You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Jiang Z, Zhang L and Shen J: MicroRNA: Potential biomarker and target of therapy in acute lung injury. Hum Exp Toxicol. 39:1429–1442. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Mowery NT, Terzian WTH and Nelson AC: Acute lung injury. Curr Probl Surg. 57(100777)2020.PubMed/NCBI View Article : Google Scholar | |
|
Bernard G, Artigas A, Brigham K, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A and Spragg R: Report of the American-European consensus conference on ARDS: Definitions, mechanisms, relevant outcomes and clinical trial coordination. The consensus committee. Intensive Care Med. 20:225–232. 1994.PubMed/NCBI View Article : Google Scholar | |
|
ARDS Definition Task Force. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L and Slutsky AS: Acute respiratory distress syndrome: The Berlin definition. JAMA. 307:2526–2533. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Hudson LD, Milberg JA, Anardi D and Maunder RJ: Clinical risks for development of the acute respiratory distress syndrome. Am J Respir Crit Care Med. 151:293–301. 1995.PubMed/NCBI View Article : Google Scholar | |
|
Looney MR, Su X, Van Ziffle JA, Lowell CA and Matthay MA: Neutrophils and their Fc gamma receptors are essential in a mouse model of transfusion-related acute lung injury. J Clin Invest. 116:1615–1623. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Martin T, Hagimoto N, Nakamura M and Matute-Bello G: Apoptosis and epithelial injury in the lungs. Proc Am Thorac Soc. 2:214–220. 2005.PubMed/NCBI View Article : Google Scholar | |
|
Weiser M, Pechet T, Williams J, Ma M, Frenette PS, Moore FD, Kobzik L, Hines RO, Wagner DD, Carroll MC and Hechtman HB: Experimental murine acid aspiration injury is mediated by neutrophils and the alternative complement pathway. J Appl Physiol (1985). 83:1090–1095. 1997.PubMed/NCBI View Article : Google Scholar | |
|
Spadaro S, Park M, Turrini C, Tunstall T, Thwaites R, Mauri T, Ragazzi R, Ruggeri P, Hansel TT, Caramori G and Volta CA: Biomarkers for acute respiratory distress syndrome and prospects for personalised medicine. J Inflamm (Lond). 16(1)2019.PubMed/NCBI View Article : Google Scholar | |
|
Huang X, Xiu H, Zhang S and Zhang G: The role of macrophages in the pathogenesis of ALI/ARDS. Mediators Inflamm. 2018(1264913)2018.PubMed/NCBI View Article : Google Scholar | |
|
Han S and Mallampalli RK: The acute respiratory distress syndrome: From mechanism to translation. J Immunol. 194:855–860. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Meduri G, Kohler G, Headley S, Tolley E, Stentz F and Postlethwaite A: Inflammatory cytokines in the BAL of patients with ARDS. Persistent elevation over time predicts poor outcome. Chest. 108:1303–1314. 1995.PubMed/NCBI View Article : Google Scholar | |
|
Parsons PE, Eisner MD, Thompson BT, Matthay MA, Ancukiewicz M, Bernard GR and Wheeler AP: NHLBI Acute Respiratory Distress Syndrome Clinical Trials Network. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med. 33:1–6, 230-232. 2005.PubMed/NCBI View Article : Google Scholar | |
|
Greene KE, Wright JR, Steinberg KP, Ruzinski JT, Caldwell E, Wong WB, Hull W, Whitsett JA, Akino T, Kuroki Y, et al: Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. Am J Respir Crit Care Med. 160:1843–1850. 1999.PubMed/NCBI View Article : Google Scholar | |
|
Terpstra ML, Aman J, van Nieuw Amerongen GP and Groeneveld AB: Plasma biomarkers for acute respiratory distress syndrome: A systematic review and meta-analysis*. Crit Care Med. 42:691–700. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Ware LB, Matthay MA, Parsons PE, Thompson BT, Januzzi JL and Eisner MD: National Heart, Lung and Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network. Pathogenetic and prognostic significance of altered coagulation and fibrinolysis in acute lung injury/acute respiratory distress syndrome. Crit Care Med. 35:1821–1828. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, et al: Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 315:788–800. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Fan E, Brodie D and Slutsky AS: Acute respiratory distress syndrome: Advances in diagnosis and treatment. JAMA. 319:698–710. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Peter JV, John P, Graham PL, Moran JL, George IA and Bersten A: Corticosteroids in the prevention and treatment of acute respiratory distress syndrome (ARDS) in adults: Meta-analysis. BMJ. 336:1006–1009. 2008.PubMed/NCBI View Article : Google Scholar | |
|
McAuley DF and Matthay MA: Is there a role for beta-adrenoceptor agonists in the management of acute lung injury and the acute respiratory distress syndrome? Treat Respir Med. 4:297–307. 2005.PubMed/NCBI View Article : Google Scholar | |
|
Bernard GR, Luce JM, Sprung CL, Rinaldo JE, Tate RM, Sibbald WJ, Kariman K, Higgins S, Bradley R, Metz CA, et al: High-dose corticosteroids in patients with the adult respiratory distress syndrome. N Engl J Med. 317:1565–1570. 1987.PubMed/NCBI View Article : Google Scholar | |
|
Steinberg KP, Hudson LD, Goodman RB, Hough CL, Lanken PN, Hyzy R, Thompson BT and Ancukiewicz M: National Heart, Lung and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med. 354:1671–1684. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Doig C: Aerosolized surfactant in sepsis-induced adult respiratory distress syndrome. JAMA. 273:1259–1260. 1995.PubMed/NCBI | |
|
Domenighetti G, Suter PM, Schaller MD, Ritz R and Perret C: Treatment with N-acetylcysteine during acute respiratory distress syndrome: A randomized, double-blind, placebo-controlled clinical study. J Crit Care. 12:177–182. 1997.PubMed/NCBI View Article : Google Scholar | |
|
Dellinger RP, Zimmerman JL, Taylor RW, Straube RC, Hauser DL, Criner GJ, Davis K Jr, Hyers TM and Papadakos P: Effects of inhaled nitric oxide in patients with acute respiratory distress syndrome: Results of a randomized phase II trial. Inhaled nitric oxide in ARDS study group. Crit Care Med. 26:15–23. 1998.PubMed/NCBI View Article : Google Scholar | |
|
Vincent JL, Brase R, Santman F, Suter PM, McLuckie A, Dhainaut JF, Park Y and Karmel J: A multi-centre, double-blind, placebo-controlled study of liposomal prostaglandin E1 (TLC C-53) in patients with acute respiratory distress syndrome. Intensive Care Med. 27:1578–1583. 2001.PubMed/NCBI View Article : Google Scholar | |
|
Abraham E, Carmody A, Shenkar R and Arcaroli J: Neutrophils as early immunologic effectors in hemorrhage- or endotoxemia-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 279:L1137–L1145. 2000.PubMed/NCBI View Article : Google Scholar | |
|
Ketoconazole for early treatment of acute lung injury and acute respiratory distress syndrome: A randomized controlled trial. The ARDS network. JAMA. 283:1995–2002. 2000.PubMed/NCBI View Article : Google Scholar | |
|
Randomized placebo-controlled trial of lisofylline for early treatment of acute lung injury and acute respiratory distress syndrome. Crit Care Med. 30:1–6. 2002.PubMed/NCBI View Article : Google Scholar | |
|
Perkins GD, Gates S, Park D, Gao F, Knox C, Holloway B, McAuley DF, Ryan J, Marzouk J, Cooke MW, et al: The beta agonist lung injury trial prevention. A randomized controlled trial. Am J Respir Crit Care Med. 189:674–683. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Morris PE, Papadakos P, Russell JA, Wunderink R, Schuster DP, Truwit JD, Vincent JL and Bernard GR: A double-blind placebo-controlled study to evaluate the safety and efficacy of L-2-oxothiazolidine-4-carboxylic acid in the treatment of patients with acute respiratory distress syndrome. Crit Care Med. 36:782–788. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Liu KD, Levitt J, Zhuo H, Kallet RH, Brady S, Steingrub J, Tidswell M, Siegel MD, Soto G, Peterson MW, et al: Randomized clinical trial of activated protein C for the treatment of acute lung injury. Am J Respir Crit Care Med. 178:618–623. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Murphy MB, Moncivais K and Caplan AI: Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 45(e54)2013.PubMed/NCBI View Article : Google Scholar | |
|
Rajasekaran S, Pattarayan D, Rajaguru P, Sudhakar Gandhi P and Thimmulappa RK: MicroRNA regulation of acute lung injury and acute respiratory distress syndrome. J Cell Physiol. 231:2097–2106. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Chakraborty C, Sharma AR, Sharma G, Doss CGP and Lee SS: Therapeutic miRNA and siRNA: Moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids. 8:132–143. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Johnson ER and Matthay MA: Acute lung injury: Epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv. 23:243–252. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Porporato PE, Filigheddu N, Pedro JMB, Kroemer G and Galluzzi L: Mitochondrial metabolism and cancer. Cell Res. 28:265–280. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Bar-Ziv R, Bolas T and Dillin A: Systemic effects of mitochondrial stress. EMBO Rep. 21(e50094)2020.PubMed/NCBI View Article : Google Scholar | |
|
Anderson AJ, Jackson TD, Stroud DA and Stojanovski D: Mitochondria-hubs for regulating cellular biochemistry: Emerging concepts and networks. Open Biol. 9(190126)2019.PubMed/NCBI View Article : Google Scholar | |
|
Rowlands DJ: Mitochondria dysfunction: A novel therapeutic target in pathological lung remodeling or bystander? Pharmacol Ther. 166:96–105. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Wu H, Wei H, Sehgal SA, Liu L and Chen Q: Mitophagy receptors sense stress signals and couple mitochondrial dynamic machinery for mitochondrial quality control. Free Radic Biol Med. 100:199–209. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Gottlieb RA and Stotland A: MitoTimer: A novel protein for monitoring mitochondrial turnover in the heart. J Mol Med (Berl). 93:271–278. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Tilokani L, Nagashima S, Paupe V and Prudent J: Mitochondrial dynamics: Overview of molecular mechanisms. Essays Biochem. 62:341–360. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Collins TJ, Berridge MJ, Lipp P and Bootman MD: Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J. 21:1616–1627. 2002.PubMed/NCBI View Article : Google Scholar | |
|
Rongvaux A: Innate immunity and tolerance toward mitochondria. Mitochondrion. 41:14–20. 2018.PubMed/NCBI View Article : Google Scholar | |
|
de-Lima-Júnior JC, Souza GF, Moura-Assis A, Gaspar RS, Gaspar JM, Rocha AL, Ferrucci DL, Lima TI, Victório SC, Bonfante ILP, et al: Abnormal brown adipose tissue mitochondrial structure and function in IL10 deficiency. EBioMedicine. 39:436–447. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Vögtle FN, Burkhart JM, Gonczarowska-Jorge H, Kücükköse C, Taskin AA, Kopczynski D, Ahrends R, Mossmann D, Sickmann A, Zahedi RP and Meisinger C: Landscape of submitochondrial protein distribution. Nat Commun. 8(290)2017.PubMed/NCBI View Article : Google Scholar | |
|
Ralto KM and Parikh SM: Mitochondria in acute kidney injury. Semin Nephrol. 36:8–16. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Abate M, Festa A, Falco M, Lombardi A, Luce A, Grimaldi A, Zappavigna S, Sperlongano P, Irace C, Caraglia M and Misso G: Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol. 98:139–153. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Cogliati S, Enriquez JA and Scorrano L: Mitochondrial cristae: Where beauty meets functionality. Trends Biochem Sci. 41:261–273. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Rath S, Sharma R, Gupta R, Ast T, Chan C, Durham TJ, Goodman RP, Grabarek Z, Haas ME, Hung WHW, et al: MitoCarta3.0: An updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 49:D1541–D1547. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Smith AC and Robinson AJ: MitoMiner v3.1, an update on the mitochondrial proteomics database. Nucleic Acids Res. 44 (D1):D1258–D1261. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Rhee HW, Zou P, Udeshi ND, Martell JD, Mootha VK, Carr SA and Ting AY: Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science. 339:1328–1331. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Hartl FU and Neupert W: Protein sorting to mitochondria: Evolutionary conservations of folding and assembly. Science. 247:930–938. 1990.PubMed/NCBI View Article : Google Scholar | |
|
Wiedemann N and Pfanner N: Mitochondrial machineries for protein import and assembly. Annu Rev Biochem. 86:685–714. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Boczonadi V, Ricci G and Horvath R: Mitochondrial DNA transcription and translation: Clinical syndromes. Essays Biochem. 62:321–340. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Gilkerson RW, Selker JM and Capaldi RW: The cristal membrane of mitochondria is the principal site of oxidative phosphorylation. FEBS Lett. 546:355–358. 2003.PubMed/NCBI View Article : Google Scholar | |
|
Youle RJ: Mitochondria-striking a balance between host and endosymbiont. Science. 365(eaaw9855)2019.PubMed/NCBI View Article : Google Scholar | |
|
Aw WC, Towarnicki SG, Melvin RG, Youngson NA, Garvin MR, Hu Y, Nielsen S, Thomas T, Pickford R, Bustamante S, et al: Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness. PLoS Genet. 14(e1007735)2018.PubMed/NCBI View Article : Google Scholar | |
|
Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL, Feeney C, Horvath R, Yu-Wai-Man P, Chinnery PF, et al: Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 77:753–759. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Melvin RG and Ballard JW: Intraspecific variation in survival and mitochondrial oxidative phosphorylation in wild-caught Drosophila simulans. Aging Cell. 5:225–233. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Princepe D and De Aguiar MAM: Modeling Mito-nuclear compatibility and its role in species identification. Syst Biol. 70:133–144. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Telschow A, Gadau J, Werren J and Kobayashi Y: Genetic incompatibilities between mitochondria and nuclear genes: Effect on gene flow and speciation. Front Genet. 10(62)2019.PubMed/NCBI View Article : Google Scholar | |
|
Roth KG, Mambetsariev I, Kulkarni P and Salgia R: The mitochondrion as an emerging therapeutic target in cancer. Trends Mol Med. 26:119–134. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES and Wang X: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 91:479–489. 1997.PubMed/NCBI View Article : Google Scholar | |
|
Liu X, Kim CN, Yang J, Jemmerson R and Wang X: Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell. 86:147–157. 1996.PubMed/NCBI View Article : Google Scholar | |
|
Bossy-Wetzel E, Newmeyer DD and Green DR: Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J. 17:37–49. 1998.PubMed/NCBI View Article : Google Scholar | |
|
Hine C, Harputlugil E, Zhang Y, Ruckenstuhl C, Lee BC, Brace L, Longchamp A, Treviño-Villarreal JH, Mejia P, Ozaki CK, et al: Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell. 160:132–144. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Eisner V, Picard M and Hajnóczky G: Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat Cell Biol. 20:755–765. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Mitra K, Wunder C, Roysam B, Lin G and Lippincott-Schwartz J: A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc Natl Acad Sci USA. 106:11960–11965. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Rambold A, Kostelecky B, Elia N and Lippincott-Schwartz J: Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci USA. 108:10190–10195. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Aiello A, Cristofaro M, Carrozza F, Verdone F and Carile L: Lymphocyte subpopulations and the soluble interleukin-2 receptor in Hashimoto's thyroiditis and subacute thyroiditis. Clin Ter. 133:401–404. 1990.PubMed/NCBI(In Italian). | |
|
Leduc-Gaudet JP, Hussain SNA, Barreiro E and Gouspillou G: Mitochondrial dynamics and mitophagy in skeletal muscle health and aging. Int J Mol Sci. 22(8179)2021.PubMed/NCBI View Article : Google Scholar | |
|
Santel A, Frank S, Gaume B, Herrler M, Youle RJ and Fuller MT: Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci. 116:2763–2774. 2003.PubMed/NCBI View Article : Google Scholar | |
|
Eura Y, Ishihara N, Yokota S and Mihara K: Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J Biochem. 134:333–344. 2003.PubMed/NCBI View Article : Google Scholar | |
|
de Brito OM and Scorrano L: Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 456:605–610. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Detmer SA and Chan DC: Complementation between mouse Mfn1 and Mfn2 protects mitochondrial fusion defects caused by CMT2A disease mutations. J Cell Biol. 176:405–414. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Ehses S, Raschke I, Mancuso G, Bernacchia A, Geimer S, Tondera D, Martinou JC, Westermann B, Rugarli EI and Langer T: Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol. 187:1023–1036. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Mishra P, Carelli V, Manfredi G and Chan DC: Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab. 19:630–641. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Schlattner U, Tokarska-Schlattner M, Ramirez S, Tyurina YY, Amoscato AA, Mohammadyani D, Huang Z, Jiang J, Yanamala N, Seffouh A, et al: Dual function of mitochondrial Nm23-H4 protein in phosphotransfer and intermembrane lipid transfer: A cardiolipin-dependent switch. J Biol Chem. 288:111–121. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Griparic L, van der Wel NN, Orozco IJ, Peters PJ and van der Bliek AM: Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem. 279:18792–18798. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Pernas L and Scorrano L: Mito-morphosis: Mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol. 78:505–531. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Margineantu DH, Gregory Cox W, Sundell L, Sherwood SW, Beechem JM and Capaldi RA: Cell cycle dependent morphology changes and associated mitochondrial DNA redistribution in mitochondria of human cell lines. Mitochondrion. 1:425–435. 2002.PubMed/NCBI View Article : Google Scholar | |
|
Mitra K: Mitochondrial fission-fusion as an emerging key regulator of cell proliferation and differentiation. Bioessays. 35:955–964. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Diebold L and Chandel NS: Mitochondrial ROS regulation of proliferating cells. Free Radic Biol Med. 100:86–93. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Jheng HF, Tsai PJ, Guo S, Kuo LH, Chang CS, Su IJ, Chang CR and Tsai YS: Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol Cell Biol. 32:309–319. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Deng X, Liu J, Liu L, Sun X, Huang J and Dong J: Drp1-mediated mitochondrial fission contributes to baicalein-induced apoptosis and autophagy in lung cancer via activation of AMPK signaling pathway. Int J Biol Sci. 16:1403–1416. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Zhang H, Yan Q, Wang X, Chen X, Chen Y, Du J and Chen L: The role of mitochondria in liver ischemia-reperfusion injury: From aspects of mitochondrial oxidative stress, mitochondrial fission, mitochondrial membrane permeable transport pore formation, mitophagy, and mitochondria-related protective measures. Oxid Med Cell Longev. 2021(6670579)2021.PubMed/NCBI View Article : Google Scholar | |
|
Smirnova E, Griparic L, Shurland DL and van der Bliek AM: Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell. 12:2245–2256. 2001.PubMed/NCBI View Article : Google Scholar | |
|
Kraus F and Ryan MY: The constriction and scission machineries involved in mitochondrial fission. J Cell Sci. 130:2953–2960. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Gandre-Babbe S and van der Bliek AM: The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell. 19:2402–2412. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Palmer CS, Osellame LD, Laine D, Koutsopoulos OS, Frazier AE and Ryan MT: MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep. 12:565–573. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Losón OC, Song Z, Chen H and Chan DC: Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell. 24:659–667. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Chakrabarti R, Ji WK, Stan RV, de Juan Sanz J, Ryan TA and Higgs HN: INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division. J Cell Biol. 217:251–268. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Kameoka S, Adachi Y, Okamoto K, Iijima M and Sesaki H: Phosphatidic acid and cardiolipin coordinate mitochondrial dynamics. Trends Cell Biol. 28:67–76. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Lee H and Yoon Y: Transient contraction of mitochondria induces depolarization through the inner membrane dynamin OPA1 protein. J Biol Chem. 289:11862–11872. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Cho B, Cho HM, Jo Y, Kim HD, Song M, Moon C, Kim H, Kim K, Sesaki H, Rhyu IJ, et al: Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division. Nat Commun. 8(15754)2017.PubMed/NCBI View Article : Google Scholar | |
|
Ding C, Wu Z, Huang L, Wang Y, Xue J and Chen S, Deng Z, Wang L, Song Z and Chen S: Mitofilin and CHCHD6 physically interact with Sam50 to sustain cristae structure. Sci Rep. 5(16064)2015.PubMed/NCBI View Article : Google Scholar | |
|
Niu J, Yu M, Wang C and Xu Z: Leucine-rich repeat kinase 2 disturbs mitochondrial dynamics via dynamin-like protein. J Neurochem. 122:650–658. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Haile Y, Deng X, Ortiz-Sandoval C, Tahbaz N, Janowicz A, Lu JQ, Kerr BJ, Gutowski NJ, Holley JE, Eggleton P, et al: Rab32 connects ER stress to mitochondrial defects in multiple sclerosis. J Neuroinflammation. 14(19)2017.PubMed/NCBI View Article : Google Scholar | |
|
Mohsin M, Tabassum G, Ahmad S, Ali S and Ali Syed M: The role of mitophagy in pulmonary sepsis. Mitochondrion. 59:63–75. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, et al: PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol. 189:211–221. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Narendra D, Tanaka A, Suen DF and Youle RJ: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 183:795–803. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Bingol B and Sheng M: Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radic Biol Med. 100:210–222. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Sharma A, Ahmad S, Ahmad T, Ali S and Syed MA: Mitochondrial dynamics and mitophagy in lung disorders. Life Sci. 284(119876)2021.PubMed/NCBI View Article : Google Scholar | |
|
Chen Y and Dorn GW II: PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science. 340:471–475. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Glauser L, Sonnay S, Stafa K and Moore DJ: Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. J Neurochem. 118:636–645. 2011.PubMed/NCBI View Article : Google Scholar | |
|
López-Doménech G, Covill-Cooke C, Ivankovic D, Halff EF, Sheehan DF, Norkett R, Birsa N and Kittler JT: Miro proteins coordinate microtubule- and actin-dependent mitochondrial transport and distribution. EMBO J. 37:321–336. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ and Springer W: PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 12:119–131. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Real P, Benito A, Cuevas J, Berciano MT, de Juan A, Coffer P, Gomez-Roman J, Lafarga M, Lopez-Vega JM and Fernandez-Luna JL: Blockade of epidermal growth factor receptors chemosensitizes breast cancer cells through up-regulation of Bnip3L. Cancer Res. 65:8151–8157. 2005.PubMed/NCBI View Article : Google Scholar | |
|
Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S and Gustafsson ÅB: Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem. 287:19094–19104. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W, et al: Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol. 14:177–185. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Sekine S, Kanamaru Y, Koike M, Nishihara A, Okada M, Kinoshita H, Kamiyama M, Maruyama J, Uchiyama Y, Ishihara N, et al: Rhomboid protease PARL mediates the mitochondrial membrane potential loss-induced cleavage of PGAM5. J Biol Chem. 287:34635–34645. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Kagan VE, Jiang J, Huang Z, Tyurina YY, Desbourdes C, Cottet-Rousselle C, Dar HH, Verma M, Tyurin VA, Kapralov AA, et al: NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy. Cell Death Differ. 23:1140–1151. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Wei Y, Chiang WC, Sumpter R Jr, Mishra P and Levine B: Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell. 168:224–238.e10. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Di Rita A, Peschiaroli A, D Acunzo P, Strobbe D, Hu Z, Gruber J, Nygaard M, Lambrughi M, Melino G, Papaleo E, et al: HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKα. Nat Commun. 9(3755)2018.PubMed/NCBI View Article : Google Scholar | |
|
Ju L, Chen S, Alimujiang M, Bai N, Yan H, Fang Q, Han J, Ma X, Yang Y and Jia W: A novel role for Bcl2l13 in promoting beige adipocyte biogenesis. Biochem Biophys Res Commun. 506:485–491. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T, Oka T, Yasui H, Ueda H, Akazawa Y, Nakayama H, et al: Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun. 6(7527)2015.PubMed/NCBI View Article : Google Scholar | |
|
Benard G and Rossignol R: Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid Redox Signal. 10:1313–1342. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Goncalves RL, Quinlan CL, Perevoshchikova IV, Hey-Mogensen M and Brand MD: Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J Biol Chem. 290:209–227. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Zuo L and Wijegunawardana D: Redox role of ROS and inflammation in pulmonary diseases. Adv Exp Med Biol. 1304:187–204. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Moncada S and Erusalimsky JD: Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol. 3:214–220. 2002.PubMed/NCBI View Article : Google Scholar | |
|
Gellerich FN, Trumbeckaite S, Opalka JR, Gellerich JF, Chen Y, Neuhof C, Redl H, Werdan K and Zierz S: Mitochondrial dysfunction in sepsis: Evidence from bacteraemic baboons and endotoxaemic rabbits. Biosci Rep. 22:99–113. 2002.PubMed/NCBI View Article : Google Scholar | |
|
Adrie C, Bachelet M, Vayssier-Taussat M, Russo-Marie F, Bouchaert I, Adib-Conquy M, Cavaillon JM, Pinsky MR, Dhainaut JF and Polla BS: Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis. Am J Respir Crit Care Med. 164:389–395. 2001.PubMed/NCBI View Article : Google Scholar | |
|
Callahan LA and Supinski GS: Sepsis induces diaphragm electron transport chain dysfunction and protein depletion. Am J Respir Crit Care Med. 172:861–868. 2005.PubMed/NCBI View Article : Google Scholar | |
|
Ayala JC, Grismaldo A, Aristizabal-Pachon AF, Mikhaylenko EV, Nikolenko VN, Mikhaleva LM, Somasundaram SG, Kirkland CE, Aliev G and Morales L: Mitochondrial dysfunction in intensive care unit patients. Curr Pharm Des. 27(3074)2021.PubMed/NCBI View Article : Google Scholar | |
|
Fakhruddin S, Alanazi W and Jackson KE: Diabetes-induced reactive oxygen species: Mechanism of their generation and role in renal injury. J Diabetes Res. 2017(8379327)2017.PubMed/NCBI View Article : Google Scholar | |
|
Stepien KM, Heaton R, Rankin S, Murphy A, Bentley J, Sexton D and Hargreaves IP: Evidence of oxidative stress and secondary mitochondrial dysfunction in metabolic and non-metabolic disorders. J Clin Med. 6(71)2017.PubMed/NCBI View Article : Google Scholar | |
|
Arulkumaran N, Deutschman CS, Pinsky MR, Zuckerbraun B, Schumacker PT, Gomez H, Gomez A, Murray P and Kellum JA: ADQI XIV Workgroup. Mitochondrial function in sepsis. Shock. 45:271–281. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Boulos M, Astiz ME, Barua RS and Osman M: Impaired mitochondrial function induced by serum from septic shock patients is attenuated by inhibition of nitric oxide synthase and poly(ADP-ribose) synthase. Crit Care Med. 31:353–358. 2003.PubMed/NCBI View Article : Google Scholar | |
|
Orrenius S, Gogvadze V and Zhivotovsky B: Calcium and mitochondria in the regulation of cell death. Biochem Biophys Res Commun. 460:72–81. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Sharma P and Sampath H: Mitochondrial DNA integrity: Role in health and disease. Cells. 8(100)2019.PubMed/NCBI View Article : Google Scholar | |
|
Zorov DB, Juhaszova M and Sollott SJ: Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 94:909–950. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Shadel GS and Horvath TL: Mitochondrial ROS signaling in organismal homeostasis. Cell. 163:560–569. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Poderoso JL: The formation of peroxynitrite in the applied physiology of mitochondrial nitric oxide. Arch Biochem Biophys. 484:214–220. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Sies H: Oxidative stress: A concept in redox biology and medicine. Redox Biol. 4:180–183. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Chow CW, Herrera Abreu MT, Suzuki T and Downey GP: Oxidative stress and acute lung injury. Am J Respir Cell Mol Biol. 29:427–431. 2003.PubMed/NCBI View Article : Google Scholar | |
|
Puri G and Naura AS: Critical role of mitochondrial oxidative stress in acid aspiration induced ALI in mice. Toxicol Mech Methods. 30:266–274. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Lopez-Crisosto C, Pennanen C, Vasquez-Trincado C, Morales PE, Bravo-Sagua R, Quest AFG, Chiong M and Lavandero S: Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology. Nat Rev Cardiol. 14:342–360. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Kwong JQ, Huo J, Bround MJ, Boyer JG, Schwanekamp JA, Ghazal N, Maxwell JT, Jang YC, Khuchua Z, Shi K, et al: The mitochondrial calcium uniporter underlies metabolic fuel preference in skeletal muscle. JCI Insight. 3(e121689)2018.PubMed/NCBI View Article : Google Scholar | |
|
Sommakia S, Houlihan PR, Deane SS, Simcox JA, Torres NS, Jeong MY, Winge DR, Villanueva CJ and Chaudhuri D: Mitochondrial cardiomyopathies feature increased uptake and diminished efflux of mitochondrial calcium. J Mol Cell Cardiol. 113:22–32. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Denton RM: Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta. 1787:1309–1316. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Dey S, DeMazumder D, Sidor A, Foster DB and O'Rourke B: Mitochondrial ROS drive sudden cardiac death and chronic proteome remodeling in heart failure. Circ Res. 123:356–371. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Halestrap AP, Woodfield KY and Connern CP: Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem. 272:3346–3354. 1997.PubMed/NCBI View Article : Google Scholar | |
|
Kiefmann M, Tank S, Keller P, Börnchen C, Rinnenthal JL, Tritt MO, Schulte-Uentrop L, Olotu C, Goetz AE and Kiefmann R: IDH3 mediates apoptosis of alveolar epithelial cells type 2 due to mitochondrial Ca2+ uptake during hypocapnia. Cell Death Dis. 8(e3005)2017.PubMed/NCBI View Article : Google Scholar | |
|
Mu G, Deng Y, Lu Z, Li X and Chen Y: miR-20b suppresses mitochondrial dysfunction-mediated apoptosis to alleviate hyperoxia-induced acute lung injury by directly targeting MFN1 and MFN2. Acta Biochim Biophys Sin (Shanghai). 53:220–228. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Szturmowicz M and Demkow U: Neutrophil extracellular traps (NETs) in severe SARS-CoV-2 lung disease. Int J Mol Sci. 22(8854)2021.PubMed/NCBI View Article : Google Scholar | |
|
Lugg ST, Scott A, Parekh D, Naidu B and Thickett DR: Cigarette smoke exposure and alveolar macrophages: Mechanisms for lung disease. Thorax. 77:94–101. 2022.PubMed/NCBI View Article : Google Scholar | |
|
West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, Walsh MC, Choi Y, Shadel GS and Ghosh S: TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature. 472:476–480. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Yuan Z, Syed MA, Panchal D, Joo M, Colonna M, Brantly M and Sadikot RT: Triggering receptor expressed on myeloid cells 1 (TREM-1)-mediated Bcl-2 induction prolongs macrophage survival. J Biol Chem. 289:15118–15129. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Guillén-Gómez E, Silva I, Serra N, Caballero F, Leal J, Breda A, San Martín R, Pastor-Anglada M, Ballarín JA, Guirado L and Díaz-Encarnación MM: From inflammation to the onset of fibrosis through A2A receptors in kidneys from deceased donors. Int J Mol Sci. 21(8826)2020.PubMed/NCBI View Article : Google Scholar | |
|
Pearce EL, Poffenberger MC, Chang CH and Jones RG: Fueling immunity: Insights into metabolism and lymphocyte function. Science. 342(1242454)2013.PubMed/NCBI View Article : Google Scholar | |
|
Zmijewski JW, Lorne E, Zhao X, Tsuruta Y, Sha Y, Liu G, Siegal GP and Abraham E: Mitochondrial respiratory complex I regulates neutrophil activation and severity of lung injury. Am J Respir Crit Care Med. 178:168–179. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, Rowlands DJ, Quadri SK, Bhattacharya S and Bhattacharya J: Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med. 18:759–765. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Yu J, Shi J, Wang D, Dong S, Zhang Y, Wang M, Gong L, Fu Q and Liu D: Heme oxygenase-1/carbon monoxide-regulated mitochondrial dynamic equilibrium contributes to the attenuation of endotoxin-induced acute lung injury in rats and in lipopolysaccharide-activated macrophages. Anesthesiology. 125:1190–1201. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Shi J, Yu J, Zhang Y, Wu L, Dong S, Wu L, Wu L, Du S, Zhang Y and Ma D: PI3K/Akt pathway-mediated HO-1 induction regulates mitochondrial quality control and attenuates endotoxin-induced acute lung injury. Lab Invest. 99:1795–1809. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Yu J, Wang Y, Li Z, Dong S, Wang D, Gong L, Shi J, Zhang Y, Liu D and Mu R: Effect of heme oxygenase-1 on mitofusin-1 protein in LPS-induced ALI/ARDS in rats. Sci Rep. 6(36530)2016.PubMed/NCBI View Article : Google Scholar | |
|
Deng S, Zhang L, Mo Y, Huang Y, Li W, Peng Q, Huang L and Ai Y: Mdivi-1 attenuates lipopolysaccharide-induced acute lung injury by inhibiting MAPKs, oxidative stress and apoptosis. Pulm Pharmacol Ther. 62(101918)2020.PubMed/NCBI View Article : Google Scholar | |
|
Jiang C, Zhang J, Xie H, Guan H, Li R, Chen C, Dong H, Zhou Y and Zhang W: Baicalein suppresses lipopolysaccharide-induced acute lung injury by regulating Drp1-dependent mitochondrial fission of macrophages. Biomed Pharmacother. 145(112408)2022.PubMed/NCBI View Article : Google Scholar | |
|
Shi J, Yu T, Song K, Du S, He S, Hu X, Li X, Li H, Dong S, Zhang Y, et al: Dexmedetomidine ameliorates endotoxin-induced acute lung injury in vivo and in vitro by preserving mitochondrial dynamic equilibrium through the HIF-1a/HO-1 signaling pathway. Redox Biol. 41(101954)2021.PubMed/NCBI View Article : Google Scholar | |
|
Wu D, Zhang H, Wu Q, Li F, Wang Y, Liu S and Wang J: Sestrin 2 protects against LPS-induced acute lung injury by inducing mitophagy in alveolar macrophages. Life Sci. 267(118941)2021.PubMed/NCBI View Article : Google Scholar | |
|
Liu W, Li CC, Lu X, Bo LY and Jin FG: Overexpression of transcription factor EB regulates mitochondrial autophagy to protect lipopolysaccharide-induced acute lung injury. Chin Med J (Engl). 132:1298–1304. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Luo X, Liu R, Zhang Z, Chen Z, He J and Liu Y: Mitochondrial division inhibitor 1 attenuates mitophagy in a rat model of acute lung injury. Biomed Res Int. 2019(2193706)2019.PubMed/NCBI View Article : Google Scholar | |
|
Liu W, Li Y, Bo L, Li C and Jin F: Positive regulation of TFEB and mitophagy by PGC-1α to alleviate LPS-induced acute lung injury in rats. Biochem Biophys Res Commun. 577:1–5. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Zhao R, Wang B, Wang D, Wu B, Ji P and Tan D: Oxyberberine prevented lipopolysaccharide-induced acute lung injury through inhibition of mitophagy. Oxid Med Cell Longev. 2021(6675264)2021.PubMed/NCBI View Article : Google Scholar | |
|
Zhang Z, Chen Z, Liu R, Liang Q, Peng Z, Yin S, Tang J, Gong T and Liu Y: Bcl-2 proteins regulate mitophagy in lipopolysaccharide-induced acute lung injury via PINK1/Parkin signaling pathway. Oxid Med Cell Longev. 2020(6579696)2020.PubMed/NCBI View Article : Google Scholar | |
|
Patel S: Danger-associated molecular patterns (DAMPs): The derivatives and triggers of inflammation. Curr Allergy Asthma Rep. 18(63)2018.PubMed/NCBI View Article : Google Scholar | |
|
Frevert C, Felgenhauer J, Wygrecka M, Nastase M and Schaefer L: Danger-associated molecular patterns derived from the extracellular matrix provide temporal control of innate immunity. J Histochem Cytochem. 66:213–227. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Vénéreau E, Ceriotti C and Bianchi ME: DAMPs from cell death to new life. Front Immunol. 6(422)2015.PubMed/NCBI View Article : Google Scholar | |
|
Bianchi ME: DAMPs, PAMPs and alarmins: All we need to know about danger. J Leukoc Biol. 81:1–5. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Zedler S and Faist E: The impact of endogenous triggers on trauma-associated inflammation. Curr Opin Crit Care. 12:595–601. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Vourc'h M, Roquilly A and Asehnoune K: Trauma-induced damage-associated molecular patterns-mediated remote organ injury and immunosuppression in the acutely Ill patient. Front Immunol. 9(1330)2018.PubMed/NCBI View Article : Google Scholar | |
|
West AP and Shadel GS: Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol. 17:363–375. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K and Hauser CJ: Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 464:104–107. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Lu B, Kwan K, Levine YA, Olofsson PS, Yang H, Li J, Joshi S, Wang H, Andersson U, Chavan SS and Tracey KJ: α7 Nicotinic acetylcholine receptor signaling inhibits inflammasome activation by preventing mitochondrial DNA release. Mol Med. 20:350–358. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, Oyabu J, Murakawa T, Nakayama H, Nishida K, et al: Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature. 485:251–255. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Zhang L, Deng S, Zhao S, Ai Y, Zhang L, Pan P, Su X, Tan H and Wu D: Intra-peritoneal administration of mitochondrial DNA provokes acute lung injury and systemic inflammation via Toll-like receptor 9. Int J Mol Sci. 17(1425)2016.PubMed/NCBI View Article : Google Scholar | |
|
Sun S, Sursal T, Adibnia Y, Zhao C, Zheng Y, Li H, Otterbein LE, Hauser CJ and Itagaki K: Mitochondrial DAMPs increase endothelial permeability through neutrophil dependent and independent pathways. PLoS One. 8(e59989)2013.PubMed/NCBI View Article : Google Scholar | |
|
Gonzalez AS, Elguero ME, Finocchietto P, Holod S, Romorini L, Miriuka SG, Peralta JG, Poderoso JJ and Carreras MC: Abnormal mitochondrial fusion-fission balance contributes to the progression of experimental sepsis. Free Radic Res. 48:769–783. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Chen H, Lin H, Dong B, Wang Y, Yu Y and Xie K: Hydrogen alleviates cell damage and acute lung injury in sepsis via PINK1/Parkin-mediated mitophagy. Inflamm Res. 70:915–930. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Chang AL, Ulrich A, Suliman HB and Piantadosi CA: Redox regulation of mitophagy in the lung during murine staphylococcus aureus sepsis. Free Radic Biol Med. 78:179–189. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Mannam P, Shinn AS, Srivastava A, Neamu RF, Walker WE, Bohanon M, Merkel J, Kang MJ, Dela Cruz CS, Ahasic AM, et al: MKK3 regulates mitochondrial biogenesis and mitophagy in sepsis-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 306:L604–L619. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Westphalen K, Monma E, Islam MN and Bhattacharya J: Acid contact in the rodent pulmonary alveolus causes proinflammatory signaling by membrane pore formation. Am J Physiol Lung Cell Mol Physiol. 303:L107–L116. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Kuebler WM, Parthasarathi K, Wang PM and Bhattacharya J: A novel signaling mechanism between gas and blood compartments of the lung. J Clin Invest. 105:905–913. 2000.PubMed/NCBI View Article : Google Scholar | |
|
Hough RF, Islam MN, Gusarova GA, Jin G, Das S and Bhattacharya J: Endothelial mitochondria determine rapid barrier failure in chemical lung injury. JCI Insight. 4(e124329)2019.PubMed/NCBI View Article : Google Scholar | |
|
Ogino K, Nagaoka K, Okuda T, Oka A, Kubo M, Eguchi E and Fujikura Y: PM2.5-induced airway inflammation and hyperresponsiveness in NC/Nga mice. Environ Toxicol. 32:1047–1054. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Wei T and Tang M: Biological effects of airborne fine particulate matter (PM2.5) exposure on pulmonary immune system. Environ Toxicol Pharmacol. 60:195–201. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Xu M, Li F, Wang M, Zhang H, Xu L, Adcock IM, Chung KF and Zhang Y: Protective effects of VGX-1027 in PM2.5-induced airway inflammation and bronchial hyperresponsiveness. Eur J Pharmacol. 842:373–383. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Kalogeris T, Baines CP, Krenz M and Korthuis RJ: Ischemia/reperfusion. Compr Physiol. 7:113–170. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Tai H, Jiang X, Song N, Xiao HH, Li Y, Cheng MJ, Yin XM, Chen YR, Yang GL, Jiang XY, et al: Tanshinone IIA combined with cyclosporine a alleviates lung apoptosis induced by renal ischemia-reperfusion in obese rats. Front Med (Lausanne). 8(617393)2021.PubMed/NCBI View Article : Google Scholar | |
|
Zhang Y, Yu G, Kaminski N and Lee PJ: PINK1 mediates the protective effects of thyroid hormone T3 in hyperoxia-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 320:L1118–L1125. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Supinski GS, Schroder EA and Callahan LA: Mitochondria and critical illness. Chest. 157:310–322. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Powers SK, Hudson MB, Nelson WB, Talbert EE, Min K, Szeto HH, Kavazis AN and Smuder AJ: Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med. 39:1749–1759. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Miglio G, Rosa AC, Rattazzi L, Collino M, Lombardi G and Fantozzi R: PPARgamma stimulation promotes mitochondrial biogenesis and prevents glucose deprivation-induced neuronal cell loss. Neurochem Int. 55:496–504. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Moskowitzova K, Orfany A, Liu K, Ramirez-Barbieri G, Thedsanamoorthy JK, Yao R, Guariento A, Doulamis IP, Blitzer D, Shin B, et al: Mitochondrial transplantation enhances murine lung viability and recovery after ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol. 318:L78–L88. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Ramachandran A and Jaeschke H: Acetaminophen toxicity: Novel insights into mechanisms and future perspectives. Gene Expr. 18:19–30. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Tan DX, Manchester LC, Qin L and Reiter RJ: Melatonin: A mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int J Mol Sci. 17(2124)2016.PubMed/NCBI View Article : Google Scholar | |
|
Srinivasan V, Pandi-Perumal SR, Spence DW, Kato H and Cardinali DP: Melatonin in septic shock: Some recent concepts. J Crit Care. 25:656.e1–e6. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Vance JE: Phospholipid synthesis and transport in mammalian cells. Traffic. 16:1–18. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Adachi Y, Itoh K, Yamada T, Cerveny KL, Suzuki TL, Macdonald P, Frohman MA, Ramachandran R, Iijima M and Sesaki H: Coincident phosphatidic acid interaction restrains Drp1 in mitochondrial division. Mol Cell. 63:1034–1043. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Macdonald PJ, Francy CA, Stepanyants N, Lehman L, Baglio A, Mears JA, Qi X and Ramachandran R: Distinct splice variants of dynamin-related protein 1 differentially utilize mitochondrial fission factor as an effector of cooperative GTPase activity. J Biol Chem. 291:493–507. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Ban T, Heymann JA, Song Z, Hinshaw JE and Chan DC: OPA1 disease alleles causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and membrane tubulation. Hum Mol Genet. 19:2113–2122. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Ugarte-Uribe B, Müller HM, Otsuki M, Nickel W and García-Sáez AJ: Dynamin-related protein 1 (Drp1) promotes structural intermediates of membrane division. J Biol Chem. 289:30645–30656. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Bustillo-Zabalbeitia I, Montessuit S, Raemy E, Basañez G, Terrones O and Martinou J: Specific interaction with cardiolipin triggers functional activation of dynamin-related protein 1. PLoS One. 9(e102738)2014.PubMed/NCBI View Article : Google Scholar | |
|
Adachi Y, Iijima M and Sesaki H: An unstructured loop that is critical for interactions of the stalk domain of Drp1 with saturated phosphatidic acid. Small GTPases. 9:472–479. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Qi X, Disatnik MH, Shen N, Sobel RA and Mochly-Rosen D: Aberrant mitochondrial fission in neurons induced by protein kinase C{delta} under oxidative stress conditions in vivo. Mol Biol Cell. 22:256–265. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Kim DI, Lee KH, Gabr AA, Choi GE, Kim JS, Ko SH and Han HJ: Aβ-Induced Drp1 phosphorylation through Akt activation promotes excessive mitochondrial fission leading to neuronal apoptosis. Biochim Biophys Acta. 1863:2820–2834. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Xu S, Wang P, Zhang H, Gong G, Gutierrez Cortes N, Zhu W, Yoon Y, Tian R and Wang W: CaMKII induces permeability transition through Drp1 phosphorylation during chronic β-AR stimulation. Nat Commun. 7(13189)2016.PubMed/NCBI View Article : Google Scholar | |
|
Niemann A, Ruegg M, La Padula V, Schenone A and Suter U: Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: New implications for charcot-marie-tooth disease. J Cell Biol. 170:1067–1078. 2005.PubMed/NCBI View Article : Google Scholar | |
|
Tondera D, Santel A, Schwarzer R, Dames S, Giese K, Klippel A and Kaufmann J: Knockdown of MTP18, a novel phosphatidylinositol 3-kinase-dependent protein, affects mitochondrial morphology and induces apoptosis. J Biol Chem. 279:31544–31555. 2004.PubMed/NCBI View Article : Google Scholar | |
|
Norton M, Ng AC, Baird S, Dumoulin A, Shutt T, Mah N, Andrade-Navarro MA, McBride HM and Screaton RA: ROMO1 is an essential redox-dependent regulator of mitochondrial dynamics. Sci Signal. 7(ra10)2014.PubMed/NCBI View Article : Google Scholar | |
|
Zoulikha M, Xiao Q, Boafo GF, Sallam MA, Chen Z and He W: Pulmonary delivery of siRNA against acute lung injury/acute respiratory distress syndrome. Acta Pharm Sin B. 12:600–620. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Singer M: The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence. 5:66–72. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Hsu YC, Wu YT, Yu TH and Wei YH: Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer. Semin Cell Dev Biol. 52:119–131. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Zhang H, Feng YW and Yao YM: Potential therapy strategy: Targeting mitochondrial dysfunction in sepsis. Mil Med Res. 5(41)2018.PubMed/NCBI View Article : Google Scholar | |
|
Morrison TJ, Jackson MV, Cunningham EK, Kissenpfennig A, McAuley DF, O'Kane CM and Krasnodembskaya AD: Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med. 196:1275–1286. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Willson JA, Arienti S, Sadiku P, Reyes L, Coelho P, Morrison T, Rinaldi G, Dockrell DH, Whyte MKB and Walmsley SR: Neutrophil HIF-1α stabilization is augmented by mitochondrial ROS produced via the glycerol 3-phosphate shuttle. Blood. 139:281–286. 2022.PubMed/NCBI View Article : Google Scholar |