Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
August-2022 Volume 24 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2022 Volume 24 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Phenotypic and genotypic detection methods for antimicrobial resistance in ESKAPE pathogens (Review)

  • Authors:
    • Mădălina Maria Muntean
    • Andrei-Alexandru Muntean
    • Mădălina Preda
    • Loredana Sabina Cornelia Manolescu
    • Cerasella Dragomirescu
    • Mircea-Ioan Popa
    • Gabriela Loredana Popa
  • View Affiliations / Copyright

    Affiliations: Department of Microbiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
    Copyright: © Muntean et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 508
    |
    Published online on: June 9, 2022
       https://doi.org/10.3892/etm.2022.11435
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Antimicrobial resistance (AMR) represents a growing public health problem worldwide. Infections with such bacteria lead to longer hospitalization times, higher healthcare costs and greater morbidity and mortality. Thus, there is a greater need for rapid detection methods in order to limit their spread. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) are a series of epidemiologically‑important microorganisms of great concern due to their high levels of resistance. This review aimed to update the background information on the ESKAPE pathogens as well as to provide a summary of the numerous phenotypic and molecular methods used to detect their AMR mechanisms. While they are usually linked to hospital acquired infections, AMR is also spreading in the veterinary and the environmental sectors. Yet, the epidemiological loop closes with patients which, when infected with such pathogens, often lack therapeutic options. Thus, it was aimed to give the article a One Health perspective.
View Figures
View References

1 

Reardon S: WHO warns against ‘post-antibiotic’ era. Nature, 2014.

2 

Rice LB: Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J Infect Dis. 197:1079–1081. 2008.PubMed/NCBI View Article : Google Scholar

3 

van Duin D and Paterson DL: Multidrug-resistant bacteria in the community: Trends and lessons learned. Infect Dis Clin North Am. 30:377–390. 2016.PubMed/NCBI View Article : Google Scholar

4 

Bengtsson B and Greko C: Antibiotic resistance-consequences for animal health, welfare, and food production. Ups J Med Sci. 119:96–102. 2014.PubMed/NCBI View Article : Google Scholar

5 

Singer A, Shaw H, Rhodes V and Hart A: Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front Microbiol. 7(1728)2016.PubMed/NCBI View Article : Google Scholar

6 

Agudelo Higuita NI, Huycke MM, Gilmore MS, Clewell DB, Ike Y and Shankar N: Enterococcal disease, epidemiology, and implications for treatment. In: Enterococci: From commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, Boston, 2014.

7 

Hollenbeck BL and Rice LB: Intrinsic and acquired resistance mechanisms in enterococcus. Virulence. 3:421–433. 2012.PubMed/NCBI View Article : Google Scholar

8 

Coudron PE, Markowitz SM and Wong ES: Isolation of a beta-lactamase-producing, aminoglycoside-resistant strain of Enterococcus faecium. Antimicrob Agents Chemother. 36:1125–1126. 1992.PubMed/NCBI View Article : Google Scholar

9 

Belhaj M, Boutiba-Ben Boubaker I and Slim A: Penicillin-binding protein 5 sequence alteration and levels of plp5 mRNA expression in clinical isolates of Enterococcus faecium with different levels of ampicillin resistance. Microb Drug Resist. 22:202–210. 2016.PubMed/NCBI View Article : Google Scholar

10 

European Committee on Antimicrobial Susceptibility Testing: EUCAST expert rules version 3.1: Intrinsic resistance and exceptional phenotypes tables. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Expert_Rules/Expert_rules_intrinsic_exceptional_V3.1.pdf.

11 

Top J, Willems R and Bonten M: Emergence of CC17 Enterococcus faecium: From commensal to hospital-adapted pathogen. FEMS Immunol Med Microbiol. 52:297–308. 2008.PubMed/NCBI View Article : Google Scholar

12 

Arthur M and Quintiliani R: Regulation of VanA- and VanB-type glycopeptide resistance in enterococci. Antimicrob Agents Chemother. 45:375–381. 2001.PubMed/NCBI View Article : Google Scholar

13 

Rice LB, Lakticová V, Helfand MS and Hutton-Thomas R: In vitro antienterococcal activity explains associations between exposures to antimicrobial agents and risk of colonization by multiresistant enterococci. J Inbfect Dis. 190:2162–2166. 2004.PubMed/NCBI View Article : Google Scholar

14 

Miller WR, Munita JM and Arias CA: Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti Infect Ther. 12:1221–1236. 2014.PubMed/NCBI View Article : Google Scholar

15 

Tong SYC, Davis JS, Eichenberger E, Holland TL and Fowler VG: Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 28:603–661. 2015.PubMed/NCBI View Article : Google Scholar

16 

Siddiqui AH and Koirala J: Methicillin Resistant Staphylococcus Aureus. StatPearls Publishing, Treasure Island, FL, 2022.

17 

McGuinness WA, Malachowa N and DeLeo FR: Vancomycin resistance in Staphylococcus aureus. Yale J Biol Med. 90:269–281. 2017.PubMed/NCBI

18 

Lowy FD: Antimicrobial resistance: The example of Staphylococcus aureus. J Clin Invest. 111:1265–1273. 2003.PubMed/NCBI View Article : Google Scholar

19 

LeClercq R, Courvalin P and Rice LB (eds): Antibiogram. American Society of Microbiology. Washington, DC, pp99-107, 2010.

20 

Fuda CCS, Fisher JF and Mobashery S: Beta-lactam resistance in Staphylococcus aureus: The adaptive resistance of a plastic genome. Cell Mol Life Sci. 62:2617–2633. 2005.PubMed/NCBI View Article : Google Scholar

21 

Baig S, Johannesen TB, Overballe-Petersen S, Larsen J, Larsen AR and Stegger M: Novel SCCmec type XIII (9A) identified in an ST152 methicillin-resistant Staphylococcus aureus. Infect Genet Evol. 61:74–76. 2018.PubMed/NCBI View Article : Google Scholar

22 

Sianipar O, Asmara W, Dwiprahasto I and Budi M: Mortality risk of bloodstream infection caused by either Escherichia coli or Klebsiella pneumoniae producing extended-spectrum β-lactamase: A prospective cohort study. BMC Res Notes. 12(719)2019.PubMed/NCBI View Article : Google Scholar

23 

Rottier WC, Deelen JWT, Caruana G, Buiting AGM, Dorigo-Zetsma JW, Kluytmans JAJW, van der Linden PD, Thijsen SFT, Vlaminckx BJM, Weersink AJL, et al: Attributable mortality of antibiotic resistance in gram-negative infections in the Netherlands: A parallel matched cohort study. Clin Microbiol Infect: Jul 19, 2021 (Epub ahead of print).

24 

De Angelis G, Del Giacomo P, Posteraro B, Sanguinetti M and Tumbarello M: Molecular mechanisms, epidemiology, and clinical importance of β-lactam resistance in enterobacteriaceae. Int J Mol Sci. 21(5090)2020.PubMed/NCBI View Article : Google Scholar

25 

Hall BG and Barlow M: Revised Ambler classification of {beta}-lactamases. J Antimicrob Chemother. 55:1050–1051. 2005.PubMed/NCBI View Article : Google Scholar

26 

Bush K and Jacoby GA: Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 54:969–976. 2010.PubMed/NCBI View Article : Google Scholar

27 

van Duin D and Doi Y: The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence. 8:460–469. 2017.PubMed/NCBI View Article : Google Scholar

28 

Bonomo RA, Burd EM, Conly J, Limbago BM, Poirel L, Segre JA and Westblade LF: Carbapenemase-producing organisms: A global scourge. Clin Infect Dis. 66:1290–1297. 2018.PubMed/NCBI View Article : Google Scholar

29 

Shields RK, Chen L, Cheng S, Chavda KD, Press EG, Snyder A, Pandey R, Doi Y, Kreiswirth BN, Nguyenet MH, et al: Emergence of Ceftazidime-avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob Agents Chemother. 61:e02097–16. 2017.PubMed/NCBI View Article : Google Scholar

30 

Sun D, Rubio-Aparicio D, Nelson K, Dudley MN and Lomovskaya O: Meropenem-vaborbactam resistance selection, resistance prevention, and molecular mechanisms in mutants of KPC-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 61:e01694–17. 2017.PubMed/NCBI View Article : Google Scholar

31 

Osei Sekyere J, Govinden U, Bester LA and Essack SY: Colistin and tigecycline resistance in carbapenemase-producing Gram-negative bacteria: Emerging resistance mechanisms and detection methods. J Appl Microbiol. 121:601–617. 2016.PubMed/NCBI View Article : Google Scholar

32 

Kim WY, Moon JY, Huh JW, Choi SH, Lim CM, Koh Y, Chong YP and Hong SB: Comparable efficacy of tigecycline versus colistin therapy for multidrug-resistant and extensively drug-resistant Acinetobacter baumannii pneumonia in Critically Ill patients. PLoS One. 11(e0150642)2016.PubMed/NCBI View Article : Google Scholar

33 

Sato Y, Ubagai T, Tansho-Nagakawa S, Yoshino Y and Ono Y: Effects of colistin and tigecycline on multidrug-resistant Acinetobacter baumannii biofilms: Advantages and disadvantages of their combination. Sci Rep. 11(11700)2021.PubMed/NCBI View Article : Google Scholar

34 

Petrosillo N, Taglietti F and Granata G: Treatment options for colistin resistant Klebsiella pneumoniae: Present and future. J Clin Med. 8(934)2019.PubMed/NCBI View Article : Google Scholar

35 

Lupo A, Haenni M and Madec JY: Antimicrobial resistance in Acinetobacter spp. and Pseudomonas spp. Microbiol Spectr: 6, 2018. doi: 10.1128/microbiolspec.ARBA-0007-20172018.

36 

Nguyen M and Joshi S: Carbapenem resistance in Acinetobacter baumannii, and their importance in hospital-acquired infections: A scientific review. J Appl Microbiol. 131:2715–2738. 2021.PubMed/NCBI View Article : Google Scholar

37 

Yoon EJ and Jeong SH: Mobile carbapenemase genes in pseudomonas aeruginosa. Front Microbiol. 12(614058)2021.PubMed/NCBI View Article : Google Scholar

38 

Tomás M, Doumith M, Warner M, Turton JF, Beceiro A, Bou G, Livermore DM and Woodford N: Efflux Pumps, OprD Porin, AmpC β-Lactamase, and Multiresistance in pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother. 54:2219–2224. 2010.PubMed/NCBI View Article : Google Scholar

39 

Zhu Yl, Mei Q, Hu Lf, Cheng J, Ye Y and Li JB: Vancomycin MICs of the resistant mutants of S. aureus ATCC43300 vary based on the susceptibility test methods used. J Antibiot. 65:307–310. 2012.PubMed/NCBI View Article : Google Scholar

40 

Rybak MJ, Vidaillac C, Sader HS, Rhomberg PR, Salimnia H, Briski LE, Wanger A and Jones RN: Evaluation of vancomycin susceptibility testing for methicillin-resistant Staphylococcus aureus: Comparison of Etest and three automated testing methods. J Clin Microbiol. 51:2077–2081. 2013.PubMed/NCBI View Article : Google Scholar

41 

Rogers LA, Strong K, Cork SC, McAllister TA, Liljebjelke K, Zaheer R and Checkley SL: The role of whole genome sequencing in the surveillance of antimicrobial resistant Enterococcus spp.: A scoping review. Front Public Health. 9(599285)2021.PubMed/NCBI View Article : Google Scholar

42 

Leclercq R, Cantón R, Brown DFJ, Giske CG, Heisig P, MacGowan AP, Mouton JW, Nordmann P, Rodloff AC, Rossolini GM, et al: EUCAST expert rules in antimicrobial susceptibility testing. Clin Microbiol Infect. 19:141–160. 2013.PubMed/NCBI View Article : Google Scholar

43 

The European Committee on Antimicrobial Susceptibility Testing: Breakpoint tables for interpretation of MICs and zone diameters. Version 10, 2020. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf.

44 

Hegstad K, Giske CG, Haldorsen B, Matuschek E, Schønning K, Leegaard TM, Kahlmeter G and Sundsfjord A: NordicAST VRE Detection Study Group. Performance of the EUCAST disk diffusion method, the CLSI agar screen method, and the Vitek 2 automated antimicrobial susceptibility testing system for detection of clinical isolates of Enterococci with low- and medium-level VanB-type vancomycin resistance: A multicenter study. J Clin Microbiol. 52:1582–1589. 2014.PubMed/NCBI View Article : Google Scholar

45 

Kohler P, Eshaghi A, Kim HC, Plevneshi A, Green K, Willey BM, McGeer A and Patel SN: Prevalence of vancomycin-variable Enterococcus faecium (VVE) among vanA-positive sterile site isolates and patient factors associated with VVE bacteremia. PLoS One. 13(e0193926)2018.PubMed/NCBI View Article : Google Scholar

46 

Grabsch EA, Chua K, Xie S, Byrne J, Ballard SA, Ward PB and Grayson ML: Improved detection of vanB2-containing Enterococcus faecium with vancomycin susceptibility by Etest using oxgall supplementation. J Clin Microbiol. 46:1961–1964. 2008.PubMed/NCBI View Article : Google Scholar

47 

Horner C, Mushtaq S and Livermore DM: BSAC Resistance Surveillance Standing Committee. Activity of ceftaroline versus ceftobiprole against staphylococci and pneumococci in the UK and Ireland: Analysis of BSAC surveillance data. J Antimicrob Chemother. 75:3239–3243. 2020.PubMed/NCBI View Article : Google Scholar

48 

Sakoulas G, Gold HS, Venkataraman L, DeGirolami PC, Eliopoulos GM and Qian Q: Methicillin-resistant Staphylococcus aureus: Comparison of susceptibility testing methods and analysis of mecA-positive susceptible strains. J Clin Microbiol. 39:3946–3951. 2001.PubMed/NCBI View Article : Google Scholar

49 

Limbago BM, Kallen AJ, Zhu W, Eggers P, McDougal LK and Albrecht VS: Report of the 13th vancomycin-resistant Staphylococcus aureus isolate from the United States. J Clin Microbiol. 52:998–1002. 2014.PubMed/NCBI View Article : Google Scholar

50 

Shariati A, Dadashi M, Moghadam MT, van Belkum A, Yaslianifard S and Darban-Sarokhalil D: Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: A systematic review and meta-analysis. Sci Rep. 10(12689)2020.PubMed/NCBI View Article : Google Scholar

51 

Satola SW, Farley MM, Anderson KF and Patel JB: Comparison of detection methods for heteroresistant vancomycin-intermediate Staphylococcus aureus, with the population analysis profile method as the reference method. J Clin Microbiol. 49:177–183. 2011.PubMed/NCBI View Article : Google Scholar

52 

Wootton M, Howe RA, Hillman R, Walsh TR, Bennett PM and MacGowan AP: A modified population analysis profile (PAP) method to detect hetero-resistance to vancomycin in Staphylococcus aureus in a UK hospital. J Antimicrob Chemother. 47:399–403. 2001.PubMed/NCBI View Article : Google Scholar

53 

Jackson CR, Fedorka-Cray PJ and Barrett JB: Use of a genus- and species-specific multiplex PCR for identification of enterococci. J Clin Microbiol. 42:3558–3565. 2004.PubMed/NCBI View Article : Google Scholar

54 

Holzknecht BJ, Hansen DS, Nielsen L, Kailow A and Jarløv JO: Screening for vancomycin-resistant enterococci with Xpert® vanA/vanB: Diagnostic accuracy and impact on infection control decision making. New Microbes New Infect. 16:54–59. 2017.PubMed/NCBI View Article : Google Scholar

55 

Tyson GH, Sabo JL, Rice-Trujillo C, Hernandez J and McDermott PF: Whole-genome sequencing based characterization of antimicrobial resistance in Enterococcus. Pathog Dis. 76:2018.PubMed/NCBI View Article : Google Scholar : doi: 10.1093/femspd/fty018.

56 

Paterson GK, Harrison EM and Holmes MA: The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol. 22:42–47. 2014.PubMed/NCBI View Article : Google Scholar

57 

Périchon B and Courvalin P: VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 53:4580–4587. 2009.PubMed/NCBI View Article : Google Scholar

58 

Madigan T, Cunningham SA, Patel R, Greenwood-Quaintance KE, Barth JE, Sampathkumar P, Cole NC, Kohner PC, Colby CE, Asay GE, et al: Whole-genome sequencing for methicillin-resistant Staphylococcus aureus (MRSA) outbreak investigation in a neonatal intensive care unit. Infect Control Hosp Epidemiol. 39:1412–1418. 2018.PubMed/NCBI View Article : Google Scholar

59 

Girlich D, Poirel L and Nordmann P: Do CTX-M-lactamases hydrolyse ertapenem? J Antimicrob Chemother. 62:1155–1156. 2008.PubMed/NCBI View Article : Google Scholar

60 

Jacoby GA, Mills DM and Chow N: Role of beta-lactamases and porins in resistance to ertapenem and other beta-lactams in Klebsiella pneumoniae. Antimicrob Agents Chemother. 48:3203–3206. 2004.PubMed/NCBI View Article : Google Scholar

61 

Lartigue MF, Poirel L, Poyart C, Réglier-Poupet H and Nordmann P: Ertapenem resistance of Escherichia coli. Emerging Infect Dis. 13:315–317. 2007.PubMed/NCBI View Article : Google Scholar

62 

Guillon H, Tande D and Mammeri H: Emergence of ertapenem resistance in an Escherichia coli clinical isolate producing extended-spectrum beta-lactamase AmpC. Antimicrob Agents Chemother. 55:4443–4446. 2011.PubMed/NCBI View Article : Google Scholar

63 

Thomson KS: Extended-spectrum-beta-lactamase, AmpC, and Carbapenemase issues. J Clin Microbiol. 48:1019–1025. 2010.PubMed/NCBI View Article : Google Scholar

64 

Dortet L, Cuzon G, Plésiat P and Naas T: Prospective evaluation of an algorithm for the phenotypic screening of carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 71:135–140. 2016.PubMed/NCBI View Article : Google Scholar

65 

Dortet L, Bernabeu S, Gonzalez C and Naas T: Evaluation of the carbapenem detection Set™ for the detection and characterization of carbapenemase-producing Enterobacteriaceae. Diagn Microbiol Infect Dis. 91:220–225. 2018.PubMed/NCBI View Article : Google Scholar

66 

Dortet L, Bernabeu S, Gonzalez C and Naas T: Comparison of two phenotypic algorithms to detect carbapenemase-producing enterobacteriaceae. Antimicrob Agents Chemother. 61:e00796–17. 2017.PubMed/NCBI View Article : Google Scholar

67 

Reuland EA, Hays JP, de Jongh DMC, Abdelrehim E, Willemsen I, Kluytmans JA, Savelkoul PH, Vandenbroucke-Grauls CM and al Naiemi N: Detection and occurrence of plasmid-mediated AmpC in highly resistant gram-negative rods. PLoS One. 9(e91396)2014.PubMed/NCBI View Article : Google Scholar

68 

Lee K, Chong Y, Shin HB, Kim YA, Yong D and Yum JH: Modified Hodge and EDTA-disk synergy tests to screen metallo-beta-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect. 7:88–91. 2001.PubMed/NCBI View Article : Google Scholar

69 

van Dijk K, Voets GM, Scharringa J, Voskuil S, Fluit AC, Rottier WC, Leverstein-Van Hall MA and Cohen Stuart JWT: A disc diffusion assay for detection of class A, B and OXA-48 carbapenemases in Enterobacteriaceae using phenyl boronic acid, dipicolinic acid and temocillin. Clin Microbiol Infect. 20:345–349. 2014.PubMed/NCBI View Article : Google Scholar

70 

Pires J, Novais A and Peixe L: Blue-carba, an easy biochemical test for detection of diverse carbapenemase producers directly from bacterial cultures. J Clin Microbiol. 51:4281–4283. 2013.PubMed/NCBI View Article : Google Scholar

71 

Kabir MH, Meunier D, Hopkins KL, Giske CG and Woodford N: A two-centre evaluation of RAPIDEC® CARBA NP for carbapenemase detection in Enterobacteriaceae, Pseudomomnas aeruginosa and Acinetobacter spp. J Antimicrob Chemother. 71:1213–1216. 2016.PubMed/NCBI View Article : Google Scholar

72 

Bernabeu S, Dortet L and Naas T: Evaluation of the β-CARBATM test, a colorimetric test for the rapid detection of carbapenemase activity in Gram-negative bacilli. J Antimicrob Chemother. 72:1646–1658. 2017.PubMed/NCBI View Article : Google Scholar

73 

Novais A, Brilhante M, Pires J and Peixe L: Evaluation of the recently launched rapid carb blue kit for detection of carbapenemase-producing gram-negative bacteria. J Clin Microbiol. 53:3105–3107. 2015.PubMed/NCBI View Article : Google Scholar

74 

Gauthier L, Bonnin RA, Dortet L and Naas T: Retrospective and prospective evaluation of the Carbapenem inactivation method for the detection of carbapenemase-producing Enterobacteriaceae. PLoS One. 12(e0170769)2017.PubMed/NCBI View Article : Google Scholar

75 

van der Zwaluw K, de Haan A, Pluister GN, Bootsma HJ, de Neeling AJ and Schouls LM: The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. PLoS One. 10(e0123690)2015.PubMed/NCBI View Article : Google Scholar

76 

Yamada K, Kashiwa M, Arai K, Nagano N and Saito R: Evaluation of the modified carbapenem inactivation method and sodium mercaptoacetate-combination method for the detection of metallo-β-lactamase production by carbapenemase-producing Enterobacteriaceae. J Microbiol Methods. 132:112–115. 2017.PubMed/NCBI View Article : Google Scholar

77 

Muntean MM, Muntean AA, Gauthier L, Creton E, Cotellon G, Popa MI, Bonnin RA and Naas T: Evaluation of the rapid carbapenem inactivation method (rCIM): A phenotypic screening test for carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 73:900–908. 2018.PubMed/NCBI View Article : Google Scholar

78 

Muntean AA, Poenaru A, Neagu A, Caracoti C, Muntean MM, Popa VT, Bogdan MA, Naas T and Popa MI: Use of the rapid carbapenem inactivation method (rCIM) with carbapenemase inhibitors: A proof of concept experiment. Rom Arch Microbiol Immunol. 77:50–57. 2018.

79 

Baeza LL, Pfennigwerth N, Greissl C, Göttig S, Saleh A, Stelzer Y, Gatermann SG and Hamprecht A: Comparison of five methods for detection of carbapenemases in Enterobacterales with proposal of a new algorithm. Clin Microbiol Infect. 25:1286.e9–1286.e15. 2019.PubMed/NCBI View Article : Google Scholar

80 

Oviaño M, Ramírez CL, Barbeyto LP and Bou G: Rapid direct detection of carbapenemase-producing Enterobacteriaceae in clinical urine samples by MALDI-TOF MS analysis. J Antimicrob Chemother. 72:1350–1354. 2017.PubMed/NCBI View Article : Google Scholar

81 

Ghebremedhin B, Halstenbach A, Smiljanic M, Kaase M and Ahmad-Nejad P: MALDI-TOF MS based carbapenemase detection from culture isolates and from positive blood culture vials. Ann Clin Microbiol Antimicrob. 15(5)2016.PubMed/NCBI View Article : Google Scholar

82 

Jayol A, Nordmann P, Lehours P, Poirel L and Dubois V: Comparison of methods for detection of plasmid-mediated and chromosomally encoded colistin resistance in Enterobacteriaceae. Clin Microbiol Infect. 24:175–179. 2018.PubMed/NCBI View Article : Google Scholar

83 

Bardet L and Rolain JM: Development of new tools to detect colistin-resistance among enterobacteriaceae strains. Can J Infect Dis Med Microbiol. 2018(3095249)2018.PubMed/NCBI View Article : Google Scholar

84 

Büdel T, Clément M, Bernasconi OJ, Principe L, Perreten V, Luzzaro F and Endimiani A: Evaluation of EDTA- and DPA-based Microdilution phenotypic tests for the detection of MCR-mediated colistin resistance in enterobacteriaceae. Microb Drug Resist. 25:494–500. 2019.PubMed/NCBI View Article : Google Scholar

85 

Simner PJ, Bergman Y, Trejo M, Roberts AA, Marayan R, Tekle T, Campeau S, Kazmi AQ, Bell DT, Lewis S, et al: Two-site evaluation of the colistin broth disk elution test to determine colistin in vitro activity against Gram-negative Bacilli. J Clin Microbiol. 57:e01163–18. 2019.PubMed/NCBI View Article : Google Scholar

86 

Nordmann P, Jayol A and Poirel L: Rapid detection of polymyxin resistance in enterobacteriaceae. Emerging Infect Dis. 22:1038–1043. 2016.PubMed/NCBI View Article : Google Scholar

87 

Dortet L, Bonnin RA, Pennisi I, Gauthier L, Jousset AB, Dabos L, Furniss RCD, Mavridou DAI, Bogaerts P, Glupczynski Y, et al: Rapid detection and discrimination of chromosome- and MCR-plasmid-mediated resistance to polymyxins by MALDI-TOF MS in Escherichia coli: The MALDIxin test. J Antimicrob Chemother. 73:3359–3367. 2018.PubMed/NCBI View Article : Google Scholar

88 

Volland H, Dortet L, Bernabeu S, Boutal H, Haenni M, Madec JY, Robin F, Beyrouthy R, Naas T and Simon S: Development and Multicentric validation of a lateral flow immunoassay for rapid detection of MCR-1-producing Enterobacteriaceae. J Clin Microbiol. 57:e01454–18. 2019.PubMed/NCBI View Article : Google Scholar

89 

Tato M, Ruiz-Garbajosa P, Traczewski M, Dodgson A, McEwan A, Humphries R, Hindler J, Veltman J, Wang H and Cantón R: Multisite evaluation of Cepheid Xpert Carba-R assay for detection of carbapenemase-producing organisms in rectal swabs. J Clin Microbiol. 54:1814–1819. 2016.PubMed/NCBI View Article : Google Scholar

90 

Dortet L, Fusaro M and Naas T: Improvement of the Xpert Carba-R Kit for the detection of carbapenemase-producing enterobacteriaceae. Antimicrob Agents Chemother. 60:3832–3837. 2016.PubMed/NCBI View Article : Google Scholar

91 

Girlich D, Bernabeu S, Fortineau N, Dortet L and Naas T: Evaluation of the CRE and ESBL ELITe MGB® kits for the accurate detection of carbapenemase- or CTX-M-producing bacteria. Diagn Microbiol Infect Dis. 92:1–7. 2018.PubMed/NCBI View Article : Google Scholar

92 

Girlich D, Bernabeu S, Grosperrin V, Langlois I, Begasse C, Arangia N, Creton E, Cotellon G, Sauvadet A, Dortet L and Naas T: Evaluation of the Amplidiag CarbaR + MCR Kit for accurate detection of carbapenemase-producing and colistin-resistant bacteria. J Clin Microbiol. 57:e01800–18. 2019.PubMed/NCBI View Article : Google Scholar

93 

Zhang H, Hou M, Xu Y, Srinivas S, Huang M, Liu L and Feng Y: Action and mechanism of the colistin resistance enzyme MCR-4. Commun Biol. 2(36)2019.PubMed/NCBI View Article : Google Scholar

94 

Wang X and Wang Y, Zhou Y, Li J, Yin W, Wang S, Zhang S, Shen J, Shen Z and Wang Y: Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg Microbes Infect. 7(122)2018.PubMed/NCBI View Article : Google Scholar

95 

Li J, Shi X, Yin W, Wang Y, Shen Z, Ding S and Wang S: A multiplex SYBR green real-time PCR assay for the detection of three colistin resistance genes from cultured bacteria, feces, and environment samples. Front Microbiol. 8(2078)2017.PubMed/NCBI View Article : Google Scholar

96 

Imirzalioglu C, Falgenhauer L, Schmiedel J, Waezsada SE, Gwozdzinski K, Roschanski N, Roesler U, Kreienbrock L, Schiffmann AP, Irrgang A, et al: Evaluation of a loop-mediated isothermal amplification-based assay for the rapid detection of plasmid-encoded colistin resistance gene mcr-1 in enterobacteriaceae isolates. Antimicrob Agents Chemother. 61:e02326–16. 2017.PubMed/NCBI View Article : Google Scholar

97 

Bernasconi OJ, Principe L, Tinguely R, Karczmarek A, Perreten V, Luzzaro F and Endimiani A: Evaluation of a new commercial microarray platform for the simultaneous detection of β-lactamase and mcr-1 and mcr-2 genes in enterobacteriaceae. J Clin Microbiol. 55:3138–3141. 2017.PubMed/NCBI View Article : Google Scholar

98 

Chan WS, Au CH, Ho DN, Chan TL, Ma ESK and Tang BSF: Prospective study on human fecal carriage of Enterobacteriaceae possessing mcr-1 and mcr-2 genes in a regional hospital in Hong Kong. BMC Infect Dis. 18(81)2018.PubMed/NCBI View Article : Google Scholar

99 

Simner PJ, Opene BNA, Chambers KK, Naumann ME, Carroll KC and Tamma PD: Carbapenemase detection among carbapenem-resistant glucose-nonfermenting gram-negative Bacilli. J Clin Microbiol. 55:2858–2864. 2017.PubMed/NCBI View Article : Google Scholar

100 

Elsherif R, Ismail D, Elawady S, Jastaniah S, Al-Masaudi S, Harakeh S and Karrouf G: Boronic acid disk diffusion for the phenotypic detection of polymerase chain reaction-confirmed, carbapenem-resistant, gram-negative bacilli isolates. BMC Microbiol. 16(135)2016.PubMed/NCBI View Article : Google Scholar

101 

Walsh TR, Bolmström A, Qwärnström A and Gales A: Evaluation of a new Etest for detecting metallo-beta-lactamases in routine clinical testing. J Clin Microbiol. 40:2755–2759. 2002.PubMed/NCBI View Article : Google Scholar

102 

Lee K, Yong D, Yum JH, Bolmström A, Qwärnström A, Karlsson A and Chong Y: Evaluation of Etest MBL for detection of blaIMP-1 and blaVIM-2 allele-positive clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 43:942–944. 2005.PubMed/NCBI View Article : Google Scholar

103 

Simner PJ, Johnson JK, Brasso WB, Anderson K, Lonsway DR, Pierce VM, Bobenchik AM, Lockett ZC, Charnot-Katsikas A, Westblade LF, et al: Multicenter evaluation of the modified carbapenem inactivation method and the Carba NP for detection of carbapenemase-producing pseudomomnas aeruginosa and Acinetobacter baumannii. J Clin Microbiol. 56:e01369–17. 2017.PubMed/NCBI View Article : Google Scholar

104 

Aktaş E, Malkoçoğlu G, Otlu B, Çiçek AÇ, Külah C, Cömert F, Sandallı C, Gürsoy NC, Erdemir D and Bulut ME: Evaluation of the carbapenem inactivation method for detection of carbapenemase-producing gram-negative bacteria in comparison with the RAPIDEC CARBA NP. Microb Drug Resist. 23:457–461. 2017.PubMed/NCBI View Article : Google Scholar

105 

Uechi K, Tada T, Shimada K, Kuwahara-Arai K, Arakaki M, Tome T, Nakasone I, Maeda S, Kirikae T and Fujita J: A modified carbapenem inactivation method, cimtris, for carbapenemase production in acinetobacter and pseudomonas species. J Clin Microbiol. 55:3405–3410. 2017.PubMed/NCBI View Article : Google Scholar

106 

Bakour S, Garcia V, Loucif L, Brunel JM, Gharout-Sait A, Touati A and Rolain JM: Rapid identification of carbapenemase-producing Enterobacteriaceae, Pseudomomnas aeruginosa and Acinetobacter baumannii using a modified Carba NP test. New Microbes New Infect. 7:89–93. 2015.PubMed/NCBI View Article : Google Scholar

107 

Literacka E, Herda M, Baraniak A, Żabicka D, Hryniewicz W, Skoczyńska A and Gniadkowski M: Evaluation of the Carba NP test for carbapenemase detection in Enterobacteriaceae, Pseudomonas spp. and Acinetobacter spp., and its practical use in the routine work of a national reference laboratory for susceptibility testing. Eur J Clin Microbiol Infect Dis. 36:2281–2287. 2017.PubMed/NCBI View Article : Google Scholar

108 

Srisrattakarn A, Lulitanond A, Wilailuckana C, Charoensri N, Daduang J and Chanawong A: A novel GoldNano Carb test for rapid phenotypic detection of carbapenemases, particularly OXA type, in Enterobacteriaceae, Pseudomomnas aeruginosa and Acinetobacter spp. J Antimicrob Chemother. 72:2519–2527. 2017.PubMed/NCBI View Article : Google Scholar

109 

Noël A, Huang TD, Berhin C, Hoebeke M, Bouchahrouf W, Yunus S, Bogaerts P and Glupczynski Y: Comparative evaluation of four phenotypic tests for detection of carbapenemase-producing gram-negative bacteria. J Clin Microbiol. 55:510–518. 2017.PubMed/NCBI View Article : Google Scholar

110 

Workneh M, Yee R and Simner PJ: Phenotypic methods for detection of carbapenemase production in carbapenem-resistant organisms: What method should your laboratory choose? Clin Microbiol Newsl. 41:11–22. 2019.

111 

Lescat M, Poirel L, Tinguely C and Nordmann P: A Resazurin reduction-based assay for rapid detection of Polymyxin Resistance in Acinetobacter baumannii and Pseudomomnas aeruginosa. J Clin Microbiol. 57:e01563–18. 2019.PubMed/NCBI View Article : Google Scholar

112 

Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M, Giske C, Grundman H, Hasman H, Holden MTG, Hopkins KL, et al: The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: Report from the EUCAST subcommittee. Clin Microbiol Infect. 23:2–22. 2017.PubMed/NCBI View Article : Google Scholar

113 

Kos VN, Déraspe M, McLaughlin RE, Whiteaker JD, Roy PH, Alm RA, Corbeil J and Gardner H: The resistome of Pseudomomnas aeruginosa in relationship to phenotypic susceptibility. Antimicrob Agents Chemother. 59:427–436. 2015.PubMed/NCBI View Article : Google Scholar

114 

Tamayo M, Santiso R, Otero F, Bou G, Lepe JA, McConnell MJ, Cisneros JM, Gosálvez J and Fernández JL: Rapid determination of colistin resistance in clinical strains of Acinetobacter baumannii by use of the micromax assay. J Clin Microbiol. 51:3675–3682. 2013.PubMed/NCBI View Article : Google Scholar

115 

European Medicines Agency: Advice on impacts of using antimicrobials in animals, 2013. https://www.ema.europa.eu/en/veterinary-regulatory/overview/antimicrobial-resistance/advice-impacts-using-antimicrobials-animals. Accessed September 15, 2021.

116 

EMA Committee for Medicinal Products for Veterinary Use (CVMP) and EFSA Panel on Biological Hazards (BIOHAZ). Murphy D, Ricci A, Auce Z, Beechinor JE, Bergendahl H, Breathnach R, Bures J, Silva J, Hederová J, et al: EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA). EFSA J. 15(e04666)2017.PubMed/NCBI View Article : Google Scholar

117 

ECDC (European Centre for Disease Prevention and Control), EFSA (European Food Safety Authority) and EMA (European Medicines Agency). ECDC/EFSA/EMA first joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals. Stockholm/Parma/London: ECDC/EFSA/EMA. EFSA J. 13(e04006)2015.

118 

ECDC (European Centre for Disease Prevention and Control), EFSA (European Food Safety Authority), and EMA (European Medicines Agency). ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals: Joint Interagency Antimicrobial Consumption and Resistance Analysis (JIACRA) report. EFSA J. 15(e04872)2017.PubMed/NCBI View Article : Google Scholar

119 

European Centre for Disease Prevention and Control (ECDC); European Food Safety Authority (EFSA) and European Medicines Agency (EMA). Third joint inter-agency report on integrated analysis of consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals in the EU/EEA, JIACRA III 2016-2018. EFSA J. 19(e06712)2021.PubMed/NCBI View Article : Google Scholar

120 

Bates J, Jordens JZ and Griffiths DT: Farm animals as a putative reservoir for vancomycin-resistant enterococcal infection in man. J Antimicrob Chemother. 34:507–514. 1994.PubMed/NCBI View Article : Google Scholar

121 

Bager F, Aarestrup FM, Madsen M and Wegener HC: Glycopeptide resistance in Enterococcus faecium from broilers and pigs following discontinued use of avoparcin. Microb Drug Resist. 5:53–56. 1999.PubMed/NCBI View Article : Google Scholar

122 

Hoelzer K, Wong N, Thomas J, Talkington K, Jungman E and Coukell A: Antimicrobial drug use in food-producing animals and associated human health risks: What, and how strong, is the evidence? BMC Vet Res. 13(211)2017.PubMed/NCBI View Article : Google Scholar

123 

Huijsdens XW, van Dijke BJ, Spalburg E, van Santen-Verheuvel MG, Heck M, Pluister GN, Voss A, Wannet WJB and de Neeling AJ: Community-acquired MRSA and pig-farming. Ann Clin Microbiol Antimicrob. 5(26)2006.PubMed/NCBI View Article : Google Scholar

124 

Monte DF, Mem A, Fernandes MR, Cerdeira L, Esposito F, Galvão JA, Franco BDGM, Lincopan N and Landgraf M: Chicken meat as a reservoir of colistin-resistant Escherichia coli Strains Carrying mcr-1 Genes in South America. Antimicrob Agents Chemother. 61:e02718–16. 2017.PubMed/NCBI View Article : Google Scholar

125 

Zhou X, Qiao M, Wang FH and Zhu YG: Use of commercial organic fertilizer increases the abundance of antibiotic resistance genes and antibiotics in soil. Environ Sci Pollut Res Int. 24:701–710. 2017.PubMed/NCBI View Article : Google Scholar

126 

Cadena M, Durso LM, Miller DN, Waldrip HM, Castleberry BL, Drijber RA and Wortmann C: Tetracycline and sulfonamide antibiotic resistance genes in soils from Nebraska organic farming operations. Front Microbiol. 9(1283)2018.PubMed/NCBI View Article : Google Scholar

127 

Li J, Cao J, Zhu YG, Chen QL, Shen F, Wu Y, Xu S, Fan H, Da G, Huang RJ, et al: Global survey of antibiotic resistance genes in air. Environ Sci Technol. 52:10975–10984. 2018.PubMed/NCBI View Article : Google Scholar

128 

Hu J, Zhao F, Zhang X-X, Li K, Li C, Ye L and Li M: Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event. Sci Total Environ. 615:1332–1340. 2018.PubMed/NCBI View Article : Google Scholar

129 

Fernando DM, Tun HM, Poole J, Patidar R, Li R, Mi R, Amarawansha GEA, Fernando WGD, Khafipour E and Kumar A: Detection of antibiotic resistance genes in source and drinking water samples from a first nations community in Canada. Appl Environ Microbiol. 82:4767–4775. 2016.PubMed/NCBI View Article : Google Scholar

130 

Brown KD, Kulis J, Thomson B, Chapman TH and Mawhinney DB: Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci Total Environ. 366:772–783. 2006.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Muntean MM, Muntean A, Preda M, Manolescu LS, Dragomirescu C, Popa M and Popa GL: Phenotypic and genotypic detection methods for antimicrobial resistance in ESKAPE pathogens (Review). Exp Ther Med 24: 508, 2022.
APA
Muntean, M.M., Muntean, A., Preda, M., Manolescu, L.S., Dragomirescu, C., Popa, M., & Popa, G.L. (2022). Phenotypic and genotypic detection methods for antimicrobial resistance in ESKAPE pathogens (Review). Experimental and Therapeutic Medicine, 24, 508. https://doi.org/10.3892/etm.2022.11435
MLA
Muntean, M. M., Muntean, A., Preda, M., Manolescu, L. S., Dragomirescu, C., Popa, M., Popa, G. L."Phenotypic and genotypic detection methods for antimicrobial resistance in ESKAPE pathogens (Review)". Experimental and Therapeutic Medicine 24.2 (2022): 508.
Chicago
Muntean, M. M., Muntean, A., Preda, M., Manolescu, L. S., Dragomirescu, C., Popa, M., Popa, G. L."Phenotypic and genotypic detection methods for antimicrobial resistance in ESKAPE pathogens (Review)". Experimental and Therapeutic Medicine 24, no. 2 (2022): 508. https://doi.org/10.3892/etm.2022.11435
Copy and paste a formatted citation
x
Spandidos Publications style
Muntean MM, Muntean A, Preda M, Manolescu LS, Dragomirescu C, Popa M and Popa GL: Phenotypic and genotypic detection methods for antimicrobial resistance in ESKAPE pathogens (Review). Exp Ther Med 24: 508, 2022.
APA
Muntean, M.M., Muntean, A., Preda, M., Manolescu, L.S., Dragomirescu, C., Popa, M., & Popa, G.L. (2022). Phenotypic and genotypic detection methods for antimicrobial resistance in ESKAPE pathogens (Review). Experimental and Therapeutic Medicine, 24, 508. https://doi.org/10.3892/etm.2022.11435
MLA
Muntean, M. M., Muntean, A., Preda, M., Manolescu, L. S., Dragomirescu, C., Popa, M., Popa, G. L."Phenotypic and genotypic detection methods for antimicrobial resistance in ESKAPE pathogens (Review)". Experimental and Therapeutic Medicine 24.2 (2022): 508.
Chicago
Muntean, M. M., Muntean, A., Preda, M., Manolescu, L. S., Dragomirescu, C., Popa, M., Popa, G. L."Phenotypic and genotypic detection methods for antimicrobial resistance in ESKAPE pathogens (Review)". Experimental and Therapeutic Medicine 24, no. 2 (2022): 508. https://doi.org/10.3892/etm.2022.11435
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team