|
1
|
Stanganelli I, Spagnolo F, Argenziano G,
Ascierto PA, Bassetto F, Bossi P, Donato V, Massi D, Massone C,
Patuzzo R, et al: The multidisciplinary management of cutaneous
squamous cell carcinoma: A comprehensive review and clinical
recommendations by a panel of experts. Cancers (Basel).
14(377)2022.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Parekh V and Seykora JT: Cutaneous
squamous cell carcinoma. Clin Lab Med. 37:503–525. 2017.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Lomas A, Leonardi-Bee J and Bath-Hextall
F: A systematic review of worldwide incidence of nonmelanoma skin
cancer. Br J Dermatol. 166:1069–1080. 2012.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Claveau J, Archambault J, Ernst DS,
Giacomantonio C, Limacher JJ, Murray C, Parent F and Zloty D:
Multidisciplinary management of locally advanced and metastatic
cutaneous squamous cell carcinoma. Curr Oncol. 27:e399–e407.
2020.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Roscher I, Falk RS, Vos L, Clausen OPF,
Helsing P, Gjersvik P and Robsahm TE: Validating 4 staging systems
for cutaneous squamous cell carcinoma using population-based data:
A nested case-control study. JAMA Dermatol. 154:428–434.
2018.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Morgado-Carrasco D, Bosch-Amate X,
Fusta-Novell X and Garcia-Herrera A: RF-staging cutaneous squamous
cell carcinoma: Challenges and questions. Actas Dermosifiliogr
(Engl Ed). 111:261–262. 2020.PubMed/NCBI View Article : Google Scholar : (In English,
Spanish).
|
|
7
|
Ruiz ES, Karia PS, Besaw R and Schmults
CD: Performance of the American joint committee on cancer staging
manual, 8th Edition vs. the Brigham and Women's hospital tumor
classification system for cutaneous squamous cell carcinoma. JAMA
Dermatol. 155:819–825. 2019.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Kalluri R and Weinberg RA: The basics of
epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428.
2009.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Micalizzi DS, Farabaugh SM and Ford HL:
Epithelial-mesenchymal transition in cancer: Parallels between
normal development and tumor progression. J Mammary Gland Biol
Neoplasia. 15:117–134. 2010.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Ribatti D, Tamma R and Annese T:
Epithelial-mesenchymal transition in cancer: A historical overview.
Transl Oncol. 13(100773)2020.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Gerashchenko TS, Novikov NM, Krakhmal NV,
Zolotaryova SY, Zavyalova MV, Cherdyntseva NV, Denisov EV and
Perelmuter VM: Markers of cancer cell invasion: Are they good
enough? J Clin Med. 8(1092)2019.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Tsai JH and Yang J: Epithelial-mesenchymal
plasticity in carcinoma metastasis. Genes Dev. 27:2192–2206.
2013.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Lewis Kelso R, Colome-Grimmer MI, Uchida
T, Wang HQ and Wagner RF Jr: p75(NGFR) immunostaining for the
detection of perineural invasion by cutaneous squamous cell
carcinoma. Dermatol Surg. 32:177–183. 2006.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Kumar V, Abbas A, Aster JC and Robbins SL:
Robbins Basic Pathology, 9th Edition. Elsevier Inc., Philadelphia
PA, 2013.
|
|
15
|
Lugano R, Ramachandran M and Dimberg A:
Tumor angiogenesis: Causes, consequences, challenges and
opportunities. Cell Mol Life Sci. 77:1745–1770. 2020.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Hawighorst T: Angiogenesis,
lymphangiogenesis, and tumor progression. Zentralbl Gynakol.
124:497–505. 2002.PubMed/NCBI View Article : Google Scholar : (In German).
|
|
17
|
Iatropoulos MJ and Williams GM:
Proliferation markers. Exp Toxicol Pathol. 48:175–181.
1996.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Zitvogel L, Tesniere A and Kroemer G:
Cancer despite immunosurveillance: Immunoselection and
immunosubversion. Nat Rev Immunol. 6:715–727. 2006.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Pages F, Galon J, Dieu-Nosjean MC, Tartour
E, Sautes-Fridman C and Fridman WH: Immune infiltration in human
tumors: A prognostic factor that should not be ignored. Oncogene.
29:1093–1102. 2010.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Bui JD and Schreiber RD: Cancer
immunosurveillance, immunoediting and inflammation: Independent or
interdependent processes? Curr Opin Immunol. 19:203–208.
2007.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Strobel SB, Safferling K, Lahrmann B,
Hoffmann JH, Enk AH, Hadaschik EN, Grabe N and Lonsdorf AS: Altered
density, composition and microanatomical distribution of
infiltrating immune cells in cutaneous squamous cell carcinoma of
organ transplant recipients. Br J Dermatol. 179:405–412.
2018.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Zhao G, Kim KY, Zheng Z, Oh Y, Yoo DS, Lee
ME, Chung KY, Roh MR and Jin Z: AXIN2 and SNAIL expression predict
the risk of recurrence in cutaneous squamous cell carcinoma after
Mohs micrographic surgery. Oncol Lett. 19:2133–2140.
2020.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Toll A, Masferrer E, Hernandez-Ruiz ME,
Ferrandiz-Pulido C, Yébenes M, Jaka A, Tuneu A, Jucglà A, Gimeno J,
Baró T, et al: Epithelial to mesenchymal transition markers are
associated with an increased metastatic risk in primary cutaneous
squamous cell carcinomas but are attenuated in lymph node
metastases. J Dermatol Sci. 72:93–102. 2013.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Kourtidis A, Lu R, Pence LJ and
Anastasiadis PZ: A central role for cadherin signaling in cancer.
Exp Cell Res. 358:78–85. 2017.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Zhang Y, Liu B, Zhao Q, Hou T and Huang X:
Nuclear localizaiton of β-catenin is associated with poor survival
and chemo-/radioresistance in human cervical squamous cell cancer.
Int J Clin Exp Pathol. 7:3908–3917. 2014.PubMed/NCBI
|
|
26
|
Barrette K, Van Kelst S, Wouters J,
Marasigan V, Fieuws S, Agostinis P, van den Oord J and Garmyn M:
Epithelial-mesenchymal transition during invasion of cutaneous
squamous cell carcinoma is paralleled by AKT activation. Br J
Dermatol. 171:1014–1021. 2014.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Vinicius de LV, Scapulatempo C, Perpetuo
NM, Mohamed F, de Carvalho TS, de Oliveira AT, Segalla JG and
Carvalho AL: Prognostic and risk factors in patients with locally
advanced cutaneous squamous cell carcinoma of the trunk and
extremities. J Skin Cancer. 2011(420796)2011.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Hesse K, Satzger I, Schacht V, Köther B,
Hillen U, Klode J, Schaper K and Gutzmer R: Characterisation of
prognosis and invasion of cutaneous squamous cell carcinoma by
podoplanin and E-Cadherin expression. Dermatology. 232:558–565.
2016.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Nissinen L, Siljamaki E, Riihila P,
Piipponen M, Farshchian M, Kivisaari A, Kallajoki M, Raiko L,
Peltonen J, Peltonen S and Kähäri VM: Expression of claudin-11 by
tumor cells in cutaneous squamous cell carcinoma is dependent on
the activity of p38δ. Exp Dermatol. 26:771–777. 2017.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Clark ES, Whigham AS, Yarbrough WG and
Weaver AM: Cortactin is an essential regulator of matrix
metalloproteinase secretion and extracellular matrix degradation in
invadopodia. Cancer Res. 67:4227–4235. 2007.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Canel M, Secades P, Garzon-Arango M,
Allonca E, Suarez C, Serrels A, Frame M, Brunton V and Chiara MD:
Involvement of focal adhesion kinase in cellular invasion of head
and neck squamous cell carcinomas via regulation of MMP-2
expression. Br J Cancer. 98:1274–1284. 2008.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Munguia-Calzada P, Fernandez-Vega I,
Martinez-Camblor P, Díaz-Coto S, García-Pedrero JM, Vivanco B,
Osuna CG, Vazquez-Lopez F, Rodrigo JP and Santos-Juanes J:
Correlation of focal adhesion kinase expression with nodal
metastasis in patients with head and neck cutaneous squamous cell
carcinoma. Head Neck. 41:1290–1296. 2019.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Serrels A and Frame MC: FAK goes nuclear
to control antitumor immunity-a new target in cancer
immuno-therapy. Oncoimmunology. 5(e1119356)2016.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Rose AM, Spender LC, Stephen C, Mitchell
A, Rickaby W, Bray S, Evans AT, Dayal J, Purdie KJ, Harwood CA, et
al: Reduced SMAD2/3 activation independently predicts increased
depth of human cutaneous squamous cell carcinoma. Oncotarget.
9:14552–14566. 2018.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Cumsky HJL, Costello CM, Zhang N,
Butterfield R, Buras MR, Schmidt JE, Drenner K, Nelson SA, Ochoa
SA, Baum CL, et al: The prognostic value of inositol polyphosphate
5-phosphatase in cutaneous squamous cell carcinoma. J Am Acad
Dermatol. 80:626–632 e1. 2019.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Maly CJ, Cumsky HJL, Costello CM, Schmidt
JE, Butterfield RJ, Zhang N, DiCaudo DJ, Nelson SA, Smith ML, Ochoa
SA, et al: Prognostic value of inositol polyphosphate-5-phosphatase
expression in recurrent and metastatic cutaneous squamous cell
carcinoma. J Am Acad Dermatol. 82:846–853. 2020.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Florence ME, Massuda JY, Brocker EB, Metze
K, Cintra ML and Souza EM: Angiogenesis in the progression of
cutaneous squamous cell carcinoma: An immunohistochemical study of
endothelial markers. Clinics (Sao Paulo). 66:465–468.
2011.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Ciortea CD, Jung I, Gurzu S, Kovecsi A,
Turdean SG and Bara T: Correlation of angiogenesis with other
immunohistochemical markers in cutaneous basal and squamous cell
carcinomas. Rom J Morphol Embryol. 56 (2 Suppl):S665–S670.
2015.PubMed/NCBI
|
|
39
|
Toll A, Gimeno-Beltran J, Ferrandiz-Pulido
C, Masferrer E, Yébenes M, Jucglà A, Abal L, Martí RM, Sanmartín O,
Baró T, et al: D2-40 immunohistochemical overexpression in
cutaneous squamous cell carcinomas: A marker of metastatic risk. J
Am Acad Dermatol. 67:1310–1318. 2012.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Gulseren D, Gokoz O, Karahan S and
Karaduman A: Podoplanin expression in cutaneous squamous cell
carcinomas and its relationship to histopathological prognostic
factors. J Histotechnol. 43:147–152. 2020.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Takahara M, Chen S, Kido M, Takeuchi S,
Uchi H, Tu Y, Moroi Y and Furue M: Stromal CD10 expression, as well
as increased dermal macrophages and decreased Langerhans cells, are
associated with malignant transformation of keratinocytes. J Cutan
Pathol. 36:668–674. 2009.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Yun JH, Roh JY, Park SH and Lee JR: CD10
expression in cutaneous squamous cell carcinoma and its precursor
lesions: Evaluation using tissue microarray. Ann Dermatol.
25:515–517. 2013.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Kreuter A, Gambichler T, Pfister H and
Wieland U: Diversity of human papillomavirus types in periungual
squamous cell carcinoma. Br J Dermatol. 161:1262–1269.
2009.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Marinescu A, Stepan AE, Margaritescu C,
Marinescu AM, Zăvoi RE, Simionescu CE and Niculescu M: P53, p16 and
Ki67 immunoexpression in cutaneous squamous cell carcinoma and its
precursor lesions. Rom J Morphol Embryol. 57 (2 Suppl):S691–S696.
2016.PubMed/NCBI
|
|
45
|
Oh ST, Eun YS, Yoo DS, Park HJ, Kim TY,
Cho BK, Stark A and Reichrath J: Expression of insulin-like growth
factor-1 receptor in conventional cutaneous squamous cell carcinoma
with different histological grades of differentiation. Am J
Dermatopathol. 36:807–811. 2014.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Canueto J, Cardenoso E, Garcia JL,
Santos-Briz Á, Castellanos-Martín A, Fernández-López E, Blanco
Gómez A, Pérez-Losada J and Román-Curto C: Epidermal growth factor
receptor expression is associated with poor outcome in cutaneous
squamous cell carcinoma. Br J Dermatol. 176:1279–1287.
2017.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Chen MK, Cai MY, Luo RZ, Tian X, Liao QM,
Zhang XY and Han JD: Overexpression of p300 correlates with poor
prognosis in patients with cutaneous squamous cell carcinoma. Br J
Dermatol. 172:111–119. 2015.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Sellheyer K: Basal cell carcinoma: Cell of
origin, cancer stem cell hypothesis and stem cell markers. Br J
Dermatol. 164:696–711. 2011.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Xu R, Cai MY, Luo RZ, Tian X, Han JD and
Chen MK: The expression status and prognostic value of cancer stem
cell biomarker CD133 in cutaneous squamous cell carcinoma. JAMA
Dermatol. 152:305–311. 2016.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Farshchian M, Nissinen L, Siljamaki E,
Riihilä P, Piipponen M, Kivisaari A, Kallajoki M, Grénman R,
Peltonen J, Peltonen S, et al: Tumor cell-specific AIM2 regulates
growth and invasion of cutaneous squamous cell carcinoma.
Oncotarget. 8:45825–45836. 2017.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Ko CJ, McNiff JM and Glusac EJ: Squamous
cell carcinomas with single cell infiltration: A potential
diagnostic pitfall and the utility of MNF116 and p63. J Cutan
Pathol. 35:353–357. 2008.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Alomari AK, Glusac EJ and McNiff JM: p40
is a more specific marker than p63 for cutaneous poorly
differentiated squamous cell carcinoma. J Cutan Pathol. 41:839–845.
2014.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Yanofsky VR, Mercer SE and Phelps RG:
Histopathological variants of cutaneous squamous cell carcinoma: A
review. J Skin Cancer. 2011(210813)2011.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Morgan MB, Purohit C and Anglin TR:
Immunohistochemical distinction of cutaneous spindle cell
carcinoma. Am J Dermatopathol. 30:228–232. 2008.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Dotto JE and Glusac EJ: p63 is a useful
marker for cutaneous spindle cell squamous cell carcinoma. J Cutan
Pathol. 33:413–417. 2006.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Hall JM, Saenger JS and Fadare O:
Diagnostic utility of P63 and CD10 in distinguishing cutaneous
spindle cell/sarcomatoid squamous cell carcinomas and atypical
fibroxanthomas. Int J Clin Exp Pathol. 1:524–530. 2008.PubMed/NCBI
|
|
57
|
Gleason BC, Calder KB, Cibull TL, Thomas
AB, Billings SD, Morgan MB, Hiatt KM and Smoller BR: Utility of p63
in the differential diagnosis of atypical fibroxanthoma and spindle
cell squamous cell carcinoma. J Cutan Pathol. 36:543–547.
2009.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Ha Lan TT, Chen SJ, Arps DP, Fullen DR,
Patel RM, Siddiqui J, Carskadon S, Palanisamy N and Harms PW:
Expression of the p40 isoform of p63 has high specificity for
cutaneous sarcomatoid squamous cell carcinoma. J Cutan Pathol.
41:831–838. 2014.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Mühleisen B, Petrov I, Gachter T, Kurrer
M, Schärer L, Dummer R, French LE and Hofbauer GF: Progression of
cutaneous squamous cell carcinoma in immunosuppressed patients is
associated with reduced CD123+ and FOXP3+ cells in the
perineoplastic inflammatory infiltrate. Histopathology. 55:67–76.
2009.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Pettersen JS, Fuentes-Duculan J,
Suarez-Farinas M, Pierson KC, Pitts-Kiefer A, Fan L, Belkin DA,
Wang CQ, Bhuvanendran S, Johnson-Huang LM, et al: Tumor-associated
macrophages in the cutaneous SCC microenvironment are
heterogeneously activated. J Invest Dermatol. 131:1322–1330.
2011.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Sandvik LF, Skarstein K, Krynitz B,
Volchenkov R, Sviland L, Leivestad T, Jonsson R and Appel S:
Peritumoral dermis of squamous cell carcinomas in renal transplant
recipients contains less CD11c+ myeloid dendritic cells and FoxP3+
T cells compared to immunocompetent controls. J Eur Acad Dermatol
Venereol. 29:2128–2135. 2015.PubMed/NCBI View Article : Google Scholar
|