Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
July-2022 Volume 24 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2022 Volume 24 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Mitochondria and their potential role in acute lung injury (Review)

  • Authors:
    • Biao Zhan
    • Jie Shen
  • View Affiliations / Copyright

    Affiliations: Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
    Copyright: © Zhan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 479
    |
    Published online on: June 1, 2022
       https://doi.org/10.3892/etm.2022.11406
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Acute lung injury (ALI) and its more serious form [acute respiratory distress syndrome (ARDS)] are devastating diseases that lead to high morbidity and mortality rates in patients in intensive care units. ALI is caused by numerous direct or indirect factors, including trauma and sepsis. However, the underlying mechanism associated with the pathophysiological process of ALI has yet to be fully elucidated. As our understanding of mitochondrial biology continuously progresses, mitochondria have been largely considered as biosynthetic, bioenergetic and signaling organelles that have a critical role in the processes of cellular development, proliferation and death, and novel insights into how mitochondrial dysfunction affects the pathogenesis of different diseases have been garnered. According to current research models, functional characteristics of mitochondria are recognized to affect the function of cells and organs in ALI. The aim of the present review is therefore to discuss mitochondria and their role in ALI, and to consider how they may serve as potential therapeutic targets for this disease.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Jiang Z, Zhang L and Shen J: MicroRNA: Potential biomarker and target of therapy in acute lung injury. Hum Exp Toxicol. 39:1429–1442. 2020.PubMed/NCBI View Article : Google Scholar

2 

Mowery NT, Terzian WTH and Nelson AC: Acute lung injury. Curr Probl Surg. 57(100777)2020.PubMed/NCBI View Article : Google Scholar

3 

Bernard G, Artigas A, Brigham K, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A and Spragg R: Report of the American-European consensus conference on ARDS: Definitions, mechanisms, relevant outcomes and clinical trial coordination. The consensus committee. Intensive Care Med. 20:225–232. 1994.PubMed/NCBI View Article : Google Scholar

4 

ARDS Definition Task Force. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L and Slutsky AS: Acute respiratory distress syndrome: The Berlin definition. JAMA. 307:2526–2533. 2012.PubMed/NCBI View Article : Google Scholar

5 

Hudson LD, Milberg JA, Anardi D and Maunder RJ: Clinical risks for development of the acute respiratory distress syndrome. Am J Respir Crit Care Med. 151:293–301. 1995.PubMed/NCBI View Article : Google Scholar

6 

Looney MR, Su X, Van Ziffle JA, Lowell CA and Matthay MA: Neutrophils and their Fc gamma receptors are essential in a mouse model of transfusion-related acute lung injury. J Clin Invest. 116:1615–1623. 2006.PubMed/NCBI View Article : Google Scholar

7 

Martin T, Hagimoto N, Nakamura M and Matute-Bello G: Apoptosis and epithelial injury in the lungs. Proc Am Thorac Soc. 2:214–220. 2005.PubMed/NCBI View Article : Google Scholar

8 

Weiser M, Pechet T, Williams J, Ma M, Frenette PS, Moore FD, Kobzik L, Hines RO, Wagner DD, Carroll MC and Hechtman HB: Experimental murine acid aspiration injury is mediated by neutrophils and the alternative complement pathway. J Appl Physiol (1985). 83:1090–1095. 1997.PubMed/NCBI View Article : Google Scholar

9 

Spadaro S, Park M, Turrini C, Tunstall T, Thwaites R, Mauri T, Ragazzi R, Ruggeri P, Hansel TT, Caramori G and Volta CA: Biomarkers for acute respiratory distress syndrome and prospects for personalised medicine. J Inflamm (Lond). 16(1)2019.PubMed/NCBI View Article : Google Scholar

10 

Huang X, Xiu H, Zhang S and Zhang G: The role of macrophages in the pathogenesis of ALI/ARDS. Mediators Inflamm. 2018(1264913)2018.PubMed/NCBI View Article : Google Scholar

11 

Han S and Mallampalli RK: The acute respiratory distress syndrome: From mechanism to translation. J Immunol. 194:855–860. 2015.PubMed/NCBI View Article : Google Scholar

12 

Meduri G, Kohler G, Headley S, Tolley E, Stentz F and Postlethwaite A: Inflammatory cytokines in the BAL of patients with ARDS. Persistent elevation over time predicts poor outcome. Chest. 108:1303–1314. 1995.PubMed/NCBI View Article : Google Scholar

13 

Parsons PE, Eisner MD, Thompson BT, Matthay MA, Ancukiewicz M, Bernard GR and Wheeler AP: NHLBI Acute Respiratory Distress Syndrome Clinical Trials Network. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med. 33:1–6, 230-232. 2005.PubMed/NCBI View Article : Google Scholar

14 

Greene KE, Wright JR, Steinberg KP, Ruzinski JT, Caldwell E, Wong WB, Hull W, Whitsett JA, Akino T, Kuroki Y, et al: Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. Am J Respir Crit Care Med. 160:1843–1850. 1999.PubMed/NCBI View Article : Google Scholar

15 

Terpstra ML, Aman J, van Nieuw Amerongen GP and Groeneveld AB: Plasma biomarkers for acute respiratory distress syndrome: A systematic review and meta-analysis*. Crit Care Med. 42:691–700. 2014.PubMed/NCBI View Article : Google Scholar

16 

Ware LB, Matthay MA, Parsons PE, Thompson BT, Januzzi JL and Eisner MD: National Heart, Lung and Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network. Pathogenetic and prognostic significance of altered coagulation and fibrinolysis in acute lung injury/acute respiratory distress syndrome. Crit Care Med. 35:1821–1828. 2007.PubMed/NCBI View Article : Google Scholar

17 

Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, et al: Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 315:788–800. 2016.PubMed/NCBI View Article : Google Scholar

18 

Fan E, Brodie D and Slutsky AS: Acute respiratory distress syndrome: Advances in diagnosis and treatment. JAMA. 319:698–710. 2018.PubMed/NCBI View Article : Google Scholar

19 

Peter JV, John P, Graham PL, Moran JL, George IA and Bersten A: Corticosteroids in the prevention and treatment of acute respiratory distress syndrome (ARDS) in adults: Meta-analysis. BMJ. 336:1006–1009. 2008.PubMed/NCBI View Article : Google Scholar

20 

McAuley DF and Matthay MA: Is there a role for beta-adrenoceptor agonists in the management of acute lung injury and the acute respiratory distress syndrome? Treat Respir Med. 4:297–307. 2005.PubMed/NCBI View Article : Google Scholar

21 

Bernard GR, Luce JM, Sprung CL, Rinaldo JE, Tate RM, Sibbald WJ, Kariman K, Higgins S, Bradley R, Metz CA, et al: High-dose corticosteroids in patients with the adult respiratory distress syndrome. N Engl J Med. 317:1565–1570. 1987.PubMed/NCBI View Article : Google Scholar

22 

Steinberg KP, Hudson LD, Goodman RB, Hough CL, Lanken PN, Hyzy R, Thompson BT and Ancukiewicz M: National Heart, Lung and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med. 354:1671–1684. 2006.PubMed/NCBI View Article : Google Scholar

23 

Doig C: Aerosolized surfactant in sepsis-induced adult respiratory distress syndrome. JAMA. 273:1259–1260. 1995.PubMed/NCBI

24 

Domenighetti G, Suter PM, Schaller MD, Ritz R and Perret C: Treatment with N-acetylcysteine during acute respiratory distress syndrome: A randomized, double-blind, placebo-controlled clinical study. J Crit Care. 12:177–182. 1997.PubMed/NCBI View Article : Google Scholar

25 

Dellinger RP, Zimmerman JL, Taylor RW, Straube RC, Hauser DL, Criner GJ, Davis K Jr, Hyers TM and Papadakos P: Effects of inhaled nitric oxide in patients with acute respiratory distress syndrome: Results of a randomized phase II trial. Inhaled nitric oxide in ARDS study group. Crit Care Med. 26:15–23. 1998.PubMed/NCBI View Article : Google Scholar

26 

Vincent JL, Brase R, Santman F, Suter PM, McLuckie A, Dhainaut JF, Park Y and Karmel J: A multi-centre, double-blind, placebo-controlled study of liposomal prostaglandin E1 (TLC C-53) in patients with acute respiratory distress syndrome. Intensive Care Med. 27:1578–1583. 2001.PubMed/NCBI View Article : Google Scholar

27 

Abraham E, Carmody A, Shenkar R and Arcaroli J: Neutrophils as early immunologic effectors in hemorrhage- or endotoxemia-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 279:L1137–L1145. 2000.PubMed/NCBI View Article : Google Scholar

28 

Ketoconazole for early treatment of acute lung injury and acute respiratory distress syndrome: A randomized controlled trial. The ARDS network. JAMA. 283:1995–2002. 2000.PubMed/NCBI View Article : Google Scholar

29 

Randomized placebo-controlled trial of lisofylline for early treatment of acute lung injury and acute respiratory distress syndrome. Crit Care Med. 30:1–6. 2002.PubMed/NCBI View Article : Google Scholar

30 

Perkins GD, Gates S, Park D, Gao F, Knox C, Holloway B, McAuley DF, Ryan J, Marzouk J, Cooke MW, et al: The beta agonist lung injury trial prevention. A randomized controlled trial. Am J Respir Crit Care Med. 189:674–683. 2014.PubMed/NCBI View Article : Google Scholar

31 

Morris PE, Papadakos P, Russell JA, Wunderink R, Schuster DP, Truwit JD, Vincent JL and Bernard GR: A double-blind placebo-controlled study to evaluate the safety and efficacy of L-2-oxothiazolidine-4-carboxylic acid in the treatment of patients with acute respiratory distress syndrome. Crit Care Med. 36:782–788. 2008.PubMed/NCBI View Article : Google Scholar

32 

Liu KD, Levitt J, Zhuo H, Kallet RH, Brady S, Steingrub J, Tidswell M, Siegel MD, Soto G, Peterson MW, et al: Randomized clinical trial of activated protein C for the treatment of acute lung injury. Am J Respir Crit Care Med. 178:618–623. 2008.PubMed/NCBI View Article : Google Scholar

33 

Murphy MB, Moncivais K and Caplan AI: Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 45(e54)2013.PubMed/NCBI View Article : Google Scholar

34 

Rajasekaran S, Pattarayan D, Rajaguru P, Sudhakar Gandhi P and Thimmulappa RK: MicroRNA regulation of acute lung injury and acute respiratory distress syndrome. J Cell Physiol. 231:2097–2106. 2016.PubMed/NCBI View Article : Google Scholar

35 

Chakraborty C, Sharma AR, Sharma G, Doss CGP and Lee SS: Therapeutic miRNA and siRNA: Moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids. 8:132–143. 2017.PubMed/NCBI View Article : Google Scholar

36 

Johnson ER and Matthay MA: Acute lung injury: Epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv. 23:243–252. 2010.PubMed/NCBI View Article : Google Scholar

37 

Porporato PE, Filigheddu N, Pedro JMB, Kroemer G and Galluzzi L: Mitochondrial metabolism and cancer. Cell Res. 28:265–280. 2018.PubMed/NCBI View Article : Google Scholar

38 

Bar-Ziv R, Bolas T and Dillin A: Systemic effects of mitochondrial stress. EMBO Rep. 21(e50094)2020.PubMed/NCBI View Article : Google Scholar

39 

Anderson AJ, Jackson TD, Stroud DA and Stojanovski D: Mitochondria-hubs for regulating cellular biochemistry: Emerging concepts and networks. Open Biol. 9(190126)2019.PubMed/NCBI View Article : Google Scholar

40 

Rowlands DJ: Mitochondria dysfunction: A novel therapeutic target in pathological lung remodeling or bystander? Pharmacol Ther. 166:96–105. 2016.PubMed/NCBI View Article : Google Scholar

41 

Wu H, Wei H, Sehgal SA, Liu L and Chen Q: Mitophagy receptors sense stress signals and couple mitochondrial dynamic machinery for mitochondrial quality control. Free Radic Biol Med. 100:199–209. 2016.PubMed/NCBI View Article : Google Scholar

42 

Gottlieb RA and Stotland A: MitoTimer: A novel protein for monitoring mitochondrial turnover in the heart. J Mol Med (Berl). 93:271–278. 2015.PubMed/NCBI View Article : Google Scholar

43 

Tilokani L, Nagashima S, Paupe V and Prudent J: Mitochondrial dynamics: Overview of molecular mechanisms. Essays Biochem. 62:341–360. 2018.PubMed/NCBI View Article : Google Scholar

44 

Collins TJ, Berridge MJ, Lipp P and Bootman MD: Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J. 21:1616–1627. 2002.PubMed/NCBI View Article : Google Scholar

45 

Rongvaux A: Innate immunity and tolerance toward mitochondria. Mitochondrion. 41:14–20. 2018.PubMed/NCBI View Article : Google Scholar

46 

de-Lima-Júnior JC, Souza GF, Moura-Assis A, Gaspar RS, Gaspar JM, Rocha AL, Ferrucci DL, Lima TI, Victório SC, Bonfante ILP, et al: Abnormal brown adipose tissue mitochondrial structure and function in IL10 deficiency. EBioMedicine. 39:436–447. 2019.PubMed/NCBI View Article : Google Scholar

47 

Vögtle FN, Burkhart JM, Gonczarowska-Jorge H, Kücükköse C, Taskin AA, Kopczynski D, Ahrends R, Mossmann D, Sickmann A, Zahedi RP and Meisinger C: Landscape of submitochondrial protein distribution. Nat Commun. 8(290)2017.PubMed/NCBI View Article : Google Scholar

48 

Ralto KM and Parikh SM: Mitochondria in acute kidney injury. Semin Nephrol. 36:8–16. 2016.PubMed/NCBI View Article : Google Scholar

49 

Abate M, Festa A, Falco M, Lombardi A, Luce A, Grimaldi A, Zappavigna S, Sperlongano P, Irace C, Caraglia M and Misso G: Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol. 98:139–153. 2020.PubMed/NCBI View Article : Google Scholar

50 

Cogliati S, Enriquez JA and Scorrano L: Mitochondrial cristae: Where beauty meets functionality. Trends Biochem Sci. 41:261–273. 2016.PubMed/NCBI View Article : Google Scholar

51 

Rath S, Sharma R, Gupta R, Ast T, Chan C, Durham TJ, Goodman RP, Grabarek Z, Haas ME, Hung WHW, et al: MitoCarta3.0: An updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 49:D1541–D1547. 2021.PubMed/NCBI View Article : Google Scholar

52 

Smith AC and Robinson AJ: MitoMiner v3.1, an update on the mitochondrial proteomics database. Nucleic Acids Res. 44 (D1):D1258–D1261. 2016.PubMed/NCBI View Article : Google Scholar

53 

Rhee HW, Zou P, Udeshi ND, Martell JD, Mootha VK, Carr SA and Ting AY: Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science. 339:1328–1331. 2013.PubMed/NCBI View Article : Google Scholar

54 

Hartl FU and Neupert W: Protein sorting to mitochondria: Evolutionary conservations of folding and assembly. Science. 247:930–938. 1990.PubMed/NCBI View Article : Google Scholar

55 

Wiedemann N and Pfanner N: Mitochondrial machineries for protein import and assembly. Annu Rev Biochem. 86:685–714. 2017.PubMed/NCBI View Article : Google Scholar

56 

Boczonadi V, Ricci G and Horvath R: Mitochondrial DNA transcription and translation: Clinical syndromes. Essays Biochem. 62:321–340. 2018.PubMed/NCBI View Article : Google Scholar

57 

Gilkerson RW, Selker JM and Capaldi RW: The cristal membrane of mitochondria is the principal site of oxidative phosphorylation. FEBS Lett. 546:355–358. 2003.PubMed/NCBI View Article : Google Scholar

58 

Youle RJ: Mitochondria-striking a balance between host and endosymbiont. Science. 365(eaaw9855)2019.PubMed/NCBI View Article : Google Scholar

59 

Aw WC, Towarnicki SG, Melvin RG, Youngson NA, Garvin MR, Hu Y, Nielsen S, Thomas T, Pickford R, Bustamante S, et al: Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness. PLoS Genet. 14(e1007735)2018.PubMed/NCBI View Article : Google Scholar

60 

Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL, Feeney C, Horvath R, Yu-Wai-Man P, Chinnery PF, et al: Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 77:753–759. 2015.PubMed/NCBI View Article : Google Scholar

61 

Melvin RG and Ballard JW: Intraspecific variation in survival and mitochondrial oxidative phosphorylation in wild-caught Drosophila simulans. Aging Cell. 5:225–233. 2006.PubMed/NCBI View Article : Google Scholar

62 

Princepe D and De Aguiar MAM: Modeling Mito-nuclear compatibility and its role in species identification. Syst Biol. 70:133–144. 2021.PubMed/NCBI View Article : Google Scholar

63 

Telschow A, Gadau J, Werren J and Kobayashi Y: Genetic incompatibilities between mitochondria and nuclear genes: Effect on gene flow and speciation. Front Genet. 10(62)2019.PubMed/NCBI View Article : Google Scholar

64 

Roth KG, Mambetsariev I, Kulkarni P and Salgia R: The mitochondrion as an emerging therapeutic target in cancer. Trends Mol Med. 26:119–134. 2020.PubMed/NCBI View Article : Google Scholar

65 

Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES and Wang X: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 91:479–489. 1997.PubMed/NCBI View Article : Google Scholar

66 

Liu X, Kim CN, Yang J, Jemmerson R and Wang X: Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell. 86:147–157. 1996.PubMed/NCBI View Article : Google Scholar

67 

Bossy-Wetzel E, Newmeyer DD and Green DR: Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J. 17:37–49. 1998.PubMed/NCBI View Article : Google Scholar

68 

Hine C, Harputlugil E, Zhang Y, Ruckenstuhl C, Lee BC, Brace L, Longchamp A, Treviño-Villarreal JH, Mejia P, Ozaki CK, et al: Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell. 160:132–144. 2015.PubMed/NCBI View Article : Google Scholar

69 

Eisner V, Picard M and Hajnóczky G: Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat Cell Biol. 20:755–765. 2018.PubMed/NCBI View Article : Google Scholar

70 

Mitra K, Wunder C, Roysam B, Lin G and Lippincott-Schwartz J: A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc Natl Acad Sci USA. 106:11960–11965. 2009.PubMed/NCBI View Article : Google Scholar

71 

Rambold A, Kostelecky B, Elia N and Lippincott-Schwartz J: Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci USA. 108:10190–10195. 2011.PubMed/NCBI View Article : Google Scholar

72 

Aiello A, Cristofaro M, Carrozza F, Verdone F and Carile L: Lymphocyte subpopulations and the soluble interleukin-2 receptor in Hashimoto's thyroiditis and subacute thyroiditis. Clin Ter. 133:401–404. 1990.PubMed/NCBI(In Italian).

73 

Leduc-Gaudet JP, Hussain SNA, Barreiro E and Gouspillou G: Mitochondrial dynamics and mitophagy in skeletal muscle health and aging. Int J Mol Sci. 22(8179)2021.PubMed/NCBI View Article : Google Scholar

74 

Santel A, Frank S, Gaume B, Herrler M, Youle RJ and Fuller MT: Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci. 116:2763–2774. 2003.PubMed/NCBI View Article : Google Scholar

75 

Eura Y, Ishihara N, Yokota S and Mihara K: Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J Biochem. 134:333–344. 2003.PubMed/NCBI View Article : Google Scholar

76 

de Brito OM and Scorrano L: Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 456:605–610. 2008.PubMed/NCBI View Article : Google Scholar

77 

Detmer SA and Chan DC: Complementation between mouse Mfn1 and Mfn2 protects mitochondrial fusion defects caused by CMT2A disease mutations. J Cell Biol. 176:405–414. 2007.PubMed/NCBI View Article : Google Scholar

78 

Ehses S, Raschke I, Mancuso G, Bernacchia A, Geimer S, Tondera D, Martinou JC, Westermann B, Rugarli EI and Langer T: Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol. 187:1023–1036. 2009.PubMed/NCBI View Article : Google Scholar

79 

Mishra P, Carelli V, Manfredi G and Chan DC: Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab. 19:630–641. 2014.PubMed/NCBI View Article : Google Scholar

80 

Schlattner U, Tokarska-Schlattner M, Ramirez S, Tyurina YY, Amoscato AA, Mohammadyani D, Huang Z, Jiang J, Yanamala N, Seffouh A, et al: Dual function of mitochondrial Nm23-H4 protein in phosphotransfer and intermembrane lipid transfer: A cardiolipin-dependent switch. J Biol Chem. 288:111–121. 2013.PubMed/NCBI View Article : Google Scholar

81 

Griparic L, van der Wel NN, Orozco IJ, Peters PJ and van der Bliek AM: Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem. 279:18792–18798. 2004.PubMed/NCBI View Article : Google Scholar

82 

Pernas L and Scorrano L: Mito-morphosis: Mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol. 78:505–531. 2016.PubMed/NCBI View Article : Google Scholar

83 

Margineantu DH, Gregory Cox W, Sundell L, Sherwood SW, Beechem JM and Capaldi RA: Cell cycle dependent morphology changes and associated mitochondrial DNA redistribution in mitochondria of human cell lines. Mitochondrion. 1:425–435. 2002.PubMed/NCBI View Article : Google Scholar

84 

Mitra K: Mitochondrial fission-fusion as an emerging key regulator of cell proliferation and differentiation. Bioessays. 35:955–964. 2013.PubMed/NCBI View Article : Google Scholar

85 

Diebold L and Chandel NS: Mitochondrial ROS regulation of proliferating cells. Free Radic Biol Med. 100:86–93. 2016.PubMed/NCBI View Article : Google Scholar

86 

Jheng HF, Tsai PJ, Guo S, Kuo LH, Chang CS, Su IJ, Chang CR and Tsai YS: Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol Cell Biol. 32:309–319. 2012.PubMed/NCBI View Article : Google Scholar

87 

Deng X, Liu J, Liu L, Sun X, Huang J and Dong J: Drp1-mediated mitochondrial fission contributes to baicalein-induced apoptosis and autophagy in lung cancer via activation of AMPK signaling pathway. Int J Biol Sci. 16:1403–1416. 2020.PubMed/NCBI View Article : Google Scholar

88 

Zhang H, Yan Q, Wang X, Chen X, Chen Y, Du J and Chen L: The role of mitochondria in liver ischemia-reperfusion injury: From aspects of mitochondrial oxidative stress, mitochondrial fission, mitochondrial membrane permeable transport pore formation, mitophagy, and mitochondria-related protective measures. Oxid Med Cell Longev. 2021(6670579)2021.PubMed/NCBI View Article : Google Scholar

89 

Smirnova E, Griparic L, Shurland DL and van der Bliek AM: Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell. 12:2245–2256. 2001.PubMed/NCBI View Article : Google Scholar

90 

Kraus F and Ryan MY: The constriction and scission machineries involved in mitochondrial fission. J Cell Sci. 130:2953–2960. 2017.PubMed/NCBI View Article : Google Scholar

91 

Gandre-Babbe S and van der Bliek AM: The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell. 19:2402–2412. 2008.PubMed/NCBI View Article : Google Scholar

92 

Palmer CS, Osellame LD, Laine D, Koutsopoulos OS, Frazier AE and Ryan MT: MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep. 12:565–573. 2011.PubMed/NCBI View Article : Google Scholar

93 

Losón OC, Song Z, Chen H and Chan DC: Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell. 24:659–667. 2013.PubMed/NCBI View Article : Google Scholar

94 

Chakrabarti R, Ji WK, Stan RV, de Juan Sanz J, Ryan TA and Higgs HN: INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division. J Cell Biol. 217:251–268. 2018.PubMed/NCBI View Article : Google Scholar

95 

Kameoka S, Adachi Y, Okamoto K, Iijima M and Sesaki H: Phosphatidic acid and cardiolipin coordinate mitochondrial dynamics. Trends Cell Biol. 28:67–76. 2018.PubMed/NCBI View Article : Google Scholar

96 

Lee H and Yoon Y: Transient contraction of mitochondria induces depolarization through the inner membrane dynamin OPA1 protein. J Biol Chem. 289:11862–11872. 2014.PubMed/NCBI View Article : Google Scholar

97 

Cho B, Cho HM, Jo Y, Kim HD, Song M, Moon C, Kim H, Kim K, Sesaki H, Rhyu IJ, et al: Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division. Nat Commun. 8(15754)2017.PubMed/NCBI View Article : Google Scholar

98 

Ding C, Wu Z, Huang L, Wang Y, Xue J and Chen S, Deng Z, Wang L, Song Z and Chen S: Mitofilin and CHCHD6 physically interact with Sam50 to sustain cristae structure. Sci Rep. 5(16064)2015.PubMed/NCBI View Article : Google Scholar

99 

Niu J, Yu M, Wang C and Xu Z: Leucine-rich repeat kinase 2 disturbs mitochondrial dynamics via dynamin-like protein. J Neurochem. 122:650–658. 2012.PubMed/NCBI View Article : Google Scholar

100 

Haile Y, Deng X, Ortiz-Sandoval C, Tahbaz N, Janowicz A, Lu JQ, Kerr BJ, Gutowski NJ, Holley JE, Eggleton P, et al: Rab32 connects ER stress to mitochondrial defects in multiple sclerosis. J Neuroinflammation. 14(19)2017.PubMed/NCBI View Article : Google Scholar

101 

Mohsin M, Tabassum G, Ahmad S, Ali S and Ali Syed M: The role of mitophagy in pulmonary sepsis. Mitochondrion. 59:63–75. 2021.PubMed/NCBI View Article : Google Scholar

102 

Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, et al: PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol. 189:211–221. 2010.PubMed/NCBI View Article : Google Scholar

103 

Narendra D, Tanaka A, Suen DF and Youle RJ: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 183:795–803. 2008.PubMed/NCBI View Article : Google Scholar

104 

Bingol B and Sheng M: Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radic Biol Med. 100:210–222. 2016.PubMed/NCBI View Article : Google Scholar

105 

Sharma A, Ahmad S, Ahmad T, Ali S and Syed MA: Mitochondrial dynamics and mitophagy in lung disorders. Life Sci. 284(119876)2021.PubMed/NCBI View Article : Google Scholar

106 

Chen Y and Dorn GW II: PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science. 340:471–475. 2013.PubMed/NCBI View Article : Google Scholar

107 

Glauser L, Sonnay S, Stafa K and Moore DJ: Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. J Neurochem. 118:636–645. 2011.PubMed/NCBI View Article : Google Scholar

108 

López-Doménech G, Covill-Cooke C, Ivankovic D, Halff EF, Sheehan DF, Norkett R, Birsa N and Kittler JT: Miro proteins coordinate microtubule- and actin-dependent mitochondrial transport and distribution. EMBO J. 37:321–336. 2018.PubMed/NCBI View Article : Google Scholar

109 

Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ and Springer W: PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 12:119–131. 2010.PubMed/NCBI View Article : Google Scholar

110 

Real P, Benito A, Cuevas J, Berciano MT, de Juan A, Coffer P, Gomez-Roman J, Lafarga M, Lopez-Vega JM and Fernandez-Luna JL: Blockade of epidermal growth factor receptors chemosensitizes breast cancer cells through up-regulation of Bnip3L. Cancer Res. 65:8151–8157. 2005.PubMed/NCBI View Article : Google Scholar

111 

Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S and Gustafsson ÅB: Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem. 287:19094–19104. 2012.PubMed/NCBI View Article : Google Scholar

112 

Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W, et al: Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol. 14:177–185. 2012.PubMed/NCBI View Article : Google Scholar

113 

Sekine S, Kanamaru Y, Koike M, Nishihara A, Okada M, Kinoshita H, Kamiyama M, Maruyama J, Uchiyama Y, Ishihara N, et al: Rhomboid protease PARL mediates the mitochondrial membrane potential loss-induced cleavage of PGAM5. J Biol Chem. 287:34635–34645. 2012.PubMed/NCBI View Article : Google Scholar

114 

Kagan VE, Jiang J, Huang Z, Tyurina YY, Desbourdes C, Cottet-Rousselle C, Dar HH, Verma M, Tyurin VA, Kapralov AA, et al: NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy. Cell Death Differ. 23:1140–1151. 2016.PubMed/NCBI View Article : Google Scholar

115 

Wei Y, Chiang WC, Sumpter R Jr, Mishra P and Levine B: Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell. 168:224–238.e10. 2017.PubMed/NCBI View Article : Google Scholar

116 

Di Rita A, Peschiaroli A, D Acunzo P, Strobbe D, Hu Z, Gruber J, Nygaard M, Lambrughi M, Melino G, Papaleo E, et al: HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKα. Nat Commun. 9(3755)2018.PubMed/NCBI View Article : Google Scholar

117 

Ju L, Chen S, Alimujiang M, Bai N, Yan H, Fang Q, Han J, Ma X, Yang Y and Jia W: A novel role for Bcl2l13 in promoting beige adipocyte biogenesis. Biochem Biophys Res Commun. 506:485–491. 2018.PubMed/NCBI View Article : Google Scholar

118 

Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T, Oka T, Yasui H, Ueda H, Akazawa Y, Nakayama H, et al: Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun. 6(7527)2015.PubMed/NCBI View Article : Google Scholar

119 

Benard G and Rossignol R: Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid Redox Signal. 10:1313–1342. 2008.PubMed/NCBI View Article : Google Scholar

120 

Goncalves RL, Quinlan CL, Perevoshchikova IV, Hey-Mogensen M and Brand MD: Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J Biol Chem. 290:209–227. 2015.PubMed/NCBI View Article : Google Scholar

121 

Zuo L and Wijegunawardana D: Redox role of ROS and inflammation in pulmonary diseases. Adv Exp Med Biol. 1304:187–204. 2021.PubMed/NCBI View Article : Google Scholar

122 

Moncada S and Erusalimsky JD: Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol. 3:214–220. 2002.PubMed/NCBI View Article : Google Scholar

123 

Gellerich FN, Trumbeckaite S, Opalka JR, Gellerich JF, Chen Y, Neuhof C, Redl H, Werdan K and Zierz S: Mitochondrial dysfunction in sepsis: Evidence from bacteraemic baboons and endotoxaemic rabbits. Biosci Rep. 22:99–113. 2002.PubMed/NCBI View Article : Google Scholar

124 

Adrie C, Bachelet M, Vayssier-Taussat M, Russo-Marie F, Bouchaert I, Adib-Conquy M, Cavaillon JM, Pinsky MR, Dhainaut JF and Polla BS: Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis. Am J Respir Crit Care Med. 164:389–395. 2001.PubMed/NCBI View Article : Google Scholar

125 

Callahan LA and Supinski GS: Sepsis induces diaphragm electron transport chain dysfunction and protein depletion. Am J Respir Crit Care Med. 172:861–868. 2005.PubMed/NCBI View Article : Google Scholar

126 

Ayala JC, Grismaldo A, Aristizabal-Pachon AF, Mikhaylenko EV, Nikolenko VN, Mikhaleva LM, Somasundaram SG, Kirkland CE, Aliev G and Morales L: Mitochondrial dysfunction in intensive care unit patients. Curr Pharm Des. 27(3074)2021.PubMed/NCBI View Article : Google Scholar

127 

Fakhruddin S, Alanazi W and Jackson KE: Diabetes-induced reactive oxygen species: Mechanism of their generation and role in renal injury. J Diabetes Res. 2017(8379327)2017.PubMed/NCBI View Article : Google Scholar

128 

Stepien KM, Heaton R, Rankin S, Murphy A, Bentley J, Sexton D and Hargreaves IP: Evidence of oxidative stress and secondary mitochondrial dysfunction in metabolic and non-metabolic disorders. J Clin Med. 6(71)2017.PubMed/NCBI View Article : Google Scholar

129 

Arulkumaran N, Deutschman CS, Pinsky MR, Zuckerbraun B, Schumacker PT, Gomez H, Gomez A, Murray P and Kellum JA: ADQI XIV Workgroup. Mitochondrial function in sepsis. Shock. 45:271–281. 2016.PubMed/NCBI View Article : Google Scholar

130 

Boulos M, Astiz ME, Barua RS and Osman M: Impaired mitochondrial function induced by serum from septic shock patients is attenuated by inhibition of nitric oxide synthase and poly(ADP-ribose) synthase. Crit Care Med. 31:353–358. 2003.PubMed/NCBI View Article : Google Scholar

131 

Orrenius S, Gogvadze V and Zhivotovsky B: Calcium and mitochondria in the regulation of cell death. Biochem Biophys Res Commun. 460:72–81. 2015.PubMed/NCBI View Article : Google Scholar

132 

Sharma P and Sampath H: Mitochondrial DNA integrity: Role in health and disease. Cells. 8(100)2019.PubMed/NCBI View Article : Google Scholar

133 

Zorov DB, Juhaszova M and Sollott SJ: Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 94:909–950. 2014.PubMed/NCBI View Article : Google Scholar

134 

Shadel GS and Horvath TL: Mitochondrial ROS signaling in organismal homeostasis. Cell. 163:560–569. 2015.PubMed/NCBI View Article : Google Scholar

135 

Poderoso JL: The formation of peroxynitrite in the applied physiology of mitochondrial nitric oxide. Arch Biochem Biophys. 484:214–220. 2009.PubMed/NCBI View Article : Google Scholar

136 

Sies H: Oxidative stress: A concept in redox biology and medicine. Redox Biol. 4:180–183. 2015.PubMed/NCBI View Article : Google Scholar

137 

Chow CW, Herrera Abreu MT, Suzuki T and Downey GP: Oxidative stress and acute lung injury. Am J Respir Cell Mol Biol. 29:427–431. 2003.PubMed/NCBI View Article : Google Scholar

138 

Puri G and Naura AS: Critical role of mitochondrial oxidative stress in acid aspiration induced ALI in mice. Toxicol Mech Methods. 30:266–274. 2020.PubMed/NCBI View Article : Google Scholar

139 

Lopez-Crisosto C, Pennanen C, Vasquez-Trincado C, Morales PE, Bravo-Sagua R, Quest AFG, Chiong M and Lavandero S: Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology. Nat Rev Cardiol. 14:342–360. 2017.PubMed/NCBI View Article : Google Scholar

140 

Kwong JQ, Huo J, Bround MJ, Boyer JG, Schwanekamp JA, Ghazal N, Maxwell JT, Jang YC, Khuchua Z, Shi K, et al: The mitochondrial calcium uniporter underlies metabolic fuel preference in skeletal muscle. JCI Insight. 3(e121689)2018.PubMed/NCBI View Article : Google Scholar

141 

Sommakia S, Houlihan PR, Deane SS, Simcox JA, Torres NS, Jeong MY, Winge DR, Villanueva CJ and Chaudhuri D: Mitochondrial cardiomyopathies feature increased uptake and diminished efflux of mitochondrial calcium. J Mol Cell Cardiol. 113:22–32. 2017.PubMed/NCBI View Article : Google Scholar

142 

Denton RM: Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta. 1787:1309–1316. 2009.PubMed/NCBI View Article : Google Scholar

143 

Dey S, DeMazumder D, Sidor A, Foster DB and O'Rourke B: Mitochondrial ROS drive sudden cardiac death and chronic proteome remodeling in heart failure. Circ Res. 123:356–371. 2018.PubMed/NCBI View Article : Google Scholar

144 

Halestrap AP, Woodfield KY and Connern CP: Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem. 272:3346–3354. 1997.PubMed/NCBI View Article : Google Scholar

145 

Kiefmann M, Tank S, Keller P, Börnchen C, Rinnenthal JL, Tritt MO, Schulte-Uentrop L, Olotu C, Goetz AE and Kiefmann R: IDH3 mediates apoptosis of alveolar epithelial cells type 2 due to mitochondrial Ca2+ uptake during hypocapnia. Cell Death Dis. 8(e3005)2017.PubMed/NCBI View Article : Google Scholar

146 

Mu G, Deng Y, Lu Z, Li X and Chen Y: miR-20b suppresses mitochondrial dysfunction-mediated apoptosis to alleviate hyperoxia-induced acute lung injury by directly targeting MFN1 and MFN2. Acta Biochim Biophys Sin (Shanghai). 53:220–228. 2021.PubMed/NCBI View Article : Google Scholar

147 

Szturmowicz M and Demkow U: Neutrophil extracellular traps (NETs) in severe SARS-CoV-2 lung disease. Int J Mol Sci. 22(8854)2021.PubMed/NCBI View Article : Google Scholar

148 

Lugg ST, Scott A, Parekh D, Naidu B and Thickett DR: Cigarette smoke exposure and alveolar macrophages: Mechanisms for lung disease. Thorax. 77:94–101. 2022.PubMed/NCBI View Article : Google Scholar

149 

West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, Walsh MC, Choi Y, Shadel GS and Ghosh S: TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature. 472:476–480. 2011.PubMed/NCBI View Article : Google Scholar

150 

Yuan Z, Syed MA, Panchal D, Joo M, Colonna M, Brantly M and Sadikot RT: Triggering receptor expressed on myeloid cells 1 (TREM-1)-mediated Bcl-2 induction prolongs macrophage survival. J Biol Chem. 289:15118–15129. 2014.PubMed/NCBI View Article : Google Scholar

151 

Guillén-Gómez E, Silva I, Serra N, Caballero F, Leal J, Breda A, San Martín R, Pastor-Anglada M, Ballarín JA, Guirado L and Díaz-Encarnación MM: From inflammation to the onset of fibrosis through A2A receptors in kidneys from deceased donors. Int J Mol Sci. 21(8826)2020.PubMed/NCBI View Article : Google Scholar

152 

Pearce EL, Poffenberger MC, Chang CH and Jones RG: Fueling immunity: Insights into metabolism and lymphocyte function. Science. 342(1242454)2013.PubMed/NCBI View Article : Google Scholar

153 

Zmijewski JW, Lorne E, Zhao X, Tsuruta Y, Sha Y, Liu G, Siegal GP and Abraham E: Mitochondrial respiratory complex I regulates neutrophil activation and severity of lung injury. Am J Respir Crit Care Med. 178:168–179. 2008.PubMed/NCBI View Article : Google Scholar

154 

Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, Rowlands DJ, Quadri SK, Bhattacharya S and Bhattacharya J: Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med. 18:759–765. 2012.PubMed/NCBI View Article : Google Scholar

155 

Yu J, Shi J, Wang D, Dong S, Zhang Y, Wang M, Gong L, Fu Q and Liu D: Heme oxygenase-1/carbon monoxide-regulated mitochondrial dynamic equilibrium contributes to the attenuation of endotoxin-induced acute lung injury in rats and in lipopolysaccharide-activated macrophages. Anesthesiology. 125:1190–1201. 2016.PubMed/NCBI View Article : Google Scholar

156 

Shi J, Yu J, Zhang Y, Wu L, Dong S, Wu L, Wu L, Du S, Zhang Y and Ma D: PI3K/Akt pathway-mediated HO-1 induction regulates mitochondrial quality control and attenuates endotoxin-induced acute lung injury. Lab Invest. 99:1795–1809. 2019.PubMed/NCBI View Article : Google Scholar

157 

Yu J, Wang Y, Li Z, Dong S, Wang D, Gong L, Shi J, Zhang Y, Liu D and Mu R: Effect of heme oxygenase-1 on mitofusin-1 protein in LPS-induced ALI/ARDS in rats. Sci Rep. 6(36530)2016.PubMed/NCBI View Article : Google Scholar

158 

Deng S, Zhang L, Mo Y, Huang Y, Li W, Peng Q, Huang L and Ai Y: Mdivi-1 attenuates lipopolysaccharide-induced acute lung injury by inhibiting MAPKs, oxidative stress and apoptosis. Pulm Pharmacol Ther. 62(101918)2020.PubMed/NCBI View Article : Google Scholar

159 

Jiang C, Zhang J, Xie H, Guan H, Li R, Chen C, Dong H, Zhou Y and Zhang W: Baicalein suppresses lipopolysaccharide-induced acute lung injury by regulating Drp1-dependent mitochondrial fission of macrophages. Biomed Pharmacother. 145(112408)2022.PubMed/NCBI View Article : Google Scholar

160 

Shi J, Yu T, Song K, Du S, He S, Hu X, Li X, Li H, Dong S, Zhang Y, et al: Dexmedetomidine ameliorates endotoxin-induced acute lung injury in vivo and in vitro by preserving mitochondrial dynamic equilibrium through the HIF-1a/HO-1 signaling pathway. Redox Biol. 41(101954)2021.PubMed/NCBI View Article : Google Scholar

161 

Wu D, Zhang H, Wu Q, Li F, Wang Y, Liu S and Wang J: Sestrin 2 protects against LPS-induced acute lung injury by inducing mitophagy in alveolar macrophages. Life Sci. 267(118941)2021.PubMed/NCBI View Article : Google Scholar

162 

Liu W, Li CC, Lu X, Bo LY and Jin FG: Overexpression of transcription factor EB regulates mitochondrial autophagy to protect lipopolysaccharide-induced acute lung injury. Chin Med J (Engl). 132:1298–1304. 2019.PubMed/NCBI View Article : Google Scholar

163 

Luo X, Liu R, Zhang Z, Chen Z, He J and Liu Y: Mitochondrial division inhibitor 1 attenuates mitophagy in a rat model of acute lung injury. Biomed Res Int. 2019(2193706)2019.PubMed/NCBI View Article : Google Scholar

164 

Liu W, Li Y, Bo L, Li C and Jin F: Positive regulation of TFEB and mitophagy by PGC-1α to alleviate LPS-induced acute lung injury in rats. Biochem Biophys Res Commun. 577:1–5. 2021.PubMed/NCBI View Article : Google Scholar

165 

Zhao R, Wang B, Wang D, Wu B, Ji P and Tan D: Oxyberberine prevented lipopolysaccharide-induced acute lung injury through inhibition of mitophagy. Oxid Med Cell Longev. 2021(6675264)2021.PubMed/NCBI View Article : Google Scholar

166 

Zhang Z, Chen Z, Liu R, Liang Q, Peng Z, Yin S, Tang J, Gong T and Liu Y: Bcl-2 proteins regulate mitophagy in lipopolysaccharide-induced acute lung injury via PINK1/Parkin signaling pathway. Oxid Med Cell Longev. 2020(6579696)2020.PubMed/NCBI View Article : Google Scholar

167 

Patel S: Danger-associated molecular patterns (DAMPs): The derivatives and triggers of inflammation. Curr Allergy Asthma Rep. 18(63)2018.PubMed/NCBI View Article : Google Scholar

168 

Frevert C, Felgenhauer J, Wygrecka M, Nastase M and Schaefer L: Danger-associated molecular patterns derived from the extracellular matrix provide temporal control of innate immunity. J Histochem Cytochem. 66:213–227. 2018.PubMed/NCBI View Article : Google Scholar

169 

Vénéreau E, Ceriotti C and Bianchi ME: DAMPs from cell death to new life. Front Immunol. 6(422)2015.PubMed/NCBI View Article : Google Scholar

170 

Bianchi ME: DAMPs, PAMPs and alarmins: All we need to know about danger. J Leukoc Biol. 81:1–5. 2007.PubMed/NCBI View Article : Google Scholar

171 

Zedler S and Faist E: The impact of endogenous triggers on trauma-associated inflammation. Curr Opin Crit Care. 12:595–601. 2006.PubMed/NCBI View Article : Google Scholar

172 

Vourc'h M, Roquilly A and Asehnoune K: Trauma-induced damage-associated molecular patterns-mediated remote organ injury and immunosuppression in the acutely Ill patient. Front Immunol. 9(1330)2018.PubMed/NCBI View Article : Google Scholar

173 

West AP and Shadel GS: Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol. 17:363–375. 2017.PubMed/NCBI View Article : Google Scholar

174 

Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K and Hauser CJ: Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 464:104–107. 2010.PubMed/NCBI View Article : Google Scholar

175 

Lu B, Kwan K, Levine YA, Olofsson PS, Yang H, Li J, Joshi S, Wang H, Andersson U, Chavan SS and Tracey KJ: α7 Nicotinic acetylcholine receptor signaling inhibits inflammasome activation by preventing mitochondrial DNA release. Mol Med. 20:350–358. 2014.PubMed/NCBI View Article : Google Scholar

176 

Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, Oyabu J, Murakawa T, Nakayama H, Nishida K, et al: Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature. 485:251–255. 2012.PubMed/NCBI View Article : Google Scholar

177 

Zhang L, Deng S, Zhao S, Ai Y, Zhang L, Pan P, Su X, Tan H and Wu D: Intra-peritoneal administration of mitochondrial DNA provokes acute lung injury and systemic inflammation via Toll-like receptor 9. Int J Mol Sci. 17(1425)2016.PubMed/NCBI View Article : Google Scholar

178 

Sun S, Sursal T, Adibnia Y, Zhao C, Zheng Y, Li H, Otterbein LE, Hauser CJ and Itagaki K: Mitochondrial DAMPs increase endothelial permeability through neutrophil dependent and independent pathways. PLoS One. 8(e59989)2013.PubMed/NCBI View Article : Google Scholar

179 

Gonzalez AS, Elguero ME, Finocchietto P, Holod S, Romorini L, Miriuka SG, Peralta JG, Poderoso JJ and Carreras MC: Abnormal mitochondrial fusion-fission balance contributes to the progression of experimental sepsis. Free Radic Res. 48:769–783. 2014.PubMed/NCBI View Article : Google Scholar

180 

Chen H, Lin H, Dong B, Wang Y, Yu Y and Xie K: Hydrogen alleviates cell damage and acute lung injury in sepsis via PINK1/Parkin-mediated mitophagy. Inflamm Res. 70:915–930. 2021.PubMed/NCBI View Article : Google Scholar

181 

Chang AL, Ulrich A, Suliman HB and Piantadosi CA: Redox regulation of mitophagy in the lung during murine staphylococcus aureus sepsis. Free Radic Biol Med. 78:179–189. 2015.PubMed/NCBI View Article : Google Scholar

182 

Mannam P, Shinn AS, Srivastava A, Neamu RF, Walker WE, Bohanon M, Merkel J, Kang MJ, Dela Cruz CS, Ahasic AM, et al: MKK3 regulates mitochondrial biogenesis and mitophagy in sepsis-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 306:L604–L619. 2014.PubMed/NCBI View Article : Google Scholar

183 

Westphalen K, Monma E, Islam MN and Bhattacharya J: Acid contact in the rodent pulmonary alveolus causes proinflammatory signaling by membrane pore formation. Am J Physiol Lung Cell Mol Physiol. 303:L107–L116. 2012.PubMed/NCBI View Article : Google Scholar

184 

Kuebler WM, Parthasarathi K, Wang PM and Bhattacharya J: A novel signaling mechanism between gas and blood compartments of the lung. J Clin Invest. 105:905–913. 2000.PubMed/NCBI View Article : Google Scholar

185 

Hough RF, Islam MN, Gusarova GA, Jin G, Das S and Bhattacharya J: Endothelial mitochondria determine rapid barrier failure in chemical lung injury. JCI Insight. 4(e124329)2019.PubMed/NCBI View Article : Google Scholar

186 

Ogino K, Nagaoka K, Okuda T, Oka A, Kubo M, Eguchi E and Fujikura Y: PM2.5-induced airway inflammation and hyperresponsiveness in NC/Nga mice. Environ Toxicol. 32:1047–1054. 2017.PubMed/NCBI View Article : Google Scholar

187 

Wei T and Tang M: Biological effects of airborne fine particulate matter (PM2.5) exposure on pulmonary immune system. Environ Toxicol Pharmacol. 60:195–201. 2018.PubMed/NCBI View Article : Google Scholar

188 

Xu M, Li F, Wang M, Zhang H, Xu L, Adcock IM, Chung KF and Zhang Y: Protective effects of VGX-1027 in PM2.5-induced airway inflammation and bronchial hyperresponsiveness. Eur J Pharmacol. 842:373–383. 2019.PubMed/NCBI View Article : Google Scholar

189 

Kalogeris T, Baines CP, Krenz M and Korthuis RJ: Ischemia/reperfusion. Compr Physiol. 7:113–170. 2016.PubMed/NCBI View Article : Google Scholar

190 

Tai H, Jiang X, Song N, Xiao HH, Li Y, Cheng MJ, Yin XM, Chen YR, Yang GL, Jiang XY, et al: Tanshinone IIA combined with cyclosporine a alleviates lung apoptosis induced by renal ischemia-reperfusion in obese rats. Front Med (Lausanne). 8(617393)2021.PubMed/NCBI View Article : Google Scholar

191 

Zhang Y, Yu G, Kaminski N and Lee PJ: PINK1 mediates the protective effects of thyroid hormone T3 in hyperoxia-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 320:L1118–L1125. 2021.PubMed/NCBI View Article : Google Scholar

192 

Supinski GS, Schroder EA and Callahan LA: Mitochondria and critical illness. Chest. 157:310–322. 2020.PubMed/NCBI View Article : Google Scholar

193 

Powers SK, Hudson MB, Nelson WB, Talbert EE, Min K, Szeto HH, Kavazis AN and Smuder AJ: Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med. 39:1749–1759. 2011.PubMed/NCBI View Article : Google Scholar

194 

Miglio G, Rosa AC, Rattazzi L, Collino M, Lombardi G and Fantozzi R: PPARgamma stimulation promotes mitochondrial biogenesis and prevents glucose deprivation-induced neuronal cell loss. Neurochem Int. 55:496–504. 2009.PubMed/NCBI View Article : Google Scholar

195 

Moskowitzova K, Orfany A, Liu K, Ramirez-Barbieri G, Thedsanamoorthy JK, Yao R, Guariento A, Doulamis IP, Blitzer D, Shin B, et al: Mitochondrial transplantation enhances murine lung viability and recovery after ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol. 318:L78–L88. 2020.PubMed/NCBI View Article : Google Scholar

196 

Ramachandran A and Jaeschke H: Acetaminophen toxicity: Novel insights into mechanisms and future perspectives. Gene Expr. 18:19–30. 2018.PubMed/NCBI View Article : Google Scholar

197 

Tan DX, Manchester LC, Qin L and Reiter RJ: Melatonin: A mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int J Mol Sci. 17(2124)2016.PubMed/NCBI View Article : Google Scholar

198 

Srinivasan V, Pandi-Perumal SR, Spence DW, Kato H and Cardinali DP: Melatonin in septic shock: Some recent concepts. J Crit Care. 25:656.e1–e6. 2010.PubMed/NCBI View Article : Google Scholar

199 

Vance JE: Phospholipid synthesis and transport in mammalian cells. Traffic. 16:1–18. 2015.PubMed/NCBI View Article : Google Scholar

200 

Adachi Y, Itoh K, Yamada T, Cerveny KL, Suzuki TL, Macdonald P, Frohman MA, Ramachandran R, Iijima M and Sesaki H: Coincident phosphatidic acid interaction restrains Drp1 in mitochondrial division. Mol Cell. 63:1034–1043. 2016.PubMed/NCBI View Article : Google Scholar

201 

Macdonald PJ, Francy CA, Stepanyants N, Lehman L, Baglio A, Mears JA, Qi X and Ramachandran R: Distinct splice variants of dynamin-related protein 1 differentially utilize mitochondrial fission factor as an effector of cooperative GTPase activity. J Biol Chem. 291:493–507. 2016.PubMed/NCBI View Article : Google Scholar

202 

Ban T, Heymann JA, Song Z, Hinshaw JE and Chan DC: OPA1 disease alleles causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and membrane tubulation. Hum Mol Genet. 19:2113–2122. 2010.PubMed/NCBI View Article : Google Scholar

203 

Ugarte-Uribe B, Müller HM, Otsuki M, Nickel W and García-Sáez AJ: Dynamin-related protein 1 (Drp1) promotes structural intermediates of membrane division. J Biol Chem. 289:30645–30656. 2014.PubMed/NCBI View Article : Google Scholar

204 

Bustillo-Zabalbeitia I, Montessuit S, Raemy E, Basañez G, Terrones O and Martinou J: Specific interaction with cardiolipin triggers functional activation of dynamin-related protein 1. PLoS One. 9(e102738)2014.PubMed/NCBI View Article : Google Scholar

205 

Adachi Y, Iijima M and Sesaki H: An unstructured loop that is critical for interactions of the stalk domain of Drp1 with saturated phosphatidic acid. Small GTPases. 9:472–479. 2018.PubMed/NCBI View Article : Google Scholar

206 

Qi X, Disatnik MH, Shen N, Sobel RA and Mochly-Rosen D: Aberrant mitochondrial fission in neurons induced by protein kinase C{delta} under oxidative stress conditions in vivo. Mol Biol Cell. 22:256–265. 2011.PubMed/NCBI View Article : Google Scholar

207 

Kim DI, Lee KH, Gabr AA, Choi GE, Kim JS, Ko SH and Han HJ: Aβ-Induced Drp1 phosphorylation through Akt activation promotes excessive mitochondrial fission leading to neuronal apoptosis. Biochim Biophys Acta. 1863:2820–2834. 2016.PubMed/NCBI View Article : Google Scholar

208 

Xu S, Wang P, Zhang H, Gong G, Gutierrez Cortes N, Zhu W, Yoon Y, Tian R and Wang W: CaMKII induces permeability transition through Drp1 phosphorylation during chronic β-AR stimulation. Nat Commun. 7(13189)2016.PubMed/NCBI View Article : Google Scholar

209 

Niemann A, Ruegg M, La Padula V, Schenone A and Suter U: Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: New implications for charcot-marie-tooth disease. J Cell Biol. 170:1067–1078. 2005.PubMed/NCBI View Article : Google Scholar

210 

Tondera D, Santel A, Schwarzer R, Dames S, Giese K, Klippel A and Kaufmann J: Knockdown of MTP18, a novel phosphatidylinositol 3-kinase-dependent protein, affects mitochondrial morphology and induces apoptosis. J Biol Chem. 279:31544–31555. 2004.PubMed/NCBI View Article : Google Scholar

211 

Norton M, Ng AC, Baird S, Dumoulin A, Shutt T, Mah N, Andrade-Navarro MA, McBride HM and Screaton RA: ROMO1 is an essential redox-dependent regulator of mitochondrial dynamics. Sci Signal. 7(ra10)2014.PubMed/NCBI View Article : Google Scholar

212 

Zoulikha M, Xiao Q, Boafo GF, Sallam MA, Chen Z and He W: Pulmonary delivery of siRNA against acute lung injury/acute respiratory distress syndrome. Acta Pharm Sin B. 12:600–620. 2022.PubMed/NCBI View Article : Google Scholar

213 

Singer M: The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence. 5:66–72. 2014.PubMed/NCBI View Article : Google Scholar

214 

Hsu YC, Wu YT, Yu TH and Wei YH: Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer. Semin Cell Dev Biol. 52:119–131. 2016.PubMed/NCBI View Article : Google Scholar

215 

Zhang H, Feng YW and Yao YM: Potential therapy strategy: Targeting mitochondrial dysfunction in sepsis. Mil Med Res. 5(41)2018.PubMed/NCBI View Article : Google Scholar

216 

Morrison TJ, Jackson MV, Cunningham EK, Kissenpfennig A, McAuley DF, O'Kane CM and Krasnodembskaya AD: Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med. 196:1275–1286. 2017.PubMed/NCBI View Article : Google Scholar

217 

Willson JA, Arienti S, Sadiku P, Reyes L, Coelho P, Morrison T, Rinaldi G, Dockrell DH, Whyte MKB and Walmsley SR: Neutrophil HIF-1α stabilization is augmented by mitochondrial ROS produced via the glycerol 3-phosphate shuttle. Blood. 139:281–286. 2022.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhan B and Shen J: Mitochondria and their potential role in acute lung injury (Review). Exp Ther Med 24: 479, 2022.
APA
Zhan, B., & Shen, J. (2022). Mitochondria and their potential role in acute lung injury (Review). Experimental and Therapeutic Medicine, 24, 479. https://doi.org/10.3892/etm.2022.11406
MLA
Zhan, B., Shen, J."Mitochondria and their potential role in acute lung injury (Review)". Experimental and Therapeutic Medicine 24.1 (2022): 479.
Chicago
Zhan, B., Shen, J."Mitochondria and their potential role in acute lung injury (Review)". Experimental and Therapeutic Medicine 24, no. 1 (2022): 479. https://doi.org/10.3892/etm.2022.11406
Copy and paste a formatted citation
x
Spandidos Publications style
Zhan B and Shen J: Mitochondria and their potential role in acute lung injury (Review). Exp Ther Med 24: 479, 2022.
APA
Zhan, B., & Shen, J. (2022). Mitochondria and their potential role in acute lung injury (Review). Experimental and Therapeutic Medicine, 24, 479. https://doi.org/10.3892/etm.2022.11406
MLA
Zhan, B., Shen, J."Mitochondria and their potential role in acute lung injury (Review)". Experimental and Therapeutic Medicine 24.1 (2022): 479.
Chicago
Zhan, B., Shen, J."Mitochondria and their potential role in acute lung injury (Review)". Experimental and Therapeutic Medicine 24, no. 1 (2022): 479. https://doi.org/10.3892/etm.2022.11406
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team