|
1
|
Zhang Y and Jordan JM: Epidemiology of
osteoarthritis. Clin Geriatr Med. 26:355–369. 2010.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Wallace IJ, Worthington S, Felson DT,
Jurmain RD, Wren KT, Maijanen H, Woods RJ and Lieberman DE: Knee
osteoarthritis has doubled in prevalence since the mid-20th
century. Proc Natl Acad Sci USA. 114:9332–9336. 2017.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Young DA, Barter MJ and Wilkinson DJ:
Recent advances in understanding the regulation of
metalloproteinases. F1000Res. 8(F1000 Faculty
Rev-195)2019.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Glazier RH, Dalby DM, Badley EM, Hawker
GA, Bell MJ, Buchbinder R and Lineker SC: Management of common
musculoskeletal problems: A survey of Ontario primary care
physicians. CMAJ. 158:1037–1040. 1998.PubMed/NCBI
|
|
5
|
Gnylorybov AM, Ter-Vartanian SK, Golovach
IY, Vyrva OE, Burianov OA, Yesirkepova GS, Irismetov ME,
Rizamuhamedova MZ, Vardanyan VS and Ginosyan KV: Expert opinion on
the extensive use of prescription crystalline glucosamine sulfate
in the multimodal treatment of osteoarthritis in Ukraine,
Kazakhstan, Uzbekistan, and Armenia. Clin Med Insights Arthritis
Musculoskelet Disord. 13(1179544120946743)2020.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Nowaczyk A, Szwedowski D, Dallo I and
Nowaczyk J: Overview of first-line and second-line
pharmacotherapies for osteoarthritis with special focus on
intra-articular treatment. Int J Mol Sci. 23(1566)2022.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Le Graverand-Gastineau MP: Disease
modifying osteoarthritis drugs: Facing development challenges and
choosing molecular targets. Curr Drug Targets. 11:528–535.
2010.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Thomson A and Hilkens CMU: Synovial
macrophages in osteoarthritis: The key to understanding
pathogenesis? Front Immunol. 12(678757)2021.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Zhu X, Lee CW, Xu H, Wang YF, Yung PSH,
Jiang Y and Lee OK: Phenotypic alteration of macrophages during
osteoarthritis: A systematic review. Arthritis Res Ther.
23(110)2021.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Rao KN and Brown MA: Mast cells:
Multifaceted immune cells with diverse roles in health and disease.
Ann N Y Acad Sci. 1143:83–104. 2008.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Xie J, Huang Z, Yu X, Zhou L and Pei F:
Clinical implications of macrophage dysfunction in the development
of osteoarthritis of the knee. Cytokine Growth Factor Rev.
46:36–44. 2019.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Zhang H, Cai D and Bai X: Macrophages
regulate the progression of osteoarthritis. Osteoarthritis
Cartilage. 28:555–561. 2020.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Felson DT, Lawrence RC, Dieppe PA, Hirsch
R, Helmick CG, Jordan JM, Kington RS, Lane NE, Nevitt MC, Zhang Y,
et al: Osteoarthritis: New insights. Part 1: The disease and its
risk factors. Ann Intern Med. 133:635–646. 2000.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Jeffries MA: Osteoarthritis year in review
2018: Genetics and epigenetics. Osteoarthritis Cartilage.
27:371–377. 2019.PubMed/NCBI View Article : Google Scholar
|
|
15
|
DeFrate LE, Kim-Wang SY, Englander ZA and
McNulty AL: Osteoarthritis year in review 2018: Mechanics.
Osteoarthritis Cartilage. 27:392–400. 2019.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Loeser RF, Goldring SR, Scanzello CR and
Goldring MB: Osteoarthritis: A disease of the joint as an organ.
Arthritis Rheum. 64:1697–1707. 2012.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Nunez-Carro C, Blanco-Blanco M, Montoya T,
Villagran-Andrade KM, Hermida-Gomez T, Blanco FJ and de Andres MC:
Histone extraction from human articular cartilage for the study of
epigenetic regulation in osteoarthritis. Int J Mol Sci.
23(3355)2022.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Li M, Yin H, Yan Z, Li H, Wu J, Wang Y,
Wei F, Tian G, Ning C, Li H, et al: The immune microenvironment in
cartilage injury and repair. Acta Biomater. 140:23–42.
2022.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Bhat S, Tripathi A and Kumar A:
Supermacroprous chitosan-agarose-gelatin cryogels: In vitro
characterization and in vivo assessment for cartilage tissue
engineering. J R Soc Interface. 8:540–554. 2011.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Sandell LJ, Morris N, Robbins JR and
Goldring MB: Alternatively spliced type II procollagen mRNAs define
distinct populations of cells during vertebral development:
Differential expression of the amino-propeptide. J Cell Biol.
114:1307–1319. 1991.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Stocker W and Bode W: Structural features
of a superfamily of zinc-endopeptidases: The metzincins. Curr Opin
Struct Biol. 5:383–390. 1995.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Dominici M, Le Blanc K, Mueller I,
Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A,
Prockop Dj and Horwitz E: Minimal criteria for defining multipotent
mesenchymal stromal cells. The International Society for Cellular
Therapy position statement. Cytotherapy. 8:315–317. 2006.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Chan CM, Macdonald CD, Litherland GJ,
Wilkinson DJ, Skelton A, Europe-Finner GN and Rowan AD:
Cytokine-induced MMP13 expression in human chondrocytes is
dependent on activating transcription factor 3 (ATF3) Regulation. J
Biol Chem. 292:1625–1636. 2017.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Heijink A, Vanhees M, van den Ende K, van
den Bekerom MP, van Riet RP, Van Dijk CN and Eygendaal D:
Biomechanical considerations in the pathogenesis of osteoarthritis
of the elbow. Knee Surg Sports Traumatol Arthrosc. 24:2313–2318.
2016.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Stannus O, Jones G, Cicuttini F,
Parameswaran V, Quinn S, Burgess J and Ding C: Circulating levels
of IL-6 and TNF-α are associated with knee radiographic
osteoarthritis and knee cartilage loss in older adults.
Osteoarthritis Cartilage. 18:1441–1447. 2010.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Kuyinu EL, Narayanan G, Nair LS and
Laurencin CT: Animal models of osteoarthritis: Classification,
update, and measurement of outcomes. J Orthop Surg Res.
11(19)2016.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Blaker CL, Clarke EC and Little CB: Using
mouse models to investigate the pathophysiology, treatment, and
prevention of post-traumatic osteoarthritis. J Orthop Res.
35:424–439. 2017.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Man GS and Mologhianu G: Osteoarthritis
pathogenesis-a complex process that involves the entire joint. J
Med Life. 7:37–41. 2014.PubMed/NCBI
|
|
29
|
Gordon S: Pattern recognition receptors:
Doubling up for the innate immune response. Cell. 111:927–930.
2002.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Nefla M, Holzinger D, Berenbaum F and
Jacques C: The danger from within: Alarmins in arthritis. Nat Rev
Rheumatol. 12:669–683. 2016.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Ito T, Kurata N and Fukunaga Y:
Tissue-Resident Macrophages in the Stria Vascularis. Front Neurol.
13(818395)2022.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Davies LC and Taylor PR: Tissue-resident
macrophages: Then and now. Immunology. 144:541–548. 2015.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Wynn TA and Vannella KM: Macrophages in
tissue repair, regeneration, and fibrosis. Immunity. 44:450–462.
2016.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Geiß C, Salas E, Guevara-Coto J,
Regnier-Vigouroux A and Mora-Rodriguez RA: Multistability in
macrophage activation pathways and metabolic implications. Cells.
11(404)2022.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Andersen A, Lund A, Knop FK and Vilsboll
T: Glucagon-like peptide 1 in health and disease. Nat Rev
Endocrinol. 14:390–403. 2018.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Schisano B, Harte AL, Lois K, Saravanan P,
Al-Daghri N, Al-Attas O, Knudsen LB, McTernan PG, Ceriello A and
Tripathi G: GLP-1 analogue, Liraglutide protects human umbilical
vein endothelial cells against high glucose induced endoplasmic
reticulum stress. Regul Pept. 174:46–52. 2012.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Mehan S, Bhalla S, Siddiqui EM, Sharma N,
Shandilya A and Khan A: Potential roles of glucagon-like peptide-1
and its analogues in dementia targeting impaired insulin secretion
and neurodegeneration. Degener Neurol Neuromuscul Dis. 12:31–59.
2022.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Meurot C, Martin C, Sudre L, Breton J,
Bougault C, Rattenbach R, Bismuth K, Jacques C and Berenbaum F:
Liraglutide, a glucagon-like peptide 1 receptor agonist, exerts
analgesic, anti-inflammatory and anti-degradative actions in
osteoarthritis. Sci Rep. 12(1567)2022.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Gudbergsen H, Overgaard A, Henriksen M,
Waehrens EE, Bliddal H, Christensen R, Nielsen SM, Boesen M, Knop
FK, Astrup A, et al: Liraglutide after diet-induced weight loss for
pain and weight control in knee osteoarthritis: A randomized
controlled trial. Am J Clin Nutr. 113:314–323. 2021.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Li J, Bi Y, Yang H and Wang D:
Antioxidative properties and interconversion of
tert-Butylhydroquinone and tert-Butylquinone in Soybean Oils. J
Agric Food Chem. 65:10598–10603. 2017.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Song H, Xu Y, Yang X, Rong X, Wang Y and
Wei N: Tertiary butylhydroquinone alleviates gestational diabetes
mellitus in C57BL/KsJ-Lep db/+ mice by suppression of oxidative
stress. J Cell Biochem. 120:15310–15319. 2019.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Zhang H, Li J, Xiang X, Zhou B, Zhao C,
Wei Q, Sun Y, Chen J, Lai B, Luo Z and Li A: Tert-butylhydroquinone
attenuates osteoarthritis by protecting chondrocytes and inhibiting
macrophage polarization. Bone Joint Res. 10:704–713.
2021.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Wu SJ, Ng LT and Lin CC: Antioxidant
activities of some common ingredients of traditional chinese
medicine, Angelica sinensis, Lycium barbarum and Poria cocos.
Phytother Res. 18:1008–1012. 2004.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Qin J, Liu YS, Liu J, Li J, Tan Y, Li XJ,
Magdalou J, Mei QB, Wang H and Chen LB: Effect of angelica sinensis
polysaccharides on osteoarthritis in vivo and in vitro: A possible
mechanism to promote proteoglycans synthesis. Evid Based Complement
Alternat Med. 2013(794761)2013.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Lampronti I, Manzione MG, Sacchetti G,
Ferrari D, Spisani S, Bezzerri V, Finotti A, Borgatti M, Dechecchi
MC, Miolo G, et al: Differential effects of angelicin analogues on
NF-κB Activity and IL-8 gene expression in cystic fibrosis IB3-1
cells. Mediators Inflamm. 2017(2389487)2017.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Tian Z, Zeng F, Zhao C and Dong S:
Angelicin alleviates post-trauma osteoarthritis progression by
regulating macrophage polarization via STAT3 signaling pathway.
Front Pharmacol. 12(669213)2021.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Hong PTL, Kim HJ, Kim WK and Nam JH: Flos
magnoliae constituent fargesin has an anti-allergic effect via
ORAI1 channel inhibition. Korean J Physiol Pharmacol. 25:251–258.
2021.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Lee GE, Lee CJ, An HJ, Kang HC, Lee HS,
Lee JY, Oh SR, Cho SJ, Kim DJ and Cho YY: Fargesin Inhibits
EGF-Induced cell transformation and colon cancer cell growth by
suppression of CDK2/Cyclin E signaling pathway. Int J Mol Sci.
22(2073)2021.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Lu J and Zhang H, Pan J, Hu Z, Liu L, Liu
Y, Yu X, Bai X, Cai D and Zhang H: Fargesin ameliorates
osteoarthritis via macrophage reprogramming by downregulating MAPK
and NF-κB pathways. Arthritis Res Ther. 23(142)2021.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Guan D, Li C, Lv X and Yang Y: Pseudolaric
acid B inhibits PAX2 expression through Wnt signaling and induces
BAX expression, therefore promoting apoptosis in HeLa cervical
cancer cells. J Gynecol Oncol. 30(e77)2019.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Li MH, Miao ZH, Tan WF, Yue JM, Zhang C,
Lin LP, Zhang XW and Ding J: Pseudolaric acid B inhibits
angiogenesis and reduces hypoxia-inducible factor 1alpha by
promoting proteasome-mediated degradation. Clin Cancer Res.
10:8266–8274. 2004.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Lu J, Guan H, Wu D, Hu Z, Zhang H, Jiang
H, Yu J, Zeng K, Li H, Zhang H, et al: Pseudolaric acid B
ameliorates synovial inflammation and vessel formation by
stabilizing PPARγ to inhibit NF-κB signalling pathway. J Cell Mol
Med. 25:6664–6678. 2021.PubMed/NCBI View Article : Google Scholar
|
|
53
|
He X, Wang J, Li M, Hao D, Yang Y, Zhang
C, He R and Tao R: Eucommia ulmoides Oliv: Ethnopharmacology,
phytochemistry and pharmacology of an important traditional Chinese
medicine. J Ethnopharmacol. 151:78–92. 2014.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Hong YK, Liu WJ, Li T and She SY:
Optimization of extraction of Eucommia ulmoides polysaccharides by
response surface methodology. Carbohydr Polym. 92:1761–1766.
2013.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Deng Y, Ma F, Ruiz-Ortega LI, Peng Y, Tian
Y, He W and Tang B: Fabrication of strontium Eucommia ulmoides
polysaccharides and in vitro evaluation of their
osteoimmunomodulatory property. Int J Biol Macromol. 140:727–735.
2019.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Gao W, Feng Z, Zhang S, Wu B, Geng X, Fan
G, Duan Y, Li K, Liu K and Peng C: Anti-Inflammatory and
Antioxidant Effect of Eucommia ulmoides Polysaccharide in Hepatic
Ischemia-Reperfusion Injury by Regulating ROS and the TLR-4-NF-κB
Pathway. Biomed Res Int. 2020(1860637)2020.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Sun Y, Huang K, Mo L, Ahmad A, Wang D,
Rong Z, Peng H, Cai H and Liu G: Eucommia ulmoides polysaccharides
attenuate rabbit osteoarthritis by regulating the function of
macrophages. Front Pharmacol. 12(730557)2021.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Hu CX, Hu KY and Wang JF: Potential role
of the compound Eucommia bone tonic granules in patients with
osteoarthritis and osteonecrosis: A retrospective study. World J
Clin Cases. 8:46–53. 2020.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Mazini L, Rochette L, Admou B, Amal S and
Malka G: Hopes and limits of adipose-derived stem cells (ADSCs) and
mesenchymal stem cells (MSCs) in wound healing. Int J Mol Sci.
21(1306)2020.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Cosenza S, Ruiz M, Toupet K, Jorgensen C
and Noel D: Mesenchymal stem cells derived exosomes and
microparticles protect cartilage and bone from degradation in
osteoarthritis. Sci Rep. 7(16214)2017.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Furuta T, Miyaki S, Ishitobi H, Ogura T,
Kato Y, Kamei N, Miyado K, Higashi Y and Ochi M: Mesenchymal stem
cell-derived exosomes promote fracture Healing in a mouse model.
Stem Cells Transl Med. 5:1620–1630. 2016.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Woo CH, Kim HK, Jung GY, Jung YJ, Lee KS,
Yun YE, Han J, Lee J, Kim WS, Choi JS, et al: Small extracellular
vesicles from human adipose-derived stem cells attenuate cartilage
degeneration. J Extracell Vesicles. 9(1735249)2020.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Chen CF, Hu CC, Wu CT, Wu HH, Chang CS,
Hung YP, Tsai CC and Chang Y: Treatment of knee osteoarthritis with
intra-articular injection of allogeneic adipose-derived stem cells
(ADSCs) ELIXCYTE®: a phase I/II, randomized,
active-control, single-blind, multiple-center clinical trial. Stem
Cell Res Ther. 12(562)2021.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Tang S, Chen P, Zhang H, Weng H, Fang Z,
Chen C, Peng G, Gao H, Hu K, Chen J, et al: Comparison of curative
effect of human umbilical cord-derived mesenchymal stem cells and
their small extracellular vesicles in treating osteoarthritis. Int
J Nanomedicine. 16:8185–8202. 2021.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Li K, Yan G, Huang H, Zheng M, Ma K, Cui
X, Lu D, Zheng L, Zhu B, Cheng J and Zhao J: Anti-inflammatory and
immunomodulatory effects of the extracellular vesicles derived from
human umbilical cord mesenchymal stem cells on osteoarthritis via
M2 macrophages. J Nanobiotechnology. 20(38)2022.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Mickle AD, Shepherd AJ and Mohapatra DP:
Sensory TRP channels: The key transducers of nociception and pain.
Prog Mol Biol Transl Sci. 131:73–118. 2015.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Zhang X, Ye L, Huang Y, Ding X and Wang L:
The potential role of TRPV1 in pulmonary hypertension: Angel or
demon? Channels (Austin). 13:235–246. 2019.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Lv Z, Xu X, Sun Z, Yang YX, Guo H, Li J,
Sun K, Wu R, Xu J, Jiang Q, et al: TRPV1 alleviates osteoarthritis
by inhibiting M1 macrophage polarization via
Ca2+/CaMKII/Nrf2 signaling pathway. Cell Death Dis.
12(504)2021.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Mayorga AJ, Flores CM, Trudeau JJ, Moyer
JA, Shalayda K, Dale M, Frustaci ME, Katz N, Manitpisitkul P,
Treister R, et al: A randomized study to evaluate the analgesic
efficacy of a single dose of the TRPV1 antagonist mavatrep in
patients with osteoarthritis. Scand J Pain. 17:134–143.
2017.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Yi YS: Functional Role of Milk fat
globule-epidermal growth factor VIII in macrophage-mediated
inflammatory responses and inflammatory/autoimmune diseases.
Mediators Inflamm. 2016(5628486)2016.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Uchiyama A, Motegi SI, Sekiguchi A,
Fujiwara C, Perera B, Ogino S, Yokoyama Y and Ishikawa O:
Mesenchymal stem cells-derived MFG-E8 accelerates diabetic
cutaneous wound healing. J Dermatol Sci. 86:187–197.
2017.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Lu Y, Liu L, Pan J, Luo B, Zeng H, Shao Y,
Zhang H, Guan H, Guo D, Zeng C, et al: MFG-E8 regulated by
miR-99b-5p protects against osteoarthritis by targeting chondrocyte
senescence and macrophage reprogramming via the NF-κB pathway. Cell
Death Dis. 12(533)2021.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Han S, Zhang Y, Guo C and Chang C: The E3
protein ubiquitin ligase Itch is a potential target in myeloid
malignancies with marrow fibrosis. Transl Cancer Res. 10:2368–2378.
2021.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Lin X, Wang W, McDavid A, Xu H, Boyce BF
and Xing L: The E3 ubiquitin ligase Itch limits the progression of
post-traumatic osteoarthritis in mice by inhibiting macrophage
polarization. Osteoarthritis Cartilage. 29:1225–1236.
2021.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Hootman JM and Helmick CG: Projections of
US prevalence of arthritis and associated activity limitations.
Arthritis Rheum. 54:226–229. 2006.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Cutolo M, Berenbaum F, Hochberg M, Punzi L
and Reginster JY: Commentary on recent therapeutic guidelines for
osteoarthritis. Semin Arthritis Rheum. 44:611–617. 2015.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Zhang W, Nuki G, Moskowitz RW, Abramson S,
Altman RD, Arden NK, Bierma-Zeinstra S, Brandt KD, Croft P, Doherty
M, et al: OARSI recommendations for the management of hip and knee
osteoarthritis: Part III: Changes in evidence following systematic
cumulative update of research published through January 2009.
Osteoarthritis Cartilage. 18:476–499. 2010.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Rai MF, Pan H, Yan H, Sandell LJ, Pham CTN
and Wickline SA: Applications of RNA interference in the treatment
of arthritis. Transl Res. 214:1–16. 2019.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Ye C, Bhan AK, Deshpande V, Shankar P and
Manjunath N: Silencing TNF-α in macrophages and dendritic cells for
arthritis treatment. Scand J Rheumatol. 42:266–269. 2013.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Shi Q, Rondon-Cavanzo EP, Dalla Picola IP,
Tiera MJ, Zhang X, Dai K, Benabdoune HA, Benderdour M and Fernandes
JC: In vivo therapeutic efficacy of TNFα silencing by
folate-PEG-chitosan-DEAE/siRNA nanoparticles in arthritic mice. Int
J Nanomedicine. 13:387–402. 2018.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Lee SJ, Lee A, Hwang SR, Park JS, Jang J,
Huh MS, Jo DG, Yoon SY, Byun Y, Kim SH, et al: TNF-α gene silencing
using polymerized siRNA/thiolated glycol chitosan nanoparticles for
rheumatoid arthritis. Mol Ther. 22:397–408. 2014.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Tanikella AS, Hardy MJ, Frahs SM, Cormier
AG, Gibbons KD, Fitzpatrick CK and Oxford JT: Emerging gene-editing
modalities for osteoarthritis. Int J Mol Sci.
21(6046)2020.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Nishimasu H, Shi X, Ishiguro S, Gao L,
Hirano S, Okazaki S, Noda T, Abudayyeh OO, Gootenberg JS, Mori H,
et al: Engineered CRISPR-Cas9 nuclease with expanded targeting
space. Science. 361:1259–1262. 2018.PubMed/NCBI View Article : Google Scholar
|