|
1
|
Reardon S: WHO warns against
‘post-antibiotic’ era. Nature, 2014.
|
|
2
|
Rice LB: Federal funding for the study of
antimicrobial resistance in nosocomial pathogens: No ESKAPE. J
Infect Dis. 197:1079–1081. 2008.PubMed/NCBI View
Article : Google Scholar
|
|
3
|
van Duin D and Paterson DL:
Multidrug-resistant bacteria in the community: Trends and lessons
learned. Infect Dis Clin North Am. 30:377–390. 2016.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Bengtsson B and Greko C: Antibiotic
resistance-consequences for animal health, welfare, and food
production. Ups J Med Sci. 119:96–102. 2014.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Singer A, Shaw H, Rhodes V and Hart A:
Review of antimicrobial resistance in the environment and its
relevance to environmental regulators. Front Microbiol.
7(1728)2016.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Agudelo Higuita NI, Huycke MM, Gilmore MS,
Clewell DB, Ike Y and Shankar N: Enterococcal disease,
epidemiology, and implications for treatment. In: Enterococci: From
commensals to leading causes of drug resistant infection.
Massachusetts Eye and Ear Infirmary, Boston, 2014.
|
|
7
|
Hollenbeck BL and Rice LB: Intrinsic and
acquired resistance mechanisms in enterococcus. Virulence.
3:421–433. 2012.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Coudron PE, Markowitz SM and Wong ES:
Isolation of a beta-lactamase-producing, aminoglycoside-resistant
strain of Enterococcus faecium. Antimicrob Agents Chemother.
36:1125–1126. 1992.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Belhaj M, Boutiba-Ben Boubaker I and Slim
A: Penicillin-binding protein 5 sequence alteration and levels of
plp5 mRNA expression in clinical isolates of Enterococcus faecium
with different levels of ampicillin resistance. Microb Drug Resist.
22:202–210. 2016.PubMed/NCBI View Article : Google Scholar
|
|
10
|
European Committee on Antimicrobial
Susceptibility Testing: EUCAST expert rules version 3.1: Intrinsic
resistance and exceptional phenotypes tables. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Expert_Rules/Expert_rules_intrinsic_exceptional_V3.1.pdf.
|
|
11
|
Top J, Willems R and Bonten M: Emergence
of CC17 Enterococcus faecium: From commensal to hospital-adapted
pathogen. FEMS Immunol Med Microbiol. 52:297–308. 2008.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Arthur M and Quintiliani R: Regulation of
VanA- and VanB-type glycopeptide resistance in enterococci.
Antimicrob Agents Chemother. 45:375–381. 2001.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Rice LB, Lakticová V, Helfand MS and
Hutton-Thomas R: In vitro antienterococcal activity explains
associations between exposures to antimicrobial agents and risk of
colonization by multiresistant enterococci. J Inbfect Dis.
190:2162–2166. 2004.PubMed/NCBI View
Article : Google Scholar
|
|
14
|
Miller WR, Munita JM and Arias CA:
Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti
Infect Ther. 12:1221–1236. 2014.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Tong SYC, Davis JS, Eichenberger E,
Holland TL and Fowler VG: Staphylococcus aureus infections:
Epidemiology, pathophysiology, clinical manifestations, and
management. Clin Microbiol Rev. 28:603–661. 2015.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Siddiqui AH and Koirala J: Methicillin
Resistant Staphylococcus Aureus. StatPearls Publishing, Treasure
Island, FL, 2022.
|
|
17
|
McGuinness WA, Malachowa N and DeLeo FR:
Vancomycin resistance in Staphylococcus aureus. Yale J Biol Med.
90:269–281. 2017.PubMed/NCBI
|
|
18
|
Lowy FD: Antimicrobial resistance: The
example of Staphylococcus aureus. J Clin Invest. 111:1265–1273.
2003.PubMed/NCBI View Article : Google Scholar
|
|
19
|
LeClercq R, Courvalin P and Rice LB (eds):
Antibiogram. American Society of Microbiology. Washington, DC,
pp99-107, 2010.
|
|
20
|
Fuda CCS, Fisher JF and Mobashery S:
Beta-lactam resistance in Staphylococcus aureus: The adaptive
resistance of a plastic genome. Cell Mol Life Sci. 62:2617–2633.
2005.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Baig S, Johannesen TB, Overballe-Petersen
S, Larsen J, Larsen AR and Stegger M: Novel SCCmec type XIII (9A)
identified in an ST152 methicillin-resistant Staphylococcus aureus.
Infect Genet Evol. 61:74–76. 2018.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Sianipar O, Asmara W, Dwiprahasto I and
Budi M: Mortality risk of bloodstream infection caused by either
Escherichia coli or Klebsiella pneumoniae producing
extended-spectrum β-lactamase: A prospective cohort study. BMC Res
Notes. 12(719)2019.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Rottier WC, Deelen JWT, Caruana G, Buiting
AGM, Dorigo-Zetsma JW, Kluytmans JAJW, van der Linden PD, Thijsen
SFT, Vlaminckx BJM, Weersink AJL, et al: Attributable mortality of
antibiotic resistance in gram-negative infections in the
Netherlands: A parallel matched cohort study. Clin Microbiol
Infect: Jul 19, 2021 (Epub ahead of print).
|
|
24
|
De Angelis G, Del Giacomo P, Posteraro B,
Sanguinetti M and Tumbarello M: Molecular mechanisms, epidemiology,
and clinical importance of β-lactam resistance in
enterobacteriaceae. Int J Mol Sci. 21(5090)2020.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Hall BG and Barlow M: Revised Ambler
classification of {beta}-lactamases. J Antimicrob Chemother.
55:1050–1051. 2005.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Bush K and Jacoby GA: Updated functional
classification of beta-lactamases. Antimicrob Agents Chemother.
54:969–976. 2010.PubMed/NCBI View Article : Google Scholar
|
|
27
|
van Duin D and Doi Y: The global
epidemiology of carbapenemase-producing Enterobacteriaceae.
Virulence. 8:460–469. 2017.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Bonomo RA, Burd EM, Conly J, Limbago BM,
Poirel L, Segre JA and Westblade LF: Carbapenemase-producing
organisms: A global scourge. Clin Infect Dis. 66:1290–1297.
2018.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Shields RK, Chen L, Cheng S, Chavda KD,
Press EG, Snyder A, Pandey R, Doi Y, Kreiswirth BN, Nguyenet MH, et
al: Emergence of Ceftazidime-avibactam resistance due to
plasmid-borne blaKPC-3 mutations during treatment of
carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob
Agents Chemother. 61:e02097–16. 2017.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Sun D, Rubio-Aparicio D, Nelson K, Dudley
MN and Lomovskaya O: Meropenem-vaborbactam resistance selection,
resistance prevention, and molecular mechanisms in mutants of
KPC-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother.
61:e01694–17. 2017.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Osei Sekyere J, Govinden U, Bester LA and
Essack SY: Colistin and tigecycline resistance in
carbapenemase-producing Gram-negative bacteria: Emerging resistance
mechanisms and detection methods. J Appl Microbiol. 121:601–617.
2016.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Kim WY, Moon JY, Huh JW, Choi SH, Lim CM,
Koh Y, Chong YP and Hong SB: Comparable efficacy of tigecycline
versus colistin therapy for multidrug-resistant and extensively
drug-resistant Acinetobacter baumannii pneumonia in Critically Ill
patients. PLoS One. 11(e0150642)2016.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Sato Y, Ubagai T, Tansho-Nagakawa S,
Yoshino Y and Ono Y: Effects of colistin and tigecycline on
multidrug-resistant Acinetobacter baumannii biofilms: Advantages
and disadvantages of their combination. Sci Rep.
11(11700)2021.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Petrosillo N, Taglietti F and Granata G:
Treatment options for colistin resistant Klebsiella pneumoniae:
Present and future. J Clin Med. 8(934)2019.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Lupo A, Haenni M and Madec JY:
Antimicrobial resistance in Acinetobacter spp. and Pseudomonas spp.
Microbiol Spectr: 6, 2018. doi:
10.1128/microbiolspec.ARBA-0007-20172018.
|
|
36
|
Nguyen M and Joshi S: Carbapenem
resistance in Acinetobacter baumannii, and their importance in
hospital-acquired infections: A scientific review. J Appl
Microbiol. 131:2715–2738. 2021.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Yoon EJ and Jeong SH: Mobile carbapenemase
genes in pseudomonas aeruginosa. Front Microbiol.
12(614058)2021.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Tomás M, Doumith M, Warner M, Turton JF,
Beceiro A, Bou G, Livermore DM and Woodford N: Efflux Pumps, OprD
Porin, AmpC β-Lactamase, and Multiresistance in pseudomonas
aeruginosa isolates from cystic fibrosis patients. Antimicrob
Agents Chemother. 54:2219–2224. 2010.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Zhu Yl, Mei Q, Hu Lf, Cheng J, Ye Y and Li
JB: Vancomycin MICs of the resistant mutants of S. aureus ATCC43300
vary based on the susceptibility test methods used. J Antibiot.
65:307–310. 2012.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Rybak MJ, Vidaillac C, Sader HS, Rhomberg
PR, Salimnia H, Briski LE, Wanger A and Jones RN: Evaluation of
vancomycin susceptibility testing for methicillin-resistant
Staphylococcus aureus: Comparison of Etest and three automated
testing methods. J Clin Microbiol. 51:2077–2081. 2013.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Rogers LA, Strong K, Cork SC, McAllister
TA, Liljebjelke K, Zaheer R and Checkley SL: The role of whole
genome sequencing in the surveillance of antimicrobial resistant
Enterococcus spp.: A scoping review. Front Public Health.
9(599285)2021.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Leclercq R, Cantón R, Brown DFJ, Giske CG,
Heisig P, MacGowan AP, Mouton JW, Nordmann P, Rodloff AC, Rossolini
GM, et al: EUCAST expert rules in antimicrobial susceptibility
testing. Clin Microbiol Infect. 19:141–160. 2013.PubMed/NCBI View Article : Google Scholar
|
|
43
|
The European Committee on Antimicrobial
Susceptibility Testing: Breakpoint tables for interpretation of
MICs and zone diameters. Version 10, 2020. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf.
|
|
44
|
Hegstad K, Giske CG, Haldorsen B,
Matuschek E, Schønning K, Leegaard TM, Kahlmeter G and Sundsfjord
A: NordicAST VRE Detection Study Group. Performance of the EUCAST
disk diffusion method, the CLSI agar screen method, and the Vitek 2
automated antimicrobial susceptibility testing system for detection
of clinical isolates of Enterococci with low- and medium-level
VanB-type vancomycin resistance: A multicenter study. J Clin
Microbiol. 52:1582–1589. 2014.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Kohler P, Eshaghi A, Kim HC, Plevneshi A,
Green K, Willey BM, McGeer A and Patel SN: Prevalence of
vancomycin-variable Enterococcus faecium (VVE) among vanA-positive
sterile site isolates and patient factors associated with VVE
bacteremia. PLoS One. 13(e0193926)2018.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Grabsch EA, Chua K, Xie S, Byrne J,
Ballard SA, Ward PB and Grayson ML: Improved detection of
vanB2-containing Enterococcus faecium with vancomycin
susceptibility by Etest using oxgall supplementation. J Clin
Microbiol. 46:1961–1964. 2008.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Horner C, Mushtaq S and Livermore DM: BSAC
Resistance Surveillance Standing Committee. Activity of ceftaroline
versus ceftobiprole against staphylococci and pneumococci in the UK
and Ireland: Analysis of BSAC surveillance data. J Antimicrob
Chemother. 75:3239–3243. 2020.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Sakoulas G, Gold HS, Venkataraman L,
DeGirolami PC, Eliopoulos GM and Qian Q: Methicillin-resistant
Staphylococcus aureus: Comparison of susceptibility testing methods
and analysis of mecA-positive susceptible strains. J Clin
Microbiol. 39:3946–3951. 2001.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Limbago BM, Kallen AJ, Zhu W, Eggers P,
McDougal LK and Albrecht VS: Report of the 13th
vancomycin-resistant Staphylococcus aureus isolate from the United
States. J Clin Microbiol. 52:998–1002. 2014.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Shariati A, Dadashi M, Moghadam MT, van
Belkum A, Yaslianifard S and Darban-Sarokhalil D: Global prevalence
and distribution of vancomycin resistant, vancomycin intermediate
and heterogeneously vancomycin intermediate Staphylococcus aureus
clinical isolates: A systematic review and meta-analysis. Sci Rep.
10(12689)2020.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Satola SW, Farley MM, Anderson KF and
Patel JB: Comparison of detection methods for heteroresistant
vancomycin-intermediate Staphylococcus aureus, with the population
analysis profile method as the reference method. J Clin Microbiol.
49:177–183. 2011.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Wootton M, Howe RA, Hillman R, Walsh TR,
Bennett PM and MacGowan AP: A modified population analysis profile
(PAP) method to detect hetero-resistance to vancomycin in
Staphylococcus aureus in a UK hospital. J Antimicrob Chemother.
47:399–403. 2001.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Jackson CR, Fedorka-Cray PJ and Barrett
JB: Use of a genus- and species-specific multiplex PCR for
identification of enterococci. J Clin Microbiol. 42:3558–3565.
2004.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Holzknecht BJ, Hansen DS, Nielsen L,
Kailow A and Jarløv JO: Screening for vancomycin-resistant
enterococci with Xpert® vanA/vanB: Diagnostic accuracy
and impact on infection control decision making. New Microbes New
Infect. 16:54–59. 2017.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Tyson GH, Sabo JL, Rice-Trujillo C,
Hernandez J and McDermott PF: Whole-genome sequencing based
characterization of antimicrobial resistance in Enterococcus.
Pathog Dis. 76:2018.PubMed/NCBI View Article : Google Scholar : doi:
10.1093/femspd/fty018.
|
|
56
|
Paterson GK, Harrison EM and Holmes MA:
The emergence of mecC methicillin-resistant Staphylococcus aureus.
Trends Microbiol. 22:42–47. 2014.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Périchon B and Courvalin P: VanA-type
vancomycin-resistant Staphylococcus aureus. Antimicrob Agents
Chemother. 53:4580–4587. 2009.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Madigan T, Cunningham SA, Patel R,
Greenwood-Quaintance KE, Barth JE, Sampathkumar P, Cole NC, Kohner
PC, Colby CE, Asay GE, et al: Whole-genome sequencing for
methicillin-resistant Staphylococcus aureus (MRSA) outbreak
investigation in a neonatal intensive care unit. Infect Control
Hosp Epidemiol. 39:1412–1418. 2018.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Girlich D, Poirel L and Nordmann P: Do
CTX-M-lactamases hydrolyse ertapenem? J Antimicrob Chemother.
62:1155–1156. 2008.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Jacoby GA, Mills DM and Chow N: Role of
beta-lactamases and porins in resistance to ertapenem and other
beta-lactams in Klebsiella pneumoniae. Antimicrob Agents Chemother.
48:3203–3206. 2004.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Lartigue MF, Poirel L, Poyart C,
Réglier-Poupet H and Nordmann P: Ertapenem resistance of
Escherichia coli. Emerging Infect Dis. 13:315–317. 2007.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Guillon H, Tande D and Mammeri H:
Emergence of ertapenem resistance in an Escherichia coli clinical
isolate producing extended-spectrum beta-lactamase AmpC. Antimicrob
Agents Chemother. 55:4443–4446. 2011.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Thomson KS:
Extended-spectrum-beta-lactamase, AmpC, and Carbapenemase issues. J
Clin Microbiol. 48:1019–1025. 2010.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Dortet L, Cuzon G, Plésiat P and Naas T:
Prospective evaluation of an algorithm for the phenotypic screening
of carbapenemase-producing Enterobacteriaceae. J Antimicrob
Chemother. 71:135–140. 2016.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Dortet L, Bernabeu S, Gonzalez C and Naas
T: Evaluation of the carbapenem detection Set™ for the detection
and characterization of carbapenemase-producing Enterobacteriaceae.
Diagn Microbiol Infect Dis. 91:220–225. 2018.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Dortet L, Bernabeu S, Gonzalez C and Naas
T: Comparison of two phenotypic algorithms to detect
carbapenemase-producing enterobacteriaceae. Antimicrob Agents
Chemother. 61:e00796–17. 2017.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Reuland EA, Hays JP, de Jongh DMC,
Abdelrehim E, Willemsen I, Kluytmans JA, Savelkoul PH,
Vandenbroucke-Grauls CM and al Naiemi N: Detection and occurrence
of plasmid-mediated AmpC in highly resistant gram-negative rods.
PLoS One. 9(e91396)2014.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Lee K, Chong Y, Shin HB, Kim YA, Yong D
and Yum JH: Modified Hodge and EDTA-disk synergy tests to screen
metallo-beta-lactamase-producing strains of Pseudomonas and
Acinetobacter species. Clin Microbiol Infect. 7:88–91.
2001.PubMed/NCBI View Article : Google Scholar
|
|
69
|
van Dijk K, Voets GM, Scharringa J,
Voskuil S, Fluit AC, Rottier WC, Leverstein-Van Hall MA and Cohen
Stuart JWT: A disc diffusion assay for detection of class A, B and
OXA-48 carbapenemases in Enterobacteriaceae using phenyl boronic
acid, dipicolinic acid and temocillin. Clin Microbiol Infect.
20:345–349. 2014.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Pires J, Novais A and Peixe L: Blue-carba,
an easy biochemical test for detection of diverse carbapenemase
producers directly from bacterial cultures. J Clin Microbiol.
51:4281–4283. 2013.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Kabir MH, Meunier D, Hopkins KL, Giske CG
and Woodford N: A two-centre evaluation of RAPIDEC®
CARBA NP for carbapenemase detection in Enterobacteriaceae,
Pseudomomnas aeruginosa and Acinetobacter spp. J Antimicrob
Chemother. 71:1213–1216. 2016.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Bernabeu S, Dortet L and Naas T:
Evaluation of the β-CARBATM test, a colorimetric test for the rapid
detection of carbapenemase activity in Gram-negative bacilli. J
Antimicrob Chemother. 72:1646–1658. 2017.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Novais A, Brilhante M, Pires J and Peixe
L: Evaluation of the recently launched rapid carb blue kit for
detection of carbapenemase-producing gram-negative bacteria. J Clin
Microbiol. 53:3105–3107. 2015.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Gauthier L, Bonnin RA, Dortet L and Naas
T: Retrospective and prospective evaluation of the Carbapenem
inactivation method for the detection of carbapenemase-producing
Enterobacteriaceae. PLoS One. 12(e0170769)2017.PubMed/NCBI View Article : Google Scholar
|
|
75
|
van der Zwaluw K, de Haan A, Pluister GN,
Bootsma HJ, de Neeling AJ and Schouls LM: The carbapenem
inactivation method (CIM), a simple and low-cost alternative for
the Carba NP test to assess phenotypic carbapenemase activity in
gram-negative rods. PLoS One. 10(e0123690)2015.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Yamada K, Kashiwa M, Arai K, Nagano N and
Saito R: Evaluation of the modified carbapenem inactivation method
and sodium mercaptoacetate-combination method for the detection of
metallo-β-lactamase production by carbapenemase-producing
Enterobacteriaceae. J Microbiol Methods. 132:112–115.
2017.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Muntean MM, Muntean AA, Gauthier L, Creton
E, Cotellon G, Popa MI, Bonnin RA and Naas T: Evaluation of the
rapid carbapenem inactivation method (rCIM): A phenotypic screening
test for carbapenemase-producing Enterobacteriaceae. J Antimicrob
Chemother. 73:900–908. 2018.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Muntean AA, Poenaru A, Neagu A, Caracoti
C, Muntean MM, Popa VT, Bogdan MA, Naas T and Popa MI: Use of the
rapid carbapenem inactivation method (rCIM) with carbapenemase
inhibitors: A proof of concept experiment. Rom Arch Microbiol
Immunol. 77:50–57. 2018.
|
|
79
|
Baeza LL, Pfennigwerth N, Greissl C,
Göttig S, Saleh A, Stelzer Y, Gatermann SG and Hamprecht A:
Comparison of five methods for detection of carbapenemases in
Enterobacterales with proposal of a new algorithm. Clin Microbiol
Infect. 25:1286.e9–1286.e15. 2019.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Oviaño M, Ramírez CL, Barbeyto LP and Bou
G: Rapid direct detection of carbapenemase-producing
Enterobacteriaceae in clinical urine samples by MALDI-TOF MS
analysis. J Antimicrob Chemother. 72:1350–1354. 2017.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Ghebremedhin B, Halstenbach A, Smiljanic
M, Kaase M and Ahmad-Nejad P: MALDI-TOF MS based carbapenemase
detection from culture isolates and from positive blood culture
vials. Ann Clin Microbiol Antimicrob. 15(5)2016.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Jayol A, Nordmann P, Lehours P, Poirel L
and Dubois V: Comparison of methods for detection of
plasmid-mediated and chromosomally encoded colistin resistance in
Enterobacteriaceae. Clin Microbiol Infect. 24:175–179.
2018.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Bardet L and Rolain JM: Development of new
tools to detect colistin-resistance among enterobacteriaceae
strains. Can J Infect Dis Med Microbiol.
2018(3095249)2018.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Büdel T, Clément M, Bernasconi OJ,
Principe L, Perreten V, Luzzaro F and Endimiani A: Evaluation of
EDTA- and DPA-based Microdilution phenotypic tests for the
detection of MCR-mediated colistin resistance in
enterobacteriaceae. Microb Drug Resist. 25:494–500. 2019.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Simner PJ, Bergman Y, Trejo M, Roberts AA,
Marayan R, Tekle T, Campeau S, Kazmi AQ, Bell DT, Lewis S, et al:
Two-site evaluation of the colistin broth disk elution test to
determine colistin in vitro activity against Gram-negative Bacilli.
J Clin Microbiol. 57:e01163–18. 2019.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Nordmann P, Jayol A and Poirel L: Rapid
detection of polymyxin resistance in enterobacteriaceae. Emerging
Infect Dis. 22:1038–1043. 2016.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Dortet L, Bonnin RA, Pennisi I, Gauthier
L, Jousset AB, Dabos L, Furniss RCD, Mavridou DAI, Bogaerts P,
Glupczynski Y, et al: Rapid detection and discrimination of
chromosome- and MCR-plasmid-mediated resistance to polymyxins by
MALDI-TOF MS in Escherichia coli: The MALDIxin test. J Antimicrob
Chemother. 73:3359–3367. 2018.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Volland H, Dortet L, Bernabeu S, Boutal H,
Haenni M, Madec JY, Robin F, Beyrouthy R, Naas T and Simon S:
Development and Multicentric validation of a lateral flow
immunoassay for rapid detection of MCR-1-producing
Enterobacteriaceae. J Clin Microbiol. 57:e01454–18. 2019.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Tato M, Ruiz-Garbajosa P, Traczewski M,
Dodgson A, McEwan A, Humphries R, Hindler J, Veltman J, Wang H and
Cantón R: Multisite evaluation of Cepheid Xpert Carba-R assay for
detection of carbapenemase-producing organisms in rectal swabs. J
Clin Microbiol. 54:1814–1819. 2016.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Dortet L, Fusaro M and Naas T: Improvement
of the Xpert Carba-R Kit for the detection of
carbapenemase-producing enterobacteriaceae. Antimicrob Agents
Chemother. 60:3832–3837. 2016.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Girlich D, Bernabeu S, Fortineau N, Dortet
L and Naas T: Evaluation of the CRE and ESBL ELITe MGB®
kits for the accurate detection of carbapenemase- or
CTX-M-producing bacteria. Diagn Microbiol Infect Dis. 92:1–7.
2018.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Girlich D, Bernabeu S, Grosperrin V,
Langlois I, Begasse C, Arangia N, Creton E, Cotellon G, Sauvadet A,
Dortet L and Naas T: Evaluation of the Amplidiag CarbaR + MCR Kit
for accurate detection of carbapenemase-producing and
colistin-resistant bacteria. J Clin Microbiol. 57:e01800–18.
2019.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Zhang H, Hou M, Xu Y, Srinivas S, Huang M,
Liu L and Feng Y: Action and mechanism of the colistin resistance
enzyme MCR-4. Commun Biol. 2(36)2019.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Wang X and Wang Y, Zhou Y, Li J, Yin W,
Wang S, Zhang S, Shen J, Shen Z and Wang Y: Emergence of a novel
mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella
pneumoniae. Emerg Microbes Infect. 7(122)2018.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Li J, Shi X, Yin W, Wang Y, Shen Z, Ding S
and Wang S: A multiplex SYBR green real-time PCR assay for the
detection of three colistin resistance genes from cultured
bacteria, feces, and environment samples. Front Microbiol.
8(2078)2017.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Imirzalioglu C, Falgenhauer L, Schmiedel
J, Waezsada SE, Gwozdzinski K, Roschanski N, Roesler U, Kreienbrock
L, Schiffmann AP, Irrgang A, et al: Evaluation of a loop-mediated
isothermal amplification-based assay for the rapid detection of
plasmid-encoded colistin resistance gene mcr-1 in
enterobacteriaceae isolates. Antimicrob Agents Chemother.
61:e02326–16. 2017.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Bernasconi OJ, Principe L, Tinguely R,
Karczmarek A, Perreten V, Luzzaro F and Endimiani A: Evaluation of
a new commercial microarray platform for the simultaneous detection
of β-lactamase and mcr-1 and mcr-2 genes in enterobacteriaceae. J
Clin Microbiol. 55:3138–3141. 2017.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Chan WS, Au CH, Ho DN, Chan TL, Ma ESK and
Tang BSF: Prospective study on human fecal carriage of
Enterobacteriaceae possessing mcr-1 and mcr-2 genes in a regional
hospital in Hong Kong. BMC Infect Dis. 18(81)2018.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Simner PJ, Opene BNA, Chambers KK, Naumann
ME, Carroll KC and Tamma PD: Carbapenemase detection among
carbapenem-resistant glucose-nonfermenting gram-negative Bacilli. J
Clin Microbiol. 55:2858–2864. 2017.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Elsherif R, Ismail D, Elawady S, Jastaniah
S, Al-Masaudi S, Harakeh S and Karrouf G: Boronic acid disk
diffusion for the phenotypic detection of polymerase chain
reaction-confirmed, carbapenem-resistant, gram-negative bacilli
isolates. BMC Microbiol. 16(135)2016.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Walsh TR, Bolmström A, Qwärnström A and
Gales A: Evaluation of a new Etest for detecting
metallo-beta-lactamases in routine clinical testing. J Clin
Microbiol. 40:2755–2759. 2002.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Lee K, Yong D, Yum JH, Bolmström A,
Qwärnström A, Karlsson A and Chong Y: Evaluation of Etest MBL for
detection of blaIMP-1 and blaVIM-2 allele-positive clinical
isolates of Pseudomonas spp. and Acinetobacter spp. J Clin
Microbiol. 43:942–944. 2005.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Simner PJ, Johnson JK, Brasso WB, Anderson
K, Lonsway DR, Pierce VM, Bobenchik AM, Lockett ZC,
Charnot-Katsikas A, Westblade LF, et al: Multicenter evaluation of
the modified carbapenem inactivation method and the Carba NP for
detection of carbapenemase-producing pseudomomnas aeruginosa and
Acinetobacter baumannii. J Clin Microbiol. 56:e01369–17.
2017.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Aktaş E, Malkoçoğlu G, Otlu B, Çiçek AÇ,
Külah C, Cömert F, Sandallı C, Gürsoy NC, Erdemir D and Bulut ME:
Evaluation of the carbapenem inactivation method for detection of
carbapenemase-producing gram-negative bacteria in comparison with
the RAPIDEC CARBA NP. Microb Drug Resist. 23:457–461.
2017.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Uechi K, Tada T, Shimada K, Kuwahara-Arai
K, Arakaki M, Tome T, Nakasone I, Maeda S, Kirikae T and Fujita J:
A modified carbapenem inactivation method, cimtris, for
carbapenemase production in acinetobacter and pseudomonas species.
J Clin Microbiol. 55:3405–3410. 2017.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Bakour S, Garcia V, Loucif L, Brunel JM,
Gharout-Sait A, Touati A and Rolain JM: Rapid identification of
carbapenemase-producing Enterobacteriaceae, Pseudomomnas aeruginosa
and Acinetobacter baumannii using a modified Carba NP test. New
Microbes New Infect. 7:89–93. 2015.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Literacka E, Herda M, Baraniak A, Żabicka
D, Hryniewicz W, Skoczyńska A and Gniadkowski M: Evaluation of the
Carba NP test for carbapenemase detection in Enterobacteriaceae,
Pseudomonas spp. and Acinetobacter spp., and its practical use in
the routine work of a national reference laboratory for
susceptibility testing. Eur J Clin Microbiol Infect Dis.
36:2281–2287. 2017.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Srisrattakarn A, Lulitanond A,
Wilailuckana C, Charoensri N, Daduang J and Chanawong A: A novel
GoldNano Carb test for rapid phenotypic detection of
carbapenemases, particularly OXA type, in Enterobacteriaceae,
Pseudomomnas aeruginosa and Acinetobacter spp. J Antimicrob
Chemother. 72:2519–2527. 2017.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Noël A, Huang TD, Berhin C, Hoebeke M,
Bouchahrouf W, Yunus S, Bogaerts P and Glupczynski Y: Comparative
evaluation of four phenotypic tests for detection of
carbapenemase-producing gram-negative bacteria. J Clin Microbiol.
55:510–518. 2017.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Workneh M, Yee R and Simner PJ: Phenotypic
methods for detection of carbapenemase production in
carbapenem-resistant organisms: What method should your laboratory
choose? Clin Microbiol Newsl. 41:11–22. 2019.
|
|
111
|
Lescat M, Poirel L, Tinguely C and
Nordmann P: A Resazurin reduction-based assay for rapid detection
of Polymyxin Resistance in Acinetobacter baumannii and Pseudomomnas
aeruginosa. J Clin Microbiol. 57:e01563–18. 2019.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Ellington MJ, Ekelund O, Aarestrup FM,
Canton R, Doumith M, Giske C, Grundman H, Hasman H, Holden MTG,
Hopkins KL, et al: The role of whole genome sequencing in
antimicrobial susceptibility testing of bacteria: Report from the
EUCAST subcommittee. Clin Microbiol Infect. 23:2–22.
2017.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Kos VN, Déraspe M, McLaughlin RE,
Whiteaker JD, Roy PH, Alm RA, Corbeil J and Gardner H: The
resistome of Pseudomomnas aeruginosa in relationship to phenotypic
susceptibility. Antimicrob Agents Chemother. 59:427–436.
2015.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Tamayo M, Santiso R, Otero F, Bou G, Lepe
JA, McConnell MJ, Cisneros JM, Gosálvez J and Fernández JL: Rapid
determination of colistin resistance in clinical strains of
Acinetobacter baumannii by use of the micromax assay. J Clin
Microbiol. 51:3675–3682. 2013.PubMed/NCBI View Article : Google Scholar
|
|
115
|
European Medicines Agency: Advice on
impacts of using antimicrobials in animals, 2013. https://www.ema.europa.eu/en/veterinary-regulatory/overview/antimicrobial-resistance/advice-impacts-using-antimicrobials-animals.
Accessed September 15, 2021.
|
|
116
|
EMA Committee for Medicinal Products for
Veterinary Use (CVMP) and EFSA Panel on Biological Hazards
(BIOHAZ). Murphy D, Ricci A, Auce Z, Beechinor JE, Bergendahl H,
Breathnach R, Bures J, Silva J, Hederová J, et al: EMA and EFSA
Joint Scientific Opinion on measures to reduce the need to use
antimicrobial agents in animal husbandry in the European Union, and
the resulting impacts on food safety (RONAFA). EFSA J.
15(e04666)2017.PubMed/NCBI View Article : Google Scholar
|
|
117
|
ECDC (European Centre for Disease
Prevention and Control), EFSA (European Food Safety Authority) and
EMA (European Medicines Agency). ECDC/EFSA/EMA first joint report
on the integrated analysis of the consumption of antimicrobial
agents and occurrence of antimicrobial resistance in bacteria from
humans and food-producing animals. Stockholm/Parma/London:
ECDC/EFSA/EMA. EFSA J. 13(e04006)2015.
|
|
118
|
ECDC (European Centre for Disease
Prevention and Control), EFSA (European Food Safety Authority), and
EMA (European Medicines Agency). ECDC/EFSA/EMA second joint report
on the integrated analysis of the consumption of antimicrobial
agents and occurrence of antimicrobial resistance in bacteria from
humans and food-producing animals: Joint Interagency Antimicrobial
Consumption and Resistance Analysis (JIACRA) report. EFSA J.
15(e04872)2017.PubMed/NCBI View Article : Google Scholar
|
|
119
|
European Centre for Disease Prevention and
Control (ECDC); European Food Safety Authority (EFSA) and European
Medicines Agency (EMA). Third joint inter-agency report on
integrated analysis of consumption of antimicrobial agents and
occurrence of antimicrobial resistance in bacteria from humans and
food-producing animals in the EU/EEA, JIACRA III 2016-2018. EFSA J.
19(e06712)2021.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Bates J, Jordens JZ and Griffiths DT: Farm
animals as a putative reservoir for vancomycin-resistant
enterococcal infection in man. J Antimicrob Chemother. 34:507–514.
1994.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Bager F, Aarestrup FM, Madsen M and
Wegener HC: Glycopeptide resistance in Enterococcus faecium from
broilers and pigs following discontinued use of avoparcin. Microb
Drug Resist. 5:53–56. 1999.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Hoelzer K, Wong N, Thomas J, Talkington K,
Jungman E and Coukell A: Antimicrobial drug use in food-producing
animals and associated human health risks: What, and how strong, is
the evidence? BMC Vet Res. 13(211)2017.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Huijsdens XW, van Dijke BJ, Spalburg E,
van Santen-Verheuvel MG, Heck M, Pluister GN, Voss A, Wannet WJB
and de Neeling AJ: Community-acquired MRSA and pig-farming. Ann
Clin Microbiol Antimicrob. 5(26)2006.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Monte DF, Mem A, Fernandes MR, Cerdeira L,
Esposito F, Galvão JA, Franco BDGM, Lincopan N and Landgraf M:
Chicken meat as a reservoir of colistin-resistant Escherichia coli
Strains Carrying mcr-1 Genes in South America. Antimicrob Agents
Chemother. 61:e02718–16. 2017.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Zhou X, Qiao M, Wang FH and Zhu YG: Use of
commercial organic fertilizer increases the abundance of antibiotic
resistance genes and antibiotics in soil. Environ Sci Pollut Res
Int. 24:701–710. 2017.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Cadena M, Durso LM, Miller DN, Waldrip HM,
Castleberry BL, Drijber RA and Wortmann C: Tetracycline and
sulfonamide antibiotic resistance genes in soils from Nebraska
organic farming operations. Front Microbiol. 9(1283)2018.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Li J, Cao J, Zhu YG, Chen QL, Shen F, Wu
Y, Xu S, Fan H, Da G, Huang RJ, et al: Global survey of antibiotic
resistance genes in air. Environ Sci Technol. 52:10975–10984.
2018.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Hu J, Zhao F, Zhang X-X, Li K, Li C, Ye L
and Li M: Metagenomic profiling of ARGs in airborne particulate
matters during a severe smog event. Sci Total Environ.
615:1332–1340. 2018.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Fernando DM, Tun HM, Poole J, Patidar R,
Li R, Mi R, Amarawansha GEA, Fernando WGD, Khafipour E and Kumar A:
Detection of antibiotic resistance genes in source and drinking
water samples from a first nations community in Canada. Appl
Environ Microbiol. 82:4767–4775. 2016.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Brown KD, Kulis J, Thomson B, Chapman TH
and Mawhinney DB: Occurrence of antibiotics in hospital,
residential, and dairy effluent, municipal wastewater, and the Rio
Grande in New Mexico. Sci Total Environ. 366:772–783.
2006.PubMed/NCBI View Article : Google Scholar
|