moylan CA,
Syn WK, Jung Y, Yang L, Sudan DL, Sicklick JK, Michelotti GA, et
al: Hedgehog pathway activation and epithelial-to-mesenchymal
transitions during myofibroblastic transformation of rat hepatic
cells in culture and cirrhosis. Am J Physiol Gastrointest Liver
Physiol. 297:G1093–G1106. 2009.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Zheng J, Yu F, Dong P, Wu L, Zhang Y, Hu Y
and Zheng L: Long non-coding RNA PVT1 activates hepatic stellate
cells through competitively binding microRNA-152. Oncotarget.
7:62886–62897. 2016.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Yang JJ, Tao H, Huang C, Shi KH, Ma TT,
Bian EB, Zhang L, Liu LP, Hu W, Lv XW and Li J: DNA methylation and
MeCP2 regulation of PTCH1 expression during rats hepatic fibrosis.
Cell Signal. 25:1202–1211. 2013.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Yu F, Lu Z, Chen B, Wu X, Dong P and Zheng
J: Salvianolic acid B-induced microRNA-152 inhibits liver fibrosis
by attenuating DNMT1-mediated Patched1 methylation. J Cell Mol Med.
19:2617–2632. 2015.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Yu F, Geng W, Dong P, Huang Z and Zheng J:
LncRNA-MEG3 inhibits activation of hepatic stellate cells through
SMO protein and miR-212. Cell Death Dis. 9(1014)2018.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Haertle L, Maierhofer A, Böck J, Lehnen H,
Böttcher Y, Blüuher M, Schorsch M, Potabattula R, El Hajj N,
Appenzeller S and Haaf T: Hypermethylation of the non-imprinted
maternal MEG3 and paternal MEST alleles is highly variable among
normal individuals. PLoS One. 12(e0184030)2017.PubMed/NCBI View Article : Google Scholar
|
|
78
|
He Y, Wu YT, Huang C, Meng XM, Ma TT, Wu
BM, Xu FY, Zhang L, Lv XW and Li J: Inhibitory effects of long
noncoding RNA MEG3 on hepatic stellate cells activation and liver
fibrogenesis. Biochim Biophys Acta. 1842:2204–2215. 2014.PubMed/NCBI View Article : Google Scholar
|
|
79
|
He Y, Meng XM, Huang C, Wu BM, Zhang L, Lv
XW and Li J: Long noncoding RNAs: Novel insights into hepatocelluar
carcinoma. Cancer Lett. 344:20–27. 2014.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Logan CY and Nusse R: The Wnt signaling
pathway in development and disease. Annu Rev Cell Dev Biol.
20:781–810. 2004.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Bejsovec A: Wnt signaling: An
embarrassment of receptors. Curr Biol. 10:R919–R922.
2000.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Habas R and Dawid IB: Dishevelled and Wnt
signaling: Is the nucleus the final frontier? J Biol.
4(2)2005.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Miller JR, Hocking AM, Brown JD and Moon
RT: Mechanism and function of signal transduction by the
Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene. 18:7860–7872.
1999.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Kühl M, Sheldahl LC, Park M, Miller JR and
Moon RT: The Wnt/Ca2+ pathway: A new vertebrate Wnt
signaling pathway takes shape. Trends Genet. 16:279–283.
2000.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Veeman MT, Axelrod JD and Moon RT: A
second canon. Functions and mechanisms of beta-catenin-independent
Wnt signaling. Dev Cell. 5:367–377. 2003.PubMed/NCBI View Article : Google Scholar
|
|
86
|
van Amerongen R, Mikels A and Nusse R:
Alternative wnt signaling is initiated by distinct receptors. Sci
Signal. 1(re9)2008.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Monga SP: beta-catenin signaling and roles
in liver homeostasis, injury, and tumorigenesis. Gastroenterology.
148:1294–1310. 2015.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Rios-Esteves J and Resh MD: Stearoyl CoA
desaturase is required to produce active, lipid-modified Wnt
proteins. Cell Rep. 4:1072–1081. 2013.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Zhao C, Zhang M, Liu W, Wang C, Zhang Q
and Li W: β-catenin knockdown inhibits pituitary adenoma cell
proliferation and invasion via interfering with AKT and gelatinases
expression. Int J Oncol. 46:1643–1650. 2015.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Xu W and Kimelman D: Mechanistic insights
from structural studies of beta-catenin and its binding partners. J
Cell Sci. 120:3337–3344. 2007.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Zhu Y, Tan J, Xie H, Wang J, Meng X and
Wang R: HIF-1α regulates EMT via the Snail and beta-catenin
pathways in paraquat poisoning-induced early pulmonary fibrosis. J
Cell Mol Med. 20:688–697. 2016.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Thompson MD and Monga SP: WNT/beta-catenin
signaling in liver health and disease. Hepatology. 45:1298–1305.
2007.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Miller JR: The Wnts. Genome Biol.
3(REVIEWS3001)2002.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Miao CG, Yang YY, He X, Huang C, Huang Y,
Zhang L, Lv XW, Jin Y and Li J: Wnt signaling in liver fibrosis:
Progress, challenges and potential directions. Biochimie.
95:2326–2335. 2013.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Ge WS, Wang YJ, Wu JX, Fan JG, Chen YW and
Zhu L: β-catenin is overexpressed in hepatic fibrosis and blockage
of Wnt/β-catenin signaling inhibits hepatic stellate cell
activation. Mol Med Rep. 9:2145–2151. 2014.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Osawa Y, Oboki K, Imamura J, Kojika E,
Hayashi Y, Hishima T, Saibara T, Shibasaki F, Kohara M and Kimura
K: Inhibition of cyclic adenosine monophosphate (cAMP)-response
element-binding protein (CREB)-binding protein (CBP)/β-catenin
reduces liver fibrosis in mice. EBioMedicine. 2:1751–1758.
2015.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Kordes C, Sawitza I and Haussinger D:
Canonical Wnt signaling maintains the quiescent stage of hepatic
stellate cells. Biochem Biophys Res Commun. 367:116–123.
2008.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Yin X, Yi H, Wang L, Wu W, Wu X and Yu L:
RSPOs facilitated HSC activation and promoted hepatic fibrogenesis.
Oncotarget. 7:63767–63778. 2016.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Corbett L, Mann J and Mann DA:
Non-canonical Wnt predominates in activated rat hepatic stellate
cells, influencing HSC survival and paracrine stimulation of
kupffer cells. PLoS One. 10(e0142794)2015.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Chatani N, Kamada Y, Kizu T, Ogura S,
Furuta K, Egawa M, Hamano M, Ezaki H, Kiso S, Shimono A, et al:
Secreted frizzled-related protein 5 (Sfrp5) decreases hepatic
stellate cell activation and liver fibrosis. Liver Int.
35:2017–2026. 2015.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Shi SJ, Wang LJ, Yu B, Li YH, Jin Y and
Bai XZ: LncRNA-ATB promotes trastuzumab resistance and
invasion-metastasis cascade in breast cancer. Oncotarget.
6:11652–11663. 2015.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Li J, Li Z, Zheng W, Li X, Wang Z, Cui Y
and Jiang X: LncRNA-ATB: An indispensable cancer-related long
noncoding RNA. Cell Prolif. 50(e12381)2017.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ,
Tao QF, Liu F, Pan W, Wang TT, Zhou CC, et al: A long noncoding RNA
activated by TGF-beta promotes the invasion-metastasis cascade in
hepatocellular carcinoma. Cancer Cell. 25:666–681. 2014.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Liu J, Ruan B, You N, Huang Q, Liu W, Dang
Z, Xu W, Zhou T, Ji R, Cao Y, et al: Downregulation of miR-200a
induces EMT phenotypes and CSC-like signatures through targeting
the β-catenin pathway in hepatic oval cells. PLoS One.
8(e79409)2013.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Su J, Zhang A, Shi Z, Ma F, Pu P, Wang T,
Zhang J, Kang C and Zhang Q: MicroRNA-200a suppresses the
Wnt/β-catenin signaling pathway by interacting with β-catenin. Int
J Oncol. 40:1162–1170. 2012.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Fu N, Zhao SX, Kong LB, Du JH, Ren WG, Han
F, Zhang QS, Li WC, Cui P, Wang RQ, et al:
LncRNA-ATB/microRNA-200a/β-catenin regulatory axis involved in the
progression of HCV-related hepatic fibrosis. Gene. 618:1–7.
2017.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Yu F, Zhou G, Huang K, Fan X, Li G, Chen
B, Dong P and Zheng J: Serum lincRNA-p21 as a potential biomarker
of liver fibrosis in chronic hepatitis B patients. J Viral Hepat.
24:580–588. 2017.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Yu F, Dong P, Mao Y, Zhao B, Huang Z and
Zheng J: Loss of lncRNA-SNHG7 Promotes the Suppression of Hepatic
Stellate Cell Activation via miR-378a-3p and DVL2. Mol Ther Nucleic
Acids. 17:235–244. 2019.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Chen W, Zhao W, Yang A, Xu A, Wang H, Cong
M, Liu T, Wang P and You H: Integrated analysis of microRNA and
gene expression profiles reveals a functional regulatory module
associated with liver fibrosis. Gene. 636:87–95. 2017.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Yao X, Liu C, Liu C, Xi W, Sun S and Gao
Z: lncRNA SNHG7 sponges miR-425 to promote proliferation,
migration, and invasion of hepatic carcinoma cells via
Wnt/β-catenin/EMT signalling pathway. Cell Biochem Funct.
37:525–533. 2019.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Chakraborty JB and Mann DA: NF-kappaB
signalling: Embracing complexity to achieve translation. J Hepatol.
52:285–291. 2010.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Ghosh S and Karin M: Missing pieces in the
NF-kappaB puzzle. Cell. 109 (Suppl):S81–S96. 2002.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Sen R and Baltimore D: Multiple nuclear
factors interact with the immunoglobulin enhancer sequences. Cell.
46:705–716. 1986.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Taniguchi K and Karin M: NF-κB,
inflammation, immunity and cancer: Coming of age. Nat Rev Immunol.
18:309–324. 2018.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Gilmore TD: Introduction to NF-kappaB:
Players, pathways, perspectives. Oncogene. 25:6680–6684.
2006.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Olefsky JM and Glass CK: Macrophages,
inflammation, and insulin resistance. Annu Rev Physiol. 72:219–246.
2010.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Luedde T and Schwabe RF: NF-κB in the
liver-linking injury, fibrosis and hepatocellular carcinoma. Nat
Rev Gastroenterol Hepatol. 8:108–118. 2011.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Duffield JS, Forbes SJ, Constandinou CM,
Clay S, Partolina M, Vuthoori S, Wu S, Lang R and Iredale JP:
Selective depletion of macrophages reveals distinct, opposing roles
during liver injury and repair. J Clin Invest. 115:56–65.
2005.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Pradere JP, Kluwe J, De Minicis S, Jiao
JJ, Gwak GY, Dapito DH, Jang MK, Guenther ND, Mederacke I, Friedman
R, et al: Hepatic macrophages but not dendritic cells contribute to
liver fibrosis by promoting the survival of activated hepatic
stellate cells in mice. Hepatology. 58:1461–1473. 2013.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Lv P, Luo HS, Zhou XP, Xiao YJ, Paul SC,
Si XM and Zhou YH: Reversal effect of thalidomide on established
hepatic cirrhosis in rats via inhibition of nuclear
factor-kappaB/inhibitor of nuclear factor-kappaB pathway. Arch Med
Res. 38:15–27. 2007.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Oakley F, Meso M, Iredale JP, Green K,
Marek CJ, Zhou X, May MJ, Millward-Sadler H, Wright MC and Mann DA:
Inhibition of inhibitor of kappaB kinases stimulates hepatic
stellate cell apoptosis and accelerated recovery from rat liver
fibrosis. Gastroenterology. 128:108–120. 2005.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Wright MC, Issa R, Smart DE, Trim N,
Murray GI, Primrose JN, Arthur MJ, Iredale JP and Mann DA:
Gliotoxin stimulates the apoptosis of human and rat hepatic
stellate cells and enhances the resolution of liver fibrosis in
rats. Gastroenterology. 121:685–698. 2001.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Seki E, De Minicis S, Osterreicher CH,
Kluwe J, Osawa Y, Brenner DA and Schwabe RF: TLR4 enhances TGF-beta
signaling and hepatic fibrosis. Nat Med. 13:1324–1332.
2007.PubMed/NCBI View
Article : Google Scholar
|
|
124
|
Sunami Y, Leithauser F, Gul S, Fiedler K,
Guldiken N, Espenlaub S, Holzmann KH, Hipp N, Sindrilaru A, Luedde
T, et al: Hepatic activation of IKK/NFκB signaling induces liver
fibrosis via macrophage-mediated chronic inflammation. Hepatology.
56:1117–1128. 2012.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Shen H, Sheng L, Chen Z, Jiang L, Su H,
Yin L, Omary MB and Rui L: Mouse hepatocyte overexpression of
NF-κB-inducing kinase (NIK) triggers fatal macrophage-dependent
liver injury and fibrosis. Hepatology. 60:2065–2076.
2014.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Son G, Iimuro Y, Seki E, Hirano T, Kaneda
Y and Fujimoto J: Selective inactivation of NF-kappaB in the liver
using NF-kappaB decoy suppresses CCl4-induced liver injury and
fibrosis. Am J Physiol Gastrointest Liver Physiol. 293:G631–G639.
2007.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Zhang H, Li H, Ge A, Guo E, Liu S and
Zhang L: Long non-coding RNA TUG1 inhibits apoptosis and
inflammatory response in LPS-treated H9c2 cells by down-regulation
of miR-29b. Biomed Pharmacother. 101:663–669. 2018.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Roderburg C, Urban GW, Bettermann K, Vucur
M, Zimmermann H, Schmidt S, Janssen J, Koppe C, Knolle P, Castoldi
M, et al: Micro-RNA profiling reveals a role for miR-29 in human
and murine liver fibrosis. Hepatology. 53:209–218. 2011.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Sekiya Y, Ogawa T, Yoshizato K, Ikeda K
and Kawada N: Suppression of hepatic stellate cell activation by
microRNA-29b. Biochem Biophys Res Commun. 412:74–79.
2011.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Ogawa T, Iizuka M, Sekiya Y, Yoshizato K,
Ikeda K and Kawada N: Suppression of type I collagen production by
microRNA-29b in cultured human stellate cells. Biochem Biophys Res
Commun. 391:316–321. 2010.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Xing TJ, Jiang DF, Huang JX and Xu ZL:
Expression and clinical significance of miR-122 and miR-29 in
hepatitis B virus-related liver disease. Genet Mol Res.
13:7912–7918. 2014.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Han X, Hong Y and Zhang K: TUG1 is
involved in liver fibrosis and activation of HSCs by regulating
miR-29b. Biochem Biophys Res Commun. 503:1394–1400. 2018.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Geisler F and Strazzabosco M: Emerging
roles of Notch signaling in liver disease. Hepatology. 61:382–392.
2015.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Morell CM and Strazzabosco M: Notch
signaling and new therapeutic options in liver disease. J Hepatol.
60:885–890. 2014.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Siebel C and Lendahl U: Notch signaling in
development, tissue homeostasis, and disease. Physiol Rev.
97:1235–1294. 2017.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Wakabayashi N, Chartoumpekis DV and
Kensler TW: Crosstalk between Nrf2 and Notch signaling. Free Radic
Biol Med. 88:158–167. 2015.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Ni MM, Wang YR, Wu WW, Xia CC, Zhang YH,
Xu J, Xu T and Li J: Novel Insights on Notch signaling pathways in
liver fibrosis. Eur J Pharmacol. 826:66–74. 2018.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Kimball AS, Joshi AD, Boniakowski AE,
Schaller M, Chung J, Allen R, Bermick J, Carson WF IV, Henke PK,
Maillard I, et al: Notch regulates macrophage-mediated inflammation
in diabetic wound healing. Front Immunol. 8(635)2017.PubMed/NCBI View Article : Google Scholar
|
|
139
|
Wang T, Xiang Z, Wang Y, Li X, Fang C,
Song S, Li C, Yu H, Wang H, Yan L, et al: (-)-Epigallocatechin
gallate targets notch to attenuate the inflammatory response in the
immediate early stage in human macrophages. Front Immunol.
8(433)2017.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Xie G, Karaca G, Swiderska-Syn M,
Michelotti GA, Kruger L, Chen Y, Premont RT, Choi SS and Diehl AM:
Cross-talk between Notch and Hedgehog regulates hepatic stellate
cell fate in mice. Hepatology. 58:1801–1813. 2013.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Romeo S: Notch and nonalcoholic fatty
liver and fibrosis. N Engl J Med. 380:681–683. 2019.PubMed/NCBI View Article : Google Scholar
|
|
142
|
Zhu C, Kim K, Wang X, Bartolome A, Salomao
M, Dongiovanni P, Meroni M, Graham MJ, Yates KP, Diehl AM, et al:
Hepatocyte Notch activation induces liver fibrosis in nonalcoholic
steatohepatitis. Sci Transl Med. 10(eaat0344)2018.PubMed/NCBI View Article : Google Scholar
|
|
143
|
Iso T, Kedes L and Hamamori Y: HES and
HERP families: Multiple effectors of the Notch signaling pathway. J
Cell Physiol. 194:237–255. 2003.PubMed/NCBI View Article : Google Scholar
|
|
144
|
Kageyama R, Ohtsuka T, Hatakeyama J and
Ohsawa R: Roles of bHLH genes in neural stem cell differentiation.
Exp Cell Res. 306:343–348. 2005.PubMed/NCBI View Article : Google Scholar
|
|
145
|
Yu F, Chen B, Dong P and Zheng J: HOTAIR
epigenetically modulates PTEN expression via MicroRNA-29b: A novel
mechanism in regulation of liver fibrosis. Mol Ther. 25:205–217.
2017.PubMed/NCBI View Article : Google Scholar
|
|
146
|
Dong Z, Li S, Wang X, Si L, Ma R, Bao L
and Bo A: lncRNA GAS5 restrains CCl4-induced hepatic fibrosis by
targeting miR-23a through the PTEN/PI3K/Akt signaling pathway. Am J
Physiol Gastrointest Liver Physiol. 316:G539–G550. 2019.PubMed/NCBI View Article : Google Scholar
|