1
|
Ma Q, Li R, Wang L, Yin P, Wang Y, Yan C,
Ren Y, Qian Z, Vaughn MG, McMillin SE, et al: Temporal trend and
attributable risk factors of stroke burden in China, 1990-2019: An
analysis for the global burden of disease study 2019. Lancet Public
Health. 6:e897–e906. 2021.PubMed/NCBI View Article : Google Scholar
|
2
|
Grysiewicz RA, Thomas K and Pandey DK:
Epidemiology of ischemic and hemorrhagic stroke: incidence,
prevalence, mortality, and risk factors. Neurol Clin. 26:871–895.
2008.PubMed/NCBI View Article : Google Scholar
|
3
|
Owens B: Stroke. Nature.
510(S1)2014.PubMed/NCBI View
Article : Google Scholar
|
4
|
Pan J, Konstas AA, Bateman B, Ortolano GA
and Pile-Spellman J: Reperfusion injury following cerebral
ischemia: Pathophysiology, MR imaging, and potential therapies.
Neuroradiology. 49:93–102. 2007.PubMed/NCBI View Article : Google Scholar
|
5
|
Huang L, Chen C, Zhang X, Li X, Chen Z,
Yang C, Liang X, Zhu G and Xu Z: Neuroprotective effect of curcumin
against cerebral ischemia-reperfusion via mediating autophagy and
inflammation. J Mol Neurosci. 64:129–139. 2018.PubMed/NCBI View Article : Google Scholar
|
6
|
Wang H, Chen S, Zhang Y, Xu H and Sun H:
Electroacupuncture ameliorates neuronal injury by
Pink1/Parkin-mediated mitophagy clearance in cerebral
ischemia-reperfusion. Nitric Oxide. 91:23–34. 2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Yang J, Chen M, Cao RY, Li Q and Zhu F:
The role of circular RNAs in cerebral ischemic diseases: Ischemic
stroke and cerebral ischemia/reperfusion injury. Adv Exp Med Biol.
1087:309–325. 2018.PubMed/NCBI View Article : Google Scholar
|
8
|
Moussaddy A, Demchuk AM and Hill MD:
Thrombolytic therapies for ischemic stroke: Triumphs and future
challenges. Neuropharmacology. 134:272–279. 2018.PubMed/NCBI View Article : Google Scholar
|
9
|
Gobin YP, Starkman S, Duckwiler GR,
Grobelny T, Kidwell CS, Jahan R, Pile-Spellman J, Segal A, Vinuela
F and Saver JL: MERCI 1: A phase 1 study of mechanical embolus
removal in cerebral ischemia. Stroke. 35:2848–2854. 2004.PubMed/NCBI View Article : Google Scholar
|
10
|
Zhang CL, Wang C, Yan WJ, Gao R, Li YH and
Zhou XH: Knockdown of TNFAIP1 inhibits growth and induces apoptosis
in osteosarcoma cells through inhibition of the nuclear factor-κB
pathway. Oncol Rep. 32:1149–1155. 2014.PubMed/NCBI View Article : Google Scholar
|
11
|
Zhao Y, Li S, Xia N, Shi Y and Zhao CM:
Effects of XIST/miR-137 axis on neuropathic pain by targeting
TNFAIP1 in a rat model. J Cell Physiol. 233:4307–4316.
2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Yang L, Liu N, Hu X, Zhang W, Wang T, Li
H, Zhang B, Xiang S, Zhou J and Zhang J: CK2 phosphorylates TNFAIP1
to affect its subcellular localization and interaction with PCNA.
Mol Biol Rep. 37:2967–2973. 2010.PubMed/NCBI View Article : Google Scholar
|
13
|
Liu N, Yu Z, Xun Y, Li M, Peng X, Xiao Y,
Hu X, Sun Y, Yang M, Gan S, et al: TNFAIP1 contributes to the
neurotoxicity induced by Aβ25-35 in Neuro2a cells. BMC Neurosci.
17(51)2016.PubMed/NCBI View Article : Google Scholar
|
14
|
Gladwyn-Ng IE, Li SS, Qu Z, Davis JM, Ngo
L, Haas M, Singer J and Heng JI: Bacurd2 is a novel interacting
partner to Rnd2 which controls radial migration within the
developing mammalian cerebral cortex. Neural Dev.
10(9)2015.PubMed/NCBI View Article : Google Scholar
|
15
|
Wen L, Yang QH, Ma XL, Li T, Xiao S and
Sun CF: Inhibition of TNFAIP1 ameliorates the oxidative stress and
inflammatory injury in myocardial ischemia/reperfusion injury
through modulation of Akt/GSK-3β/Nrf2 pathway. Int Immunopharmacol.
99(107993)2021.PubMed/NCBI View Article : Google Scholar
|
16
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
17
|
Zhao J, Wang H, Dong L, Sun S and Li L:
miRNA-20b inhibits cerebral ischemia-induced inflammation through
targeting NLRP3. Int J Mol Med. 43:1167–1178. 2019.PubMed/NCBI View Article : Google Scholar
|
18
|
Pei H, Song X, Peng C, Tan Y, Li Y, Li X,
Ma S, Wang Q, Huang R, Yang D, et al: TNF-α inhibitor protects
against myocardial ischemia/reperfusion injury via Notch1-mediated
suppression of oxidative/nitrative stress. Free Radic Biol Med.
82:114–121. 2015.PubMed/NCBI View Article : Google Scholar
|
19
|
Hao MQ, Xie LJ, Leng W and Xue RW: Trim47
is a critical regulator of cerebral ischemia-reperfusion injury
through regulating apoptosis and inflammation. Biochem Biophys Res
Commun. 515:651–657. 2019.PubMed/NCBI View Article : Google Scholar
|
20
|
Qin H, Tan W, Zhang Z, Bao L, Shen H, Wang
F, Xu F and Wang Z: 15d-prostaglandin J2 protects cortical neurons
against oxygen-glucose deprivation/reoxygenation injury:
Involvement of inhibiting autophagy through upregulation of Bcl-2.
Cell Mol Neurobiol. 35:303–312. 2015.PubMed/NCBI View Article : Google Scholar
|
21
|
Liu Y, Qu X, Yan M, Li D and Zou R: Tricin
attenuates cerebral ischemia/reperfusion injury through inhibiting
nerve cell autophagy, apoptosis and inflammation by regulating the
PI3K/Akt pathway. Hum Exp Toxicol.
41(9603271221125928)2022.PubMed/NCBI View Article : Google Scholar
|
22
|
Wolf FW, Marks RM, Sarma V, Byers MG, Katz
RW, Shows TB and Dixit VM: Characterization of a novel tumor
necrosis factor-alpha-induced endothelial primary response gene. J
Biol Chem. 267:1317–1326. 1992.PubMed/NCBI
|
23
|
Liu Y, Sun H and Sun Y: LncRNA p21,
downregulating miR-181b, aggravates neuropathic pain by
upregulating Tnfaip1 and inhibit the AKT/CREB axis. Brain Res Bull.
171:150–161. 2021.PubMed/NCBI View Article : Google Scholar
|
24
|
Xiao Y, Li Y, Zhang H, Yang L, Jiang Y,
Wei C, Feng X, Xun Y, Yuan S, Xiang S and Liu N: TNFAIP1 is
upregulated in APP/PS1 mice and promotes apoptosis in SH-SY5Y cells
by binding to RhoB. J Mol Neurosci. 71:1221–1233. 2021.PubMed/NCBI View Article : Google Scholar
|
25
|
Yi J, Zhu M, Qiu F, Zhou Y, Shu P, Liu N,
Wei C and Xiang S: TNFAIP1 mediates formaldehyde-induced
neurotoxicity by inhibiting the Akt/CREB pathway in N2a cells.
Neurotox Res. 38:184–198. 2020.PubMed/NCBI View Article : Google Scholar
|
26
|
Qiu F, Zhou Y, Deng Y, Yi J, Gong M, Liu
N, Wei C and Xiang S: Knockdown of TNFAIP1 prevents
di-(2-ethylhexyl) phthalate-induced neurotoxicity by activating
CREB pathway. Chemosphere. 241(125114)2020.PubMed/NCBI View Article : Google Scholar
|
27
|
Tang X, Tangkham T, Aljahdali B, Lee S, Su
M and Dibart S: The role of TNF-α induced protein 1 in the
activation of pro-apoptotic proteins. Hum Cell. 34:1123–1129.
2021.PubMed/NCBI View Article : Google Scholar
|
28
|
Aljahdali BH: Regulation of TNF-α gene
expression by TNFAIP1 as an activator or suppressor in response to
lipopolysaccharide (unpublished PhD thesis). Boston University,
2019.
|
29
|
Xiao C, Xia ML, Wang J, Zhou XR, Lou YY,
Tang LH, Zhang FJ, Yang JT and Qian LB: Luteolin attenuates cardiac
ischemia/reperfusion injury in diabetic rats by modulating Nrf2
antioxidative function. Oxid Med Cell Longev.
2019(2719252)2019.PubMed/NCBI View Article : Google Scholar
|
30
|
He M, Pan H, Chang RC, So KF, Brecha NC
and Pu M: Activation of the Nrf2/HO-1 antioxidant pathway
contributes to the protective effects of Lycium barbarum
polysaccharides in the rodent retina after
ischemia-reperfusion-induced damage. PLoS One.
9(e84800)2014.PubMed/NCBI View Article : Google Scholar
|
31
|
Zhao HD, Zhang F, Shen G, Li YB, Li YH,
Jing HR, Ma LF, Yao JH and Tian XF: Sulforaphane protects liver
injury induced by intestinal ischemia reperfusion through Nrf2-ARE
pathway. World J Gastroenterol. 16:3002–3010. 2010.PubMed/NCBI View Article : Google Scholar
|
32
|
Wei Y, Gong J, Yoshida T, Eberhart CG, Xu
Z, Kombairaju P, Sporn MB, Handa JT and Duh EJ: Nrf2 has a
protective role against neuronal and capillary degeneration in
retinal ischemia-reperfusion injury. Free Radic Biol Med.
51:216–224. 2011.PubMed/NCBI View Article : Google Scholar
|
33
|
Dodson M, Castro-Portuguez R and Zhang DD:
NRF2 plays a critical role in mitigating lipid peroxidation and
ferroptosis. Redox Biol. 23(101107)2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Yuan Y, Zhai Y, Chen J, Xu X and Wang H:
Kaempferol ameliorates oxygen-glucose
deprivation/reoxygenation-induced neuronal ferroptosis by
activating Nrf2/SLC7A11/GPX4 axis. Biomolecules.
11(923)2021.PubMed/NCBI View Article : Google Scholar
|