Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
January-2023 Volume 25 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2023 Volume 25 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of ion channels in the mechanism of proteinuria (Review)

  • Authors:
    • Jie Liu
    • Xuewei Li
    • Ning Xu
    • Huirong Han
    • Xiangling Li
  • View Affiliations / Copyright

    Affiliations: Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China, Department of Rheumatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China, Department of Anesthesiology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 27
    |
    Published online on: November 24, 2022
       https://doi.org/10.3892/etm.2022.11726
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Proteinuria is a common clinical manifestation of kidney diseases, such as glomerulonephritis, nephrotic syndrome, immunoglobulin A nephropathy and diabetic nephropathy. Therefore, proteinuria is considered to be a risk factor for renal dysfunction. Furthermore, proteinuria is also significantly associated with the progression of kidney diseases and increased mortality. Its occurrence is closely associated with damage to the structure of the glomerular filtration membrane. An impaired glomerular filtration membrane can affect the selective filtration function of the kidneys; therefore, several macromolecular substances, such as proteins, may pass through the filtration membrane and promote the manifestation of proteinuria. It has been reported that ion channels play a significant role in the mechanisms underlying proteinuria. Ion channel mutations or other dysfunctions have been implicated in several diseases, therefore ion channels could be used as major therapeutic targets. The mechanisms underlying the action of ion channels and ion transporters in proteinuria have been overlooked in the literature, despite their importance in identifying novel targets for treating proteinuria and delaying the progression of kidney diseases. The current review article focused on the four key ion channel groups, namely Na+, Ca2+, Cl‑ and K+ ion channels and the associated ion transporters.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Kondratskyi A, Kondratska K, Skryma R, Klionsky DJ and Prevarskaya N: Ion channels in the regulation of autophagy. Autophagy. 14:3–21. 2018.PubMed/NCBI View Article : Google Scholar

2 

Alexander SPH, Mathie A, Peters JA, Veale EL, Striessnig J, Kelly E, Armstrong JF, Faccenda E, Harding SD, Pawson AJ, et al: The concise guide to pharmacology 2019/20: Ion channels. Br J Pharmacol. 176 (Suppl 1):S142–S228. 2019.PubMed/NCBI View Article : Google Scholar

3 

Roux B: Ion channels and ion selectivity. Essays Biochem. 61:201–209. 2017.PubMed/NCBI View Article : Google Scholar

4 

Cheng J, Wen J, Wang N, Wang C, Xu Q and Yang Y: Ion channels and vascular diseases. Arterioscler Thromb Vasc Biol. 39:e146–e156. 2019.PubMed/NCBI View Article : Google Scholar

5 

Anderson KJ, Cormier RT and Scott PM: Role of ion channels in gastrointestinal cancer. World J Gastroenterol. 25:5732–5772. 2019.PubMed/NCBI View Article : Google Scholar

6 

Armijo JA, Shushtarian M, Valdizan EM, Cuadrado A, de las Cuevas I and Adín J: Ion channels and epilepsy. Curr Pharm Des. 11:1975–2003. 2005.PubMed/NCBI View Article : Google Scholar

7 

Moiseenkova-Bell V, Delemotte L and Minor DL Jr: Ion channels: Intersection of structure, function, and pharmacology. J Mol Biol. 433(167102)2021.PubMed/NCBI View Article : Google Scholar

8 

Wang L and Yule DI: Differential regulation of ion channels function by proteolysis. Biochim Biophys Acta Mol Cell Res. 1865:1698–1706. 2018.PubMed/NCBI View Article : Google Scholar

9 

Catterall WA, Lenaeus MJ and Gamal El-Din TM: Structure and pharmacology of voltage-gated sodium and calcium channels. Annu Rev Pharmacol Toxicol. 60:133–154. 2020.PubMed/NCBI View Article : Google Scholar

10 

De Logu F and Geppetti P: Ion channel pharmacology for pain modulation. Handb Exp Pharmacol. 260:161–186. 2019.PubMed/NCBI View Article : Google Scholar

11 

Pallet N, Bastard JP, Claeyssens S, Fellahi S, Delanaye P, Piéroni L and Caussé E: groupe de travail SFBC, SFNDT, SNP. Proteinuria typing: How, why and for whom? Ann Biol Clin (Paris). 77:13–25. 2019.PubMed/NCBI View Article : Google Scholar

12 

Barton M: Reversal of proteinuric renal disease and the emerging role of endothelin. Nat Clin Pract Nephrol. 4:490–501. 2008.PubMed/NCBI View Article : Google Scholar

13 

Nowak A and Serra AL: Assessment of proteinuria. Praxis (Bern 1994). 102:797–802. 2013.PubMed/NCBI View Article : Google Scholar : (In German).

14 

D'Amico G and Bazzi C: Pathophysiology of proteinuria. Kidney Int. 63:809–825. 2003.PubMed/NCBI View Article : Google Scholar

15 

Menzel S and Moeller MJ: Role of the podocyte in proteinuria. Pediatr Nephrol. 26:1775–1780. 2011.PubMed/NCBI View Article : Google Scholar

16 

Miner JH: Glomerular basement membrane composition and the filtration barrier. Pediatr Nephrol. 26:1413–1417. 2011.PubMed/NCBI View Article : Google Scholar

17 

Kallen RG, Cohen SA and Barchi RL: Structure, function and expression of voltage-dependent sodium channels. Mol Neurobiol. 7:383–428. 1993.PubMed/NCBI View Article : Google Scholar

18 

Lee CH and Ruben PC: Interaction between voltage-gated sodium channels and the neurotoxin, tetrodotoxin. Channels (Austin). 2:407–412. 2008.PubMed/NCBI View Article : Google Scholar

19 

Hanukoglu I and Hanukoglu A: Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene. 579:95–132. 2016.PubMed/NCBI View Article : Google Scholar

20 

Brunklaus A, Ellis R, Reavey E, Semsarian C and Zuberi SM: Genotype phenotype associations across the voltage-gated sodium channel family. J Med Genet. 51:650–658. 2014.PubMed/NCBI View Article : Google Scholar

21 

Soundararajan R, Pearce D, Hughey RP and Kleyman TR: Role of epithelial sodium channels and their regulators in hypertension. J Biol Chem. 285:30363–30369. 2010.PubMed/NCBI View Article : Google Scholar

22 

Büsst CJ: Blood pressure regulation via the epithelial sodium channel: From gene to kidney and beyond. Clin Exp Pharmacol Physiol. 40:495–503. 2013.PubMed/NCBI View Article : Google Scholar

23 

Zachar RM, Skjødt K, Marcussen N, Walter S, Toft A, Nielsen MR, Jensen BL and Svenningsen P: The epithelial sodium channel γ-subunit is processed proteolytically in human kidney. J Am Soc Nephrol. 26:95–106. 2015.PubMed/NCBI View Article : Google Scholar

24 

Svenningsen P, Friis UG, Bistrup C, Buhl KB, Jensen BL and Skøtt O: Physiological regulation of epithelial sodium channel by proteolysis. Curr Opin Nephrol Hypertens. 20:529–533. 2011.PubMed/NCBI View Article : Google Scholar

25 

Ware AW, Rasulov SR, Cheung TT, Lott JS and McDonald FJ: Membrane trafficking pathways regulating the epithelial Na+ channel. Am J Physiol Renal Physiol. 318:F1–F13. 2020.PubMed/NCBI View Article : Google Scholar

26 

Bockenhauer D: Over- or underfill: Not all nephrotic states are created equal. Pediatr Nephrol. 28:1153–1156. 2013.PubMed/NCBI View Article : Google Scholar

27 

Larionov A, Dahlke E, Kunke M, Zanon Rodriguez L, Schiessl IM, Magnin JL, Kern U, Alli AA, Mollet G, Schilling O, et al: Cathepsin B increases ENaC activity leading to hypertension early in nephrotic syndrome. J Cell Mol Med. 23:6543–6553. 2019.PubMed/NCBI View Article : Google Scholar

28 

Fila M, Sassi A, Brideau G, Cheval L, Morla L, Houillier P, Walter C, Gennaoui M, Collignon L, Keck M, et al: A variant of ASIC2 mediates sodium retention in nephrotic syndrome. JCI Insight. 6(e148588)2021.PubMed/NCBI View Article : Google Scholar

29 

Svenningsen P, Skøtt O and Jensen BL: Proteinuric diseases with sodium retention: Is plasmin the link? Clin Exp Pharmacol Physiol. 39:117–124. 2012.PubMed/NCBI View Article : Google Scholar

30 

Hinrichs GR, Jensen BL and Svenningsen P: Mechanisms of sodium retention in nephrotic syndrome. Curr Opin Nephrol Hypertens. 29:207–212. 2020.PubMed/NCBI View Article : Google Scholar

31 

Passero CJ, Hughey RP and Kleyman TR: New role for plasmin in sodium homeostasis. Curr Opin Nephrol Hypertens. 19:13–19. 2010.PubMed/NCBI View Article : Google Scholar

32 

Briet M and Schiffrin EL: Aldosterone: Effects on the kidney and cardiovascular system. Nat Rev Nephrol. 6:261–273. 2010.PubMed/NCBI View Article : Google Scholar

33 

Shapovalov G, Skryma R and Prevarskaya N: Calcium channels and prostate cancer. Recent Pat Anticancer Drug Discov. 8:18–26. 2013.PubMed/NCBI View Article : Google Scholar

34 

Prevarskaya N, Ouadid-Ahidouch H, Skryma R and Shuba Y: Remodelling of Ca2+ transport in cancer: How it contributes to cancer hallmarks? Philos Trans R Soc Lond B Biol Sci. 369(20130097)2014.PubMed/NCBI View Article : Google Scholar

35 

Mignen O, Thompson JL and Shuttleworth TJ: Ca2+ selectivity and fatty acid specificity of the noncapacitative, arachidonate-regulated Ca2+ (ARC) channels. J Biol Chem. 278:10174–10181. 2003.PubMed/NCBI View Article : Google Scholar

36 

Lewis RS: Store-operated calcium channels: From function to structure and back again. Cold Spring Harb Perspect Biol. 12(a035055)2020.PubMed/NCBI View Article : Google Scholar

37 

Zhou Y and Greka A: Calcium-permeable ion channels in the kidney. Am J Physiol Renal Physiol. 310:F1157–F1167. 2016.PubMed/NCBI View Article : Google Scholar

38 

Patergnani S, Danese A, Bouhamida E, Aguiari G, Previati M, Pinton P and Giorgi C: Various aspects of calcium signaling in the regulation of apoptosis, autophagy, cell proliferation, and cancer. Int J Mol Sci. 21(8323)2020.PubMed/NCBI View Article : Google Scholar

39 

Lou J, Yang X, Shan W, Jin Z, Ding J, Hu Y, Liao Q, Du Q, Xie R and Xu J: Effects of calcium-permeable ion channels on various digestive diseases in the regulation of autophagy (review). Mol Med Rep. 24(680)2021.PubMed/NCBI View Article : Google Scholar

40 

Perez-Reyes E: Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev. 83:117–161. 2003.PubMed/NCBI View Article : Google Scholar

41 

Zamponi GW, Striessnig J, Koschak A and Dolphin AC: The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev. 67:821–870. 2015.PubMed/NCBI View Article : Google Scholar

42 

Catterall WA: Voltage-gated calcium channels. Cold Spring Harb Perspect Biol. 3(a003947)2011.PubMed/NCBI View Article : Google Scholar

43 

Sairaman A, Cardoso FC, Bispat A, Lewis RJ, Duggan PJ and Tuck KL: Synthesis and evaluation of aminobenzothiazoles as blockers of N- and T-type calcium channels. Bioorg Med Chem. 26:3046–3059. 2018.PubMed/NCBI View Article : Google Scholar

44 

Tsunemi T, Saegusa H, Ishikawa K, Nagayama S, Murakoshi T, Mizusawa H and Tanabe T: Novel Cav2.1 splice variants isolated from Purkinje cells do not generate P-type Ca2+ current. J Biol Chem. 277:7214–7221. 2002.PubMed/NCBI View Article : Google Scholar

45 

Yamaguchi S, Okamura Y, Nagao T and Adachi-Akahane S: Serine residue in the IIIS5-S6 linker of the L-type Ca2+ channel alpha 1C subunit is the critical determinant of the action of dihydropyridine Ca2+ channel agonists. J Biol Chem. 275:41504–41511. 2000.PubMed/NCBI View Article : Google Scholar

46 

Hansen PB: Functional and pharmacological consequences of the distribution of voltage-gated calcium channels in the renal blood vessels. Acta Physiol (Oxf). 207:690–699. 2013.PubMed/NCBI View Article : Google Scholar

47 

Ohta M, Sugawara S, Sato N, Kuriyama C, Hoshino C and Kikuchi A: Effects of benidipine, a long-acting T-type calcium channel blocker, on home blood pressure and renal function in patients with essential hypertension: A retrospective, ‘real-world’ comparison with amlodipine. Clin Drug Investig. 29:739–746. 2009.PubMed/NCBI View Article : Google Scholar

48 

Mishima K, Maeshima A, Miya M, Sakurai N, Ikeuchi H, Hiromura K and Nojima Y: Involvement of N-type Ca(2+) channels in the fibrotic process of the kidney in rats. Am J Physiol Renal Physiol. 304:F665–F673. 2013.PubMed/NCBI View Article : Google Scholar

49 

Tamargo J and Ruilope LM: Investigational calcium channel blockers for the treatment of hypertension. Expert Opin Investig Drugs. 25:1295–1309. 2016.PubMed/NCBI View Article : Google Scholar

50 

Khanna R, Yu J, Yang X, Moutal A, Chefdeville A, Gokhale V, Shuja Z, Chew LA, Bellampalli SS, Luo S, et al: Targeting the CaVα-CaVβ interaction yields an antagonist of the N-type CaV2.2 channel with broad antinociceptive efficacy. Pain. 160:1644–1661. 2019.PubMed/NCBI View Article : Google Scholar

51 

Ando K: L-/N-type calcium channel blockers and proteinuria. Curr Hypertens Rev. 9:210–218. 2013.PubMed/NCBI View Article : Google Scholar

52 

Lei B, Nakano D, Fujisawa Y, Liu Y, Hitomi H, Kobori H, Mori H, Masaki T, Asanuma K, Tomino Y and Nishiyama A: N-type calcium channel inhibition with cilnidipine elicits glomerular podocyte protection independent of sympathetic nerve inhibition. J Pharmacol Sci. 119:359–367. 2012.PubMed/NCBI View Article : Google Scholar

53 

Fan YY, Kohno M, Nakano D, Ohsaki H, Kobori H, Suwarni D, Ohashi N, Hitomi H, Asanuma K, Noma T, et al: Cilnidipine suppresses podocyte injury and proteinuria in metabolic syndrome rats: Possible involvement of N-type calcium channel in podocyte. J Hypertens. 28:1034–1043. 2010.PubMed/NCBI View Article : Google Scholar

54 

Tamargo J: New calcium channel blockers for the treatment of hypertension. Hipertens Riesgo Vasc. 34 (Suppl 2):S5–S8. 2017.PubMed/NCBI View Article : Google Scholar : (In Spanish).

55 

Hansen PB, Poulsen CB, Walter S, Marcussen N, Cribbs LL, Skøtt O and Jensen BL: Functional importance of L- and P/Q-type voltage-gated calcium channels in human renal vasculature. Hypertension. 58:464–470. 2011.PubMed/NCBI View Article : Google Scholar

56 

Nilius B and Owsianik G: The transient receptor potential family of ion channels. Genome Biol. 12(218)2011.PubMed/NCBI View Article : Google Scholar

57 

Ramsey IS, Delling M and Clapham DE: An introduction to TRP channels. Annu Rev Physiol. 68:619–647. 2006.PubMed/NCBI View Article : Google Scholar

58 

Montell C and Rubin GM: Molecular characterization of the Drosophila trp locus: A putative integral membrane protein required for phototransduction. Neuron. 2:1313–1323. 1989.PubMed/NCBI View Article : Google Scholar

59 

Gees M, Owsianik G, Nilius B and Voets T: TRP channels. Compr Physiol. 2:563–608. 2012.PubMed/NCBI View Article : Google Scholar

60 

Caterina MJ and Pang Z: TRP channels in skin biology and pathophysiology. Pharmaceuticals (Basel). 9(77)2016.PubMed/NCBI View Article : Google Scholar

61 

Li H: TRP channel classification. Adv Exp Med Biol. 976:1–8. 2017.PubMed/NCBI View Article : Google Scholar

62 

Zhao Y, McVeigh BM and Moiseenkova-Bell VY: Structural pharmacology of TRP channels. J Mol Biol. 433(166914)2021.PubMed/NCBI View Article : Google Scholar

63 

Nilius B: TRP channels in disease. Biochim Biophys Acta. 1772:805–812. 2007.PubMed/NCBI View Article : Google Scholar

64 

Moran MM: TRP channels as potential drug targets. Annu Rev Pharmacol Toxicol. 58:309–330. 2018.PubMed/NCBI View Article : Google Scholar

65 

Koivisto AP, Belvisi MG, Gaudet R and Szallasi A: Advances in TRP channel drug discovery: From target validation to clinical studies. Nat Rev Drug Discov. 21:41–59. 2022.PubMed/NCBI View Article : Google Scholar

66 

Feng YL, Chen H, Chen DQ, Vaziri ND, Su W, Ma SX, Shang YQ, Mao JR, Yu XY, Zhang L, et al: Activated NF-κB/Nrf2 and Wnt/β-catenin pathways are associated with lipid metabolism in CKD patients with microalbuminuria and macroalbuminuria. Biochim Biophys Acta Mol Basis Dis. 1865:2317–2332. 2019.PubMed/NCBI View Article : Google Scholar

67 

Voets T, Vriens J and Vennekens R: Targeting TRP channels-valuable alternatives to combat pain, lower urinary tract disorders, and type 2 diabetes? Trends Pharmacol Sci. 40:669–683. 2019.PubMed/NCBI View Article : Google Scholar

68 

Wang Q, Tian X, Wang Y, Wang Y, Li J, Zhao T and Li P: Role of transient receptor potential canonical channel 6 (TRPC6) in diabetic kidney disease by regulating podocyte actin cytoskeleton rearrangement. J Diabetes Res. 2020(6897390)2020.PubMed/NCBI View Article : Google Scholar

69 

Bacsa B, Tiapko O, Stockner T and Groschner K: Mechanisms and significance of Ca2+ entry through TRPC channels. Curr Opin Physiol. 17:25–33. 2020.PubMed/NCBI View Article : Google Scholar

70 

Möller CC, Flesche J and Reiser J: Sensitizing the slit diaphragm with TRPC6 ion channels. J Am Soc Nephrol. 20:950–953. 2009.PubMed/NCBI View Article : Google Scholar

71 

Möller CC, Wei C, Altintas MM, Li J, Greka A, Ohse T, Pippin JW, Rastaldi MP, Wawersik S, Schiavi S, et al: Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. J Am Soc Nephrol. 18:29–36. 2007.PubMed/NCBI View Article : Google Scholar

72 

Schaldecker T, Kim S, Tarabanis C, Tian D, Hakroush S, Castonguay P, Ahn W, Wallentin H, Heid H, Hopkins CR, et al: Inhibition of the TRPC5 ion channel protects the kidney filter. J Clin Invest. 123:5298–5309. 2013.PubMed/NCBI View Article : Google Scholar

73 

Tian D, Jacobo SM, Billing D, Rozkalne A, Gage SD, Anagnostou T, Pavenstädt H, Hsu HH, Schlondorff J, Ramos A and Greka A: Antagonistic regulation of actin dynamics and cell motility by TRPC5 and TRPC6 channels. Sci Signal. 3(ra77)2010.PubMed/NCBI View Article : Google Scholar

74 

Shalygin A, Shuyskiy LS, Bohovyk R, Palygin O, Staruschenko A and Kaznacheyeva E: Cytoskeleton rearrangements modulate TRPC6 channel activity in podocytes. Int J Mol Sci. 22(4396)2021.PubMed/NCBI View Article : Google Scholar

75 

Schlondorff J: TRPC6 and kidney disease: Sclerosing more than just glomeruli? Kidney Int. 91:773–775. 2017.PubMed/NCBI View Article : Google Scholar

76 

Schlöndorff JS and Pollak MR: TRPC6 in glomerular health and disease: What we know and what we believe. Semin Cell Dev Biol. 17:667–674. 2006.PubMed/NCBI View Article : Google Scholar

77 

Kim EY, Yazdizadeh Shotorbani P and Dryer SE: Trpc6 inactivation confers protection in a model of severe nephrosis in rats. J Mol Med (Berl). 96:631–644. 2018.PubMed/NCBI View Article : Google Scholar

78 

Hall G, Wang L and Spurney RF: TRPC channels in proteinuric kidney diseases. Cells. 9(44)2019.PubMed/NCBI View Article : Google Scholar

79 

van der Wijst J and Bindels RJM: Renal physiology: TRPC5 inhibition to treat progressive kidney disease. Nat Rev Nephrol. 14:145–146. 2018.PubMed/NCBI View Article : Google Scholar

80 

Walsh L, Reilly JF, Cornwall C, Gaich GA, Gipson DS, Heerspink HJL, Johnson L, Trachtman H, Tuttle KR, Farag YMK, et al: Safety and efficacy of GFB-887, a TRPC5 channel inhibitor, in patients with focal segmental glomerulosclerosis, treatment-resistant minimal change disease, or diabetic nephropathy: TRACTION-2 trial design. Kidney Int Rep. 6:2575–2584. 2021.PubMed/NCBI View Article : Google Scholar

81 

Reiser J, Polu KR, Möller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, et al: TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet. 37:739–744. 2005.PubMed/NCBI View Article : Google Scholar

82 

Wiggins RC: The spectrum of podocytopathies: A unifying view of glomerular diseases. Kidney Int. 71:1205–1214. 2007.PubMed/NCBI View Article : Google Scholar

83 

Zhou Y, Castonguay P, Sidhom EH, Clark AR, Dvela-Levitt M, Kim S, Sieber J, Wieder N, Jung JY, Andreeva S, et al: A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science. 358:1332–1336. 2017.PubMed/NCBI View Article : Google Scholar

84 

Zhang H, Ding J, Fan Q and Liu S: TRPC6 up-regulation in Ang II-induced podocyte apoptosis might result from ERK activation and NF-kappaB translocation. Exp Biol Med (Maywood). 234:1029–1036. 2009.PubMed/NCBI View Article : Google Scholar

85 

Wang Z, Wei X, Zhang Y, Ma X, Li B, Zhang S, Du P, Zhang X and Yi F: NADPH oxidase-derived ROS contributes to upregulation of TRPC6 expression in puromycin aminonucleoside-induced podocyte injury. Cell Physiol Biochem. 24:619–626. 2009.PubMed/NCBI View Article : Google Scholar

86 

Kistler AD, Singh G, Altintas MM, Yu H, Fernandez IC, Gu C, Wilson C, Srivastava SK, Dietrich A, Walz K, et al: Transient receptor potential channel 6 (TRPC6) protects podocytes during complement-mediated glomerular disease. J Biol Chem. 288:36598–36609. 2013.PubMed/NCBI View Article : Google Scholar

87 

Zhou Y, Kim C, Pablo JLB, Zhang F, Jung JY, Xiao L, Bazua-Valenti S, Emani M, Hopkins CR, Weins A and Greka A: TRPC5 channel inhibition protects podocytes in puromycin-aminonucleoside induced nephrosis models. Front Med (Lausanne). 8(721865)2021.PubMed/NCBI View Article : Google Scholar

88 

Randhawa PK and Jaggi AS: TRPV4 channels: Physiological and pathological role in cardiovascular system. Basic Res Cardiol. 110(54)2015.PubMed/NCBI View Article : Google Scholar

89 

Everaerts W, Nilius B and Owsianik G: The vanilloid transient receptor potential channel TRPV4: From structure to disease. Prog Biophys Mol Biol. 103:2–17. 2010.PubMed/NCBI View Article : Google Scholar

90 

Kassmann M, Harteneck C, Zhu Z, Nürnberg B, Tepel M and Gollasch M: Transient receptor potential vanilloid 1 (TRPV1), TRPV4, and the kidney. Acta Physiol (Oxf). 207:546–564. 2013.PubMed/NCBI View Article : Google Scholar

91 

Mannaa M, Markó L, Balogh A, Vigolo E, N'diaye G, Kaßmann M, Michalick L, Weichelt U, Schmidt-Ott KM, Liedtke WB, et al: Transient receptor potential vanilloid 4 channel deficiency aggravates tubular damage after acute renal ischaemia reperfusion. Sci Rep. 8(4878)2018.PubMed/NCBI View Article : Google Scholar

92 

Karasawa T, Wang Q, Fu Y, Cohen DM and Steyger PS: TRPV4 enhances the cellular uptake of aminoglycoside antibiotics. J Cell Sci. 121:2871–2879. 2008.PubMed/NCBI View Article : Google Scholar

93 

Gualdani R, Seghers F, Yerna X, Schakman O, Tajeddine N, Achouri Y, Tissir F, Devuyst O and Gailly P: Mechanical activation of TRPV4 channels controls albumin reabsorption by proximal tubule cells. Sci Signal. 13(eabc6967)2020.PubMed/NCBI View Article : Google Scholar

94 

Duran C, Thompson CH, Xiao Q and Hartzell HC: Chloride channels: Often enigmatic, rarely predictable. Annu Rev Physiol. 72:95–121. 2010.PubMed/NCBI View Article : Google Scholar

95 

Xia J, Wang H, Li S, Wu Q, Sun L, Huang H and Zeng M: Ion channels or aquaporins as novel molecular targets in gastric cancer. Mol Cancer. 16(54)2017.PubMed/NCBI View Article : Google Scholar

96 

Gururaja Rao S, Ponnalagu D, Patel NJ and Singh H: Three decades of chloride intracellular channel proteins: From organelle to organ physiology. Curr Protoc Pharmacol. 80:11.21.1–11.21.17. 2018.PubMed/NCBI View Article : Google Scholar

97 

Berend K, van Hulsteijn LH and Gans RO: Chloride: The queen of electrolytes? Eur J Intern Med. 23:203–211. 2012.PubMed/NCBI View Article : Google Scholar

98 

Jentsch TJ, Stein V, Weinreich F and Zdebik AA: Molecular structure and physiological function of chloride channels. Physiol Rev. 82:503–568. 2002.PubMed/NCBI View Article : Google Scholar

99 

Suzuki M, Morita T and Iwamoto T: Diversity of Cl(-) channels. Cell Mol Life Sci. 63:12–24. 2006.PubMed/NCBI View Article : Google Scholar

100 

Scheel O, Zdebik AA, Lourdel S and Jentsch TJ: Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature. 436:424–427. 2005.PubMed/NCBI View Article : Google Scholar

101 

Uchida S: In vivo role of CLC chloride channels in the kidney. Am J Physiol Renal Physiol. 279:F802–F808. 2000.PubMed/NCBI View Article : Google Scholar

102 

Schriever AM, Friedrich T, Pusch M and Jentsch TJ: CLC chloride channels in Caenorhabditis elegans. J Biol Chem. 274:34238–34244. 1999.PubMed/NCBI View Article : Google Scholar

103 

Jentsch TJ and Pusch M: CLC chloride channels and transporters: Structure, function, physiology, and disease. Physiol Rev. 98:1493–1590. 2018.PubMed/NCBI View Article : Google Scholar

104 

Hryciw DH, Ekberg J, Pollock CA and Poronnik P: ClC-5: A chloride channel with multiple roles in renal tubular albumin uptake. Int J Biochem Cell Biol. 38:1036–1042. 2006.PubMed/NCBI View Article : Google Scholar

105 

Novarino G, Weinert S, Rickheit G and Jentsch TJ: Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis. Science. 328:1398–1401. 2010.PubMed/NCBI View Article : Google Scholar

106 

Devuyst O and Luciani A: Chloride transporters and receptor-mediated endocytosis in the renal proximal tubule. J Physiol. 593:4151–4164. 2015.PubMed/NCBI View Article : Google Scholar

107 

Günther W, Piwon N and Jentsch TJ: The ClC-5 chloride channel knock-out mouse-an animal model for Dent's disease. Pflugers Arch. 445:456–462. 2003.PubMed/NCBI View Article : Google Scholar

108 

Faria D, Rock JR, Romao AM, Schweda F, Bandulik S, Witzgall R, Schlatter E, Heitzmann D, Pavenstädt H, Herrmann E, et al: The calcium-activated chloride channel Anoctamin 1 contributes to the regulation of renal function. Kidney Int. 85:1369–1381. 2014.PubMed/NCBI View Article : Google Scholar

109 

Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, et al: TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature. 455:1210–1215. 2008.PubMed/NCBI View Article : Google Scholar

110 

González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D and Latorre R: K(+) channels: Function-structural overview. Compr Physiol. 2:2087–2149. 2012.PubMed/NCBI View Article : Google Scholar

111 

Sigworth FJ: Potassium channel mechanics. Neuron. 32:555–556. 2001.PubMed/NCBI View Article : Google Scholar

112 

Gulbis JM and Doyle DA: Potassium channel structures: Do they conform? Curr Opin Struct Biol. 14:440–446. 2004.PubMed/NCBI View Article : Google Scholar

113 

Kuang Q, Purhonen P and Hebert H: Structure of potassium channels. Cell Mol Life Sci. 72:3677–3693. 2015.PubMed/NCBI View Article : Google Scholar

114 

Noma A: ATP-regulated K+ channels in cardiac muscle. Nature. 305:147–148. 1983.PubMed/NCBI View Article : Google Scholar

115 

Ashcroft FM and Rorsman P: K(ATP) channels and islet hormone secretion: New insights and controversies. Nat Rev Endocrinol. 9:660–669. 2013.PubMed/NCBI View Article : Google Scholar

116 

Rorsman P, Ramracheya R, Rorsman NJ and Zhang Q: ATP-regulated potassium channels and voltage-gated calcium channels in pancreatic alpha and beta cells: Similar functions but reciprocal effects on secretion. Diabetologia. 57:1749–1761. 2014.PubMed/NCBI View Article : Google Scholar

117 

Tinker A, Aziz Q, Li Y and Specterman M: ATP-sensitive potassium channels and their physiological and pathophysiological roles. Compr Physiol. 8:1463–1511. 2018.PubMed/NCBI View Article : Google Scholar

118 

Cole WC, Chen TT and Clément-Chomienne O: Myogenic regulation of arterial diameter: Role of potassium channels with a focus on delayed rectifier potassium current. Can J Physiol Pharmacol. 83:755–765. 2005.PubMed/NCBI View Article : Google Scholar

119 

Jackson MB, Konnerth A and Augustine GJ: Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals. Proc Natl Acad Sci USA. 88:380–384. 1991.PubMed/NCBI View Article : Google Scholar

120 

Guéguinou M, Chantôme A, Fromont G, Bougnoux P, Vandier C and Potier-Cartereau M: KCa and Ca(2+) channels: The complex thought. Biochim Biophys Acta. 1843:2322–2333. 2014.PubMed/NCBI View Article : Google Scholar

121 

Sforna L, Megaro A, Pessia M, Franciolini F and Catacuzzeno L: Structure, gating and basic functions of the Ca2+-activated K channel of intermediate conductance. Curr Neuropharmacol. 16:608–617. 2018.PubMed/NCBI View Article : Google Scholar

122 

Walewska A, Kulawiak B, Szewczyk A and Koprowski P: Mechanosensitivity of mitochondrial large-conductance calcium-activated potassium channels. Biochim Biophys Acta Bioenerg. 1859:797–805. 2018.PubMed/NCBI View Article : Google Scholar

123 

Fezai M, Ahmed M, Hosseinzadeh Z and Lang F: Up-regulation of the large-conductance Ca2+-activated K+ channel by glycogen synthase kinase GSK3β. Cell Physiol Biochem. 39:1031–1039. 2016.PubMed/NCBI View Article : Google Scholar

124 

Giebisch G: Potassium channels and the kidney. Nephrologie. 21:223–228. 2000.PubMed/NCBI(In French).

125 

Sorensen CM, Braunstein TH, Holstein-Rathlou NH and Salomonsson M: Role of vascular potassium channels in the regulation of renal hemodynamics. Am J Physiol Renal Physiol. 302:F505–F518. 2012.PubMed/NCBI View Article : Google Scholar

126 

Tamura Y, Tanabe K, Kitagawa W, Uchida S, Schreiner GF, Johnson RJ and Nakagawa T: Nicorandil, a K(atp) channel opener, alleviates chronic renal injury by targeting podocytes and macrophages. Am J Physiol Renal Physiol. 303:F339–F349. 2012.PubMed/NCBI View Article : Google Scholar

127 

Snijder PM, Frenay AR, Koning AM, Bachtler M, Pasch A, Kwakernaak AJ, van den Berg E, Bos EM, Hillebrands JL, Navis G, et al: Sodium thiosulfate attenuates angiotensin II-induced hypertension, proteinuria and renal damage. Nitric Oxide. 42:87–98. 2014.PubMed/NCBI View Article : Google Scholar

128 

Hyodo T, Oda T, Kikuchi Y, Higashi K, Kushiyama T, Yamamoto K, Yamada M, Suzuki S, Hokari R, Kinoshita M, et al: Voltage-gated potassium channel Kv1.3 blocker as a potential treatment for rat anti-glomerular basement membrane glomerulonephritis. Am J Physiol Renal Physiol. 299:F1258–F1269. 2010.PubMed/NCBI View Article : Google Scholar

129 

Huang C, Zhang L, Shi Y, Yi H, Zhao Y, Chen J, Pollock CA and Chen XM: The KCa3.1 blocker TRAM34 reverses renal damage in a mouse model of established diabetic nephropathy. PLoS One. 13(e0192800)2018.PubMed/NCBI View Article : Google Scholar

130 

Piwkowska A, Rogacka D, Audzeyenka I, Kasztan M, Angielski S and Jankowski M: Insulin increases glomerular filtration barrier permeability through PKGIα-dependent mobilization of BKCa channels in cultured rat podocytes. Biochim Biophys Acta. 1852:1599–1609. 2015.PubMed/NCBI View Article : Google Scholar

131 

Neverisky DL and Abbott GW: Ion channel-transporter interactions. Crit Rev Biochem Mol Biol. 51:257–267. 2015.PubMed/NCBI View Article : Google Scholar

132 

Veiras LC, McFarlin BE, Ralph DL, Buncha V, Prescott J, Shirvani BS, McDonough JC, Ha D, Giani J, Gurley SB, et al: Electrolyte and transporter responses to angiotensin II induced hypertension in female and male rats and mice. Acta Physiol (Oxf). 229(e13448)2020.PubMed/NCBI View Article : Google Scholar

133 

Orlov SN, Adragna NC, Adarichev VA and Hamet P: Genetic and biochemical determinants of abnormal monovalent ion transport in primary hypertension. Am J Physiol. 276:C511–C536. 1999.PubMed/NCBI View Article : Google Scholar

134 

Graves SW: Sodium regulation, sodium pump function and sodium pump inhibitors in uncomplicated pregnancy and preeclampsia. Front Biosci. 12:2438–2446. 2007.PubMed/NCBI View Article : Google Scholar

135 

Devuyst O, Jouret F, Auzanneau C and Courtoy PJ: Chloride channels and endocytosis: New insights from Dent's disease and ClC-5 knockout mice. Nephron Physiol. 99:p69–p73. 2005.PubMed/NCBI View Article : Google Scholar

136 

Shipman KE and Weisz OA: Making a dent in dent disease. Function (Oxf). 1(zqaa017)2020.PubMed/NCBI View Article : Google Scholar

137 

Anglani F, Gianesello L, Beara-Lasic L and Lieske J: Dent disease: A window into calcium and phosphate transport. J Cell Mol Med. 23:7132–7142. 2019.PubMed/NCBI View Article : Google Scholar

138 

Svenningsen P, Friis UG, Versland JB, Buhl KB, Møller Frederiksen B, Andersen H, Zachar RM, Bistrup C, Skøtt O, Jørgensen JS, et al: Mechanisms of renal NaCl retention in proteinuric disease. Acta Physiol (Oxf). 207:536–545. 2013.PubMed/NCBI View Article : Google Scholar

139 

Gadau J, Peters H, Kastner C, Kühn H, Nieminen-Kelhä M, Khadzhynov D, Krämer S, Castrop H, Bachmann S and Theilig F: Mechanisms of tubular volume retention in immune-mediated glomerulonephritis. Kidney Int. 75:699–710. 2009.PubMed/NCBI View Article : Google Scholar

140 

de Seigneux S, Wilhelm-Bals A and Courbebaisse M: On the relationship between proteinuria and plasma phosphate. Swiss Med Wkly. 147(w14509)2017.PubMed/NCBI View Article : Google Scholar

141 

Shimizu MH, Volpini RA, de Bragança AC, Campos R, Canale D, Sanches TR, Andrade L and Seguro AC: N-acetylcysteine attenuates renal alterations induced by senescence in the rat. Exp Gerontol. 48:298–303. 2013.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu J, Li X, Xu N, Han H and Li X: Role of ion channels in the mechanism of proteinuria (Review). Exp Ther Med 25: 27, 2023.
APA
Liu, J., Li, X., Xu, N., Han, H., & Li, X. (2023). Role of ion channels in the mechanism of proteinuria (Review). Experimental and Therapeutic Medicine, 25, 27. https://doi.org/10.3892/etm.2022.11726
MLA
Liu, J., Li, X., Xu, N., Han, H., Li, X."Role of ion channels in the mechanism of proteinuria (Review)". Experimental and Therapeutic Medicine 25.1 (2023): 27.
Chicago
Liu, J., Li, X., Xu, N., Han, H., Li, X."Role of ion channels in the mechanism of proteinuria (Review)". Experimental and Therapeutic Medicine 25, no. 1 (2023): 27. https://doi.org/10.3892/etm.2022.11726
Copy and paste a formatted citation
x
Spandidos Publications style
Liu J, Li X, Xu N, Han H and Li X: Role of ion channels in the mechanism of proteinuria (Review). Exp Ther Med 25: 27, 2023.
APA
Liu, J., Li, X., Xu, N., Han, H., & Li, X. (2023). Role of ion channels in the mechanism of proteinuria (Review). Experimental and Therapeutic Medicine, 25, 27. https://doi.org/10.3892/etm.2022.11726
MLA
Liu, J., Li, X., Xu, N., Han, H., Li, X."Role of ion channels in the mechanism of proteinuria (Review)". Experimental and Therapeutic Medicine 25.1 (2023): 27.
Chicago
Liu, J., Li, X., Xu, N., Han, H., Li, X."Role of ion channels in the mechanism of proteinuria (Review)". Experimental and Therapeutic Medicine 25, no. 1 (2023): 27. https://doi.org/10.3892/etm.2022.11726
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team