
Role of ion channels in the mechanism of proteinuria (Review)
- Authors:
- Jie Liu
- Xuewei Li
- Ning Xu
- Huirong Han
- Xiangling Li
-
Affiliations: Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China, Department of Rheumatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China, Department of Anesthesiology, Weifang Medical University, Weifang, Shandong 261000, P.R. China - Published online on: November 24, 2022 https://doi.org/10.3892/etm.2022.11726
- Article Number: 27
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Kondratskyi A, Kondratska K, Skryma R, Klionsky DJ and Prevarskaya N: Ion channels in the regulation of autophagy. Autophagy. 14:3–21. 2018.PubMed/NCBI View Article : Google Scholar | |
Alexander SPH, Mathie A, Peters JA, Veale EL, Striessnig J, Kelly E, Armstrong JF, Faccenda E, Harding SD, Pawson AJ, et al: The concise guide to pharmacology 2019/20: Ion channels. Br J Pharmacol. 176 (Suppl 1):S142–S228. 2019.PubMed/NCBI View Article : Google Scholar | |
Roux B: Ion channels and ion selectivity. Essays Biochem. 61:201–209. 2017.PubMed/NCBI View Article : Google Scholar | |
Cheng J, Wen J, Wang N, Wang C, Xu Q and Yang Y: Ion channels and vascular diseases. Arterioscler Thromb Vasc Biol. 39:e146–e156. 2019.PubMed/NCBI View Article : Google Scholar | |
Anderson KJ, Cormier RT and Scott PM: Role of ion channels in gastrointestinal cancer. World J Gastroenterol. 25:5732–5772. 2019.PubMed/NCBI View Article : Google Scholar | |
Armijo JA, Shushtarian M, Valdizan EM, Cuadrado A, de las Cuevas I and Adín J: Ion channels and epilepsy. Curr Pharm Des. 11:1975–2003. 2005.PubMed/NCBI View Article : Google Scholar | |
Moiseenkova-Bell V, Delemotte L and Minor DL Jr: Ion channels: Intersection of structure, function, and pharmacology. J Mol Biol. 433(167102)2021.PubMed/NCBI View Article : Google Scholar | |
Wang L and Yule DI: Differential regulation of ion channels function by proteolysis. Biochim Biophys Acta Mol Cell Res. 1865:1698–1706. 2018.PubMed/NCBI View Article : Google Scholar | |
Catterall WA, Lenaeus MJ and Gamal El-Din TM: Structure and pharmacology of voltage-gated sodium and calcium channels. Annu Rev Pharmacol Toxicol. 60:133–154. 2020.PubMed/NCBI View Article : Google Scholar | |
De Logu F and Geppetti P: Ion channel pharmacology for pain modulation. Handb Exp Pharmacol. 260:161–186. 2019.PubMed/NCBI View Article : Google Scholar | |
Pallet N, Bastard JP, Claeyssens S, Fellahi S, Delanaye P, Piéroni L and Caussé E: groupe de travail SFBC, SFNDT, SNP. Proteinuria typing: How, why and for whom? Ann Biol Clin (Paris). 77:13–25. 2019.PubMed/NCBI View Article : Google Scholar | |
Barton M: Reversal of proteinuric renal disease and the emerging role of endothelin. Nat Clin Pract Nephrol. 4:490–501. 2008.PubMed/NCBI View Article : Google Scholar | |
Nowak A and Serra AL: Assessment of proteinuria. Praxis (Bern 1994). 102:797–802. 2013.PubMed/NCBI View Article : Google Scholar : (In German). | |
D'Amico G and Bazzi C: Pathophysiology of proteinuria. Kidney Int. 63:809–825. 2003.PubMed/NCBI View Article : Google Scholar | |
Menzel S and Moeller MJ: Role of the podocyte in proteinuria. Pediatr Nephrol. 26:1775–1780. 2011.PubMed/NCBI View Article : Google Scholar | |
Miner JH: Glomerular basement membrane composition and the filtration barrier. Pediatr Nephrol. 26:1413–1417. 2011.PubMed/NCBI View Article : Google Scholar | |
Kallen RG, Cohen SA and Barchi RL: Structure, function and expression of voltage-dependent sodium channels. Mol Neurobiol. 7:383–428. 1993.PubMed/NCBI View Article : Google Scholar | |
Lee CH and Ruben PC: Interaction between voltage-gated sodium channels and the neurotoxin, tetrodotoxin. Channels (Austin). 2:407–412. 2008.PubMed/NCBI View Article : Google Scholar | |
Hanukoglu I and Hanukoglu A: Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene. 579:95–132. 2016.PubMed/NCBI View Article : Google Scholar | |
Brunklaus A, Ellis R, Reavey E, Semsarian C and Zuberi SM: Genotype phenotype associations across the voltage-gated sodium channel family. J Med Genet. 51:650–658. 2014.PubMed/NCBI View Article : Google Scholar | |
Soundararajan R, Pearce D, Hughey RP and Kleyman TR: Role of epithelial sodium channels and their regulators in hypertension. J Biol Chem. 285:30363–30369. 2010.PubMed/NCBI View Article : Google Scholar | |
Büsst CJ: Blood pressure regulation via the epithelial sodium channel: From gene to kidney and beyond. Clin Exp Pharmacol Physiol. 40:495–503. 2013.PubMed/NCBI View Article : Google Scholar | |
Zachar RM, Skjødt K, Marcussen N, Walter S, Toft A, Nielsen MR, Jensen BL and Svenningsen P: The epithelial sodium channel γ-subunit is processed proteolytically in human kidney. J Am Soc Nephrol. 26:95–106. 2015.PubMed/NCBI View Article : Google Scholar | |
Svenningsen P, Friis UG, Bistrup C, Buhl KB, Jensen BL and Skøtt O: Physiological regulation of epithelial sodium channel by proteolysis. Curr Opin Nephrol Hypertens. 20:529–533. 2011.PubMed/NCBI View Article : Google Scholar | |
Ware AW, Rasulov SR, Cheung TT, Lott JS and McDonald FJ: Membrane trafficking pathways regulating the epithelial Na+ channel. Am J Physiol Renal Physiol. 318:F1–F13. 2020.PubMed/NCBI View Article : Google Scholar | |
Bockenhauer D: Over- or underfill: Not all nephrotic states are created equal. Pediatr Nephrol. 28:1153–1156. 2013.PubMed/NCBI View Article : Google Scholar | |
Larionov A, Dahlke E, Kunke M, Zanon Rodriguez L, Schiessl IM, Magnin JL, Kern U, Alli AA, Mollet G, Schilling O, et al: Cathepsin B increases ENaC activity leading to hypertension early in nephrotic syndrome. J Cell Mol Med. 23:6543–6553. 2019.PubMed/NCBI View Article : Google Scholar | |
Fila M, Sassi A, Brideau G, Cheval L, Morla L, Houillier P, Walter C, Gennaoui M, Collignon L, Keck M, et al: A variant of ASIC2 mediates sodium retention in nephrotic syndrome. JCI Insight. 6(e148588)2021.PubMed/NCBI View Article : Google Scholar | |
Svenningsen P, Skøtt O and Jensen BL: Proteinuric diseases with sodium retention: Is plasmin the link? Clin Exp Pharmacol Physiol. 39:117–124. 2012.PubMed/NCBI View Article : Google Scholar | |
Hinrichs GR, Jensen BL and Svenningsen P: Mechanisms of sodium retention in nephrotic syndrome. Curr Opin Nephrol Hypertens. 29:207–212. 2020.PubMed/NCBI View Article : Google Scholar | |
Passero CJ, Hughey RP and Kleyman TR: New role for plasmin in sodium homeostasis. Curr Opin Nephrol Hypertens. 19:13–19. 2010.PubMed/NCBI View Article : Google Scholar | |
Briet M and Schiffrin EL: Aldosterone: Effects on the kidney and cardiovascular system. Nat Rev Nephrol. 6:261–273. 2010.PubMed/NCBI View Article : Google Scholar | |
Shapovalov G, Skryma R and Prevarskaya N: Calcium channels and prostate cancer. Recent Pat Anticancer Drug Discov. 8:18–26. 2013.PubMed/NCBI View Article : Google Scholar | |
Prevarskaya N, Ouadid-Ahidouch H, Skryma R and Shuba Y: Remodelling of Ca2+ transport in cancer: How it contributes to cancer hallmarks? Philos Trans R Soc Lond B Biol Sci. 369(20130097)2014.PubMed/NCBI View Article : Google Scholar | |
Mignen O, Thompson JL and Shuttleworth TJ: Ca2+ selectivity and fatty acid specificity of the noncapacitative, arachidonate-regulated Ca2+ (ARC) channels. J Biol Chem. 278:10174–10181. 2003.PubMed/NCBI View Article : Google Scholar | |
Lewis RS: Store-operated calcium channels: From function to structure and back again. Cold Spring Harb Perspect Biol. 12(a035055)2020.PubMed/NCBI View Article : Google Scholar | |
Zhou Y and Greka A: Calcium-permeable ion channels in the kidney. Am J Physiol Renal Physiol. 310:F1157–F1167. 2016.PubMed/NCBI View Article : Google Scholar | |
Patergnani S, Danese A, Bouhamida E, Aguiari G, Previati M, Pinton P and Giorgi C: Various aspects of calcium signaling in the regulation of apoptosis, autophagy, cell proliferation, and cancer. Int J Mol Sci. 21(8323)2020.PubMed/NCBI View Article : Google Scholar | |
Lou J, Yang X, Shan W, Jin Z, Ding J, Hu Y, Liao Q, Du Q, Xie R and Xu J: Effects of calcium-permeable ion channels on various digestive diseases in the regulation of autophagy (review). Mol Med Rep. 24(680)2021.PubMed/NCBI View Article : Google Scholar | |
Perez-Reyes E: Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev. 83:117–161. 2003.PubMed/NCBI View Article : Google Scholar | |
Zamponi GW, Striessnig J, Koschak A and Dolphin AC: The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev. 67:821–870. 2015.PubMed/NCBI View Article : Google Scholar | |
Catterall WA: Voltage-gated calcium channels. Cold Spring Harb Perspect Biol. 3(a003947)2011.PubMed/NCBI View Article : Google Scholar | |
Sairaman A, Cardoso FC, Bispat A, Lewis RJ, Duggan PJ and Tuck KL: Synthesis and evaluation of aminobenzothiazoles as blockers of N- and T-type calcium channels. Bioorg Med Chem. 26:3046–3059. 2018.PubMed/NCBI View Article : Google Scholar | |
Tsunemi T, Saegusa H, Ishikawa K, Nagayama S, Murakoshi T, Mizusawa H and Tanabe T: Novel Cav2.1 splice variants isolated from Purkinje cells do not generate P-type Ca2+ current. J Biol Chem. 277:7214–7221. 2002.PubMed/NCBI View Article : Google Scholar | |
Yamaguchi S, Okamura Y, Nagao T and Adachi-Akahane S: Serine residue in the IIIS5-S6 linker of the L-type Ca2+ channel alpha 1C subunit is the critical determinant of the action of dihydropyridine Ca2+ channel agonists. J Biol Chem. 275:41504–41511. 2000.PubMed/NCBI View Article : Google Scholar | |
Hansen PB: Functional and pharmacological consequences of the distribution of voltage-gated calcium channels in the renal blood vessels. Acta Physiol (Oxf). 207:690–699. 2013.PubMed/NCBI View Article : Google Scholar | |
Ohta M, Sugawara S, Sato N, Kuriyama C, Hoshino C and Kikuchi A: Effects of benidipine, a long-acting T-type calcium channel blocker, on home blood pressure and renal function in patients with essential hypertension: A retrospective, ‘real-world’ comparison with amlodipine. Clin Drug Investig. 29:739–746. 2009.PubMed/NCBI View Article : Google Scholar | |
Mishima K, Maeshima A, Miya M, Sakurai N, Ikeuchi H, Hiromura K and Nojima Y: Involvement of N-type Ca(2+) channels in the fibrotic process of the kidney in rats. Am J Physiol Renal Physiol. 304:F665–F673. 2013.PubMed/NCBI View Article : Google Scholar | |
Tamargo J and Ruilope LM: Investigational calcium channel blockers for the treatment of hypertension. Expert Opin Investig Drugs. 25:1295–1309. 2016.PubMed/NCBI View Article : Google Scholar | |
Khanna R, Yu J, Yang X, Moutal A, Chefdeville A, Gokhale V, Shuja Z, Chew LA, Bellampalli SS, Luo S, et al: Targeting the CaVα-CaVβ interaction yields an antagonist of the N-type CaV2.2 channel with broad antinociceptive efficacy. Pain. 160:1644–1661. 2019.PubMed/NCBI View Article : Google Scholar | |
Ando K: L-/N-type calcium channel blockers and proteinuria. Curr Hypertens Rev. 9:210–218. 2013.PubMed/NCBI View Article : Google Scholar | |
Lei B, Nakano D, Fujisawa Y, Liu Y, Hitomi H, Kobori H, Mori H, Masaki T, Asanuma K, Tomino Y and Nishiyama A: N-type calcium channel inhibition with cilnidipine elicits glomerular podocyte protection independent of sympathetic nerve inhibition. J Pharmacol Sci. 119:359–367. 2012.PubMed/NCBI View Article : Google Scholar | |
Fan YY, Kohno M, Nakano D, Ohsaki H, Kobori H, Suwarni D, Ohashi N, Hitomi H, Asanuma K, Noma T, et al: Cilnidipine suppresses podocyte injury and proteinuria in metabolic syndrome rats: Possible involvement of N-type calcium channel in podocyte. J Hypertens. 28:1034–1043. 2010.PubMed/NCBI View Article : Google Scholar | |
Tamargo J: New calcium channel blockers for the treatment of hypertension. Hipertens Riesgo Vasc. 34 (Suppl 2):S5–S8. 2017.PubMed/NCBI View Article : Google Scholar : (In Spanish). | |
Hansen PB, Poulsen CB, Walter S, Marcussen N, Cribbs LL, Skøtt O and Jensen BL: Functional importance of L- and P/Q-type voltage-gated calcium channels in human renal vasculature. Hypertension. 58:464–470. 2011.PubMed/NCBI View Article : Google Scholar | |
Nilius B and Owsianik G: The transient receptor potential family of ion channels. Genome Biol. 12(218)2011.PubMed/NCBI View Article : Google Scholar | |
Ramsey IS, Delling M and Clapham DE: An introduction to TRP channels. Annu Rev Physiol. 68:619–647. 2006.PubMed/NCBI View Article : Google Scholar | |
Montell C and Rubin GM: Molecular characterization of the Drosophila trp locus: A putative integral membrane protein required for phototransduction. Neuron. 2:1313–1323. 1989.PubMed/NCBI View Article : Google Scholar | |
Gees M, Owsianik G, Nilius B and Voets T: TRP channels. Compr Physiol. 2:563–608. 2012.PubMed/NCBI View Article : Google Scholar | |
Caterina MJ and Pang Z: TRP channels in skin biology and pathophysiology. Pharmaceuticals (Basel). 9(77)2016.PubMed/NCBI View Article : Google Scholar | |
Li H: TRP channel classification. Adv Exp Med Biol. 976:1–8. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhao Y, McVeigh BM and Moiseenkova-Bell VY: Structural pharmacology of TRP channels. J Mol Biol. 433(166914)2021.PubMed/NCBI View Article : Google Scholar | |
Nilius B: TRP channels in disease. Biochim Biophys Acta. 1772:805–812. 2007.PubMed/NCBI View Article : Google Scholar | |
Moran MM: TRP channels as potential drug targets. Annu Rev Pharmacol Toxicol. 58:309–330. 2018.PubMed/NCBI View Article : Google Scholar | |
Koivisto AP, Belvisi MG, Gaudet R and Szallasi A: Advances in TRP channel drug discovery: From target validation to clinical studies. Nat Rev Drug Discov. 21:41–59. 2022.PubMed/NCBI View Article : Google Scholar | |
Feng YL, Chen H, Chen DQ, Vaziri ND, Su W, Ma SX, Shang YQ, Mao JR, Yu XY, Zhang L, et al: Activated NF-κB/Nrf2 and Wnt/β-catenin pathways are associated with lipid metabolism in CKD patients with microalbuminuria and macroalbuminuria. Biochim Biophys Acta Mol Basis Dis. 1865:2317–2332. 2019.PubMed/NCBI View Article : Google Scholar | |
Voets T, Vriens J and Vennekens R: Targeting TRP channels-valuable alternatives to combat pain, lower urinary tract disorders, and type 2 diabetes? Trends Pharmacol Sci. 40:669–683. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang Q, Tian X, Wang Y, Wang Y, Li J, Zhao T and Li P: Role of transient receptor potential canonical channel 6 (TRPC6) in diabetic kidney disease by regulating podocyte actin cytoskeleton rearrangement. J Diabetes Res. 2020(6897390)2020.PubMed/NCBI View Article : Google Scholar | |
Bacsa B, Tiapko O, Stockner T and Groschner K: Mechanisms and significance of Ca2+ entry through TRPC channels. Curr Opin Physiol. 17:25–33. 2020.PubMed/NCBI View Article : Google Scholar | |
Möller CC, Flesche J and Reiser J: Sensitizing the slit diaphragm with TRPC6 ion channels. J Am Soc Nephrol. 20:950–953. 2009.PubMed/NCBI View Article : Google Scholar | |
Möller CC, Wei C, Altintas MM, Li J, Greka A, Ohse T, Pippin JW, Rastaldi MP, Wawersik S, Schiavi S, et al: Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. J Am Soc Nephrol. 18:29–36. 2007.PubMed/NCBI View Article : Google Scholar | |
Schaldecker T, Kim S, Tarabanis C, Tian D, Hakroush S, Castonguay P, Ahn W, Wallentin H, Heid H, Hopkins CR, et al: Inhibition of the TRPC5 ion channel protects the kidney filter. J Clin Invest. 123:5298–5309. 2013.PubMed/NCBI View Article : Google Scholar | |
Tian D, Jacobo SM, Billing D, Rozkalne A, Gage SD, Anagnostou T, Pavenstädt H, Hsu HH, Schlondorff J, Ramos A and Greka A: Antagonistic regulation of actin dynamics and cell motility by TRPC5 and TRPC6 channels. Sci Signal. 3(ra77)2010.PubMed/NCBI View Article : Google Scholar | |
Shalygin A, Shuyskiy LS, Bohovyk R, Palygin O, Staruschenko A and Kaznacheyeva E: Cytoskeleton rearrangements modulate TRPC6 channel activity in podocytes. Int J Mol Sci. 22(4396)2021.PubMed/NCBI View Article : Google Scholar | |
Schlondorff J: TRPC6 and kidney disease: Sclerosing more than just glomeruli? Kidney Int. 91:773–775. 2017.PubMed/NCBI View Article : Google Scholar | |
Schlöndorff JS and Pollak MR: TRPC6 in glomerular health and disease: What we know and what we believe. Semin Cell Dev Biol. 17:667–674. 2006.PubMed/NCBI View Article : Google Scholar | |
Kim EY, Yazdizadeh Shotorbani P and Dryer SE: Trpc6 inactivation confers protection in a model of severe nephrosis in rats. J Mol Med (Berl). 96:631–644. 2018.PubMed/NCBI View Article : Google Scholar | |
Hall G, Wang L and Spurney RF: TRPC channels in proteinuric kidney diseases. Cells. 9(44)2019.PubMed/NCBI View Article : Google Scholar | |
van der Wijst J and Bindels RJM: Renal physiology: TRPC5 inhibition to treat progressive kidney disease. Nat Rev Nephrol. 14:145–146. 2018.PubMed/NCBI View Article : Google Scholar | |
Walsh L, Reilly JF, Cornwall C, Gaich GA, Gipson DS, Heerspink HJL, Johnson L, Trachtman H, Tuttle KR, Farag YMK, et al: Safety and efficacy of GFB-887, a TRPC5 channel inhibitor, in patients with focal segmental glomerulosclerosis, treatment-resistant minimal change disease, or diabetic nephropathy: TRACTION-2 trial design. Kidney Int Rep. 6:2575–2584. 2021.PubMed/NCBI View Article : Google Scholar | |
Reiser J, Polu KR, Möller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, et al: TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet. 37:739–744. 2005.PubMed/NCBI View Article : Google Scholar | |
Wiggins RC: The spectrum of podocytopathies: A unifying view of glomerular diseases. Kidney Int. 71:1205–1214. 2007.PubMed/NCBI View Article : Google Scholar | |
Zhou Y, Castonguay P, Sidhom EH, Clark AR, Dvela-Levitt M, Kim S, Sieber J, Wieder N, Jung JY, Andreeva S, et al: A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science. 358:1332–1336. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhang H, Ding J, Fan Q and Liu S: TRPC6 up-regulation in Ang II-induced podocyte apoptosis might result from ERK activation and NF-kappaB translocation. Exp Biol Med (Maywood). 234:1029–1036. 2009.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Wei X, Zhang Y, Ma X, Li B, Zhang S, Du P, Zhang X and Yi F: NADPH oxidase-derived ROS contributes to upregulation of TRPC6 expression in puromycin aminonucleoside-induced podocyte injury. Cell Physiol Biochem. 24:619–626. 2009.PubMed/NCBI View Article : Google Scholar | |
Kistler AD, Singh G, Altintas MM, Yu H, Fernandez IC, Gu C, Wilson C, Srivastava SK, Dietrich A, Walz K, et al: Transient receptor potential channel 6 (TRPC6) protects podocytes during complement-mediated glomerular disease. J Biol Chem. 288:36598–36609. 2013.PubMed/NCBI View Article : Google Scholar | |
Zhou Y, Kim C, Pablo JLB, Zhang F, Jung JY, Xiao L, Bazua-Valenti S, Emani M, Hopkins CR, Weins A and Greka A: TRPC5 channel inhibition protects podocytes in puromycin-aminonucleoside induced nephrosis models. Front Med (Lausanne). 8(721865)2021.PubMed/NCBI View Article : Google Scholar | |
Randhawa PK and Jaggi AS: TRPV4 channels: Physiological and pathological role in cardiovascular system. Basic Res Cardiol. 110(54)2015.PubMed/NCBI View Article : Google Scholar | |
Everaerts W, Nilius B and Owsianik G: The vanilloid transient receptor potential channel TRPV4: From structure to disease. Prog Biophys Mol Biol. 103:2–17. 2010.PubMed/NCBI View Article : Google Scholar | |
Kassmann M, Harteneck C, Zhu Z, Nürnberg B, Tepel M and Gollasch M: Transient receptor potential vanilloid 1 (TRPV1), TRPV4, and the kidney. Acta Physiol (Oxf). 207:546–564. 2013.PubMed/NCBI View Article : Google Scholar | |
Mannaa M, Markó L, Balogh A, Vigolo E, N'diaye G, Kaßmann M, Michalick L, Weichelt U, Schmidt-Ott KM, Liedtke WB, et al: Transient receptor potential vanilloid 4 channel deficiency aggravates tubular damage after acute renal ischaemia reperfusion. Sci Rep. 8(4878)2018.PubMed/NCBI View Article : Google Scholar | |
Karasawa T, Wang Q, Fu Y, Cohen DM and Steyger PS: TRPV4 enhances the cellular uptake of aminoglycoside antibiotics. J Cell Sci. 121:2871–2879. 2008.PubMed/NCBI View Article : Google Scholar | |
Gualdani R, Seghers F, Yerna X, Schakman O, Tajeddine N, Achouri Y, Tissir F, Devuyst O and Gailly P: Mechanical activation of TRPV4 channels controls albumin reabsorption by proximal tubule cells. Sci Signal. 13(eabc6967)2020.PubMed/NCBI View Article : Google Scholar | |
Duran C, Thompson CH, Xiao Q and Hartzell HC: Chloride channels: Often enigmatic, rarely predictable. Annu Rev Physiol. 72:95–121. 2010.PubMed/NCBI View Article : Google Scholar | |
Xia J, Wang H, Li S, Wu Q, Sun L, Huang H and Zeng M: Ion channels or aquaporins as novel molecular targets in gastric cancer. Mol Cancer. 16(54)2017.PubMed/NCBI View Article : Google Scholar | |
Gururaja Rao S, Ponnalagu D, Patel NJ and Singh H: Three decades of chloride intracellular channel proteins: From organelle to organ physiology. Curr Protoc Pharmacol. 80:11.21.1–11.21.17. 2018.PubMed/NCBI View Article : Google Scholar | |
Berend K, van Hulsteijn LH and Gans RO: Chloride: The queen of electrolytes? Eur J Intern Med. 23:203–211. 2012.PubMed/NCBI View Article : Google Scholar | |
Jentsch TJ, Stein V, Weinreich F and Zdebik AA: Molecular structure and physiological function of chloride channels. Physiol Rev. 82:503–568. 2002.PubMed/NCBI View Article : Google Scholar | |
Suzuki M, Morita T and Iwamoto T: Diversity of Cl(-) channels. Cell Mol Life Sci. 63:12–24. 2006.PubMed/NCBI View Article : Google Scholar | |
Scheel O, Zdebik AA, Lourdel S and Jentsch TJ: Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature. 436:424–427. 2005.PubMed/NCBI View Article : Google Scholar | |
Uchida S: In vivo role of CLC chloride channels in the kidney. Am J Physiol Renal Physiol. 279:F802–F808. 2000.PubMed/NCBI View Article : Google Scholar | |
Schriever AM, Friedrich T, Pusch M and Jentsch TJ: CLC chloride channels in Caenorhabditis elegans. J Biol Chem. 274:34238–34244. 1999.PubMed/NCBI View Article : Google Scholar | |
Jentsch TJ and Pusch M: CLC chloride channels and transporters: Structure, function, physiology, and disease. Physiol Rev. 98:1493–1590. 2018.PubMed/NCBI View Article : Google Scholar | |
Hryciw DH, Ekberg J, Pollock CA and Poronnik P: ClC-5: A chloride channel with multiple roles in renal tubular albumin uptake. Int J Biochem Cell Biol. 38:1036–1042. 2006.PubMed/NCBI View Article : Google Scholar | |
Novarino G, Weinert S, Rickheit G and Jentsch TJ: Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis. Science. 328:1398–1401. 2010.PubMed/NCBI View Article : Google Scholar | |
Devuyst O and Luciani A: Chloride transporters and receptor-mediated endocytosis in the renal proximal tubule. J Physiol. 593:4151–4164. 2015.PubMed/NCBI View Article : Google Scholar | |
Günther W, Piwon N and Jentsch TJ: The ClC-5 chloride channel knock-out mouse-an animal model for Dent's disease. Pflugers Arch. 445:456–462. 2003.PubMed/NCBI View Article : Google Scholar | |
Faria D, Rock JR, Romao AM, Schweda F, Bandulik S, Witzgall R, Schlatter E, Heitzmann D, Pavenstädt H, Herrmann E, et al: The calcium-activated chloride channel Anoctamin 1 contributes to the regulation of renal function. Kidney Int. 85:1369–1381. 2014.PubMed/NCBI View Article : Google Scholar | |
Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, et al: TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature. 455:1210–1215. 2008.PubMed/NCBI View Article : Google Scholar | |
González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D and Latorre R: K(+) channels: Function-structural overview. Compr Physiol. 2:2087–2149. 2012.PubMed/NCBI View Article : Google Scholar | |
Sigworth FJ: Potassium channel mechanics. Neuron. 32:555–556. 2001.PubMed/NCBI View Article : Google Scholar | |
Gulbis JM and Doyle DA: Potassium channel structures: Do they conform? Curr Opin Struct Biol. 14:440–446. 2004.PubMed/NCBI View Article : Google Scholar | |
Kuang Q, Purhonen P and Hebert H: Structure of potassium channels. Cell Mol Life Sci. 72:3677–3693. 2015.PubMed/NCBI View Article : Google Scholar | |
Noma A: ATP-regulated K+ channels in cardiac muscle. Nature. 305:147–148. 1983.PubMed/NCBI View Article : Google Scholar | |
Ashcroft FM and Rorsman P: K(ATP) channels and islet hormone secretion: New insights and controversies. Nat Rev Endocrinol. 9:660–669. 2013.PubMed/NCBI View Article : Google Scholar | |
Rorsman P, Ramracheya R, Rorsman NJ and Zhang Q: ATP-regulated potassium channels and voltage-gated calcium channels in pancreatic alpha and beta cells: Similar functions but reciprocal effects on secretion. Diabetologia. 57:1749–1761. 2014.PubMed/NCBI View Article : Google Scholar | |
Tinker A, Aziz Q, Li Y and Specterman M: ATP-sensitive potassium channels and their physiological and pathophysiological roles. Compr Physiol. 8:1463–1511. 2018.PubMed/NCBI View Article : Google Scholar | |
Cole WC, Chen TT and Clément-Chomienne O: Myogenic regulation of arterial diameter: Role of potassium channels with a focus on delayed rectifier potassium current. Can J Physiol Pharmacol. 83:755–765. 2005.PubMed/NCBI View Article : Google Scholar | |
Jackson MB, Konnerth A and Augustine GJ: Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals. Proc Natl Acad Sci USA. 88:380–384. 1991.PubMed/NCBI View Article : Google Scholar | |
Guéguinou M, Chantôme A, Fromont G, Bougnoux P, Vandier C and Potier-Cartereau M: KCa and Ca(2+) channels: The complex thought. Biochim Biophys Acta. 1843:2322–2333. 2014.PubMed/NCBI View Article : Google Scholar | |
Sforna L, Megaro A, Pessia M, Franciolini F and Catacuzzeno L: Structure, gating and basic functions of the Ca2+-activated K channel of intermediate conductance. Curr Neuropharmacol. 16:608–617. 2018.PubMed/NCBI View Article : Google Scholar | |
Walewska A, Kulawiak B, Szewczyk A and Koprowski P: Mechanosensitivity of mitochondrial large-conductance calcium-activated potassium channels. Biochim Biophys Acta Bioenerg. 1859:797–805. 2018.PubMed/NCBI View Article : Google Scholar | |
Fezai M, Ahmed M, Hosseinzadeh Z and Lang F: Up-regulation of the large-conductance Ca2+-activated K+ channel by glycogen synthase kinase GSK3β. Cell Physiol Biochem. 39:1031–1039. 2016.PubMed/NCBI View Article : Google Scholar | |
Giebisch G: Potassium channels and the kidney. Nephrologie. 21:223–228. 2000.PubMed/NCBI(In French). | |
Sorensen CM, Braunstein TH, Holstein-Rathlou NH and Salomonsson M: Role of vascular potassium channels in the regulation of renal hemodynamics. Am J Physiol Renal Physiol. 302:F505–F518. 2012.PubMed/NCBI View Article : Google Scholar | |
Tamura Y, Tanabe K, Kitagawa W, Uchida S, Schreiner GF, Johnson RJ and Nakagawa T: Nicorandil, a K(atp) channel opener, alleviates chronic renal injury by targeting podocytes and macrophages. Am J Physiol Renal Physiol. 303:F339–F349. 2012.PubMed/NCBI View Article : Google Scholar | |
Snijder PM, Frenay AR, Koning AM, Bachtler M, Pasch A, Kwakernaak AJ, van den Berg E, Bos EM, Hillebrands JL, Navis G, et al: Sodium thiosulfate attenuates angiotensin II-induced hypertension, proteinuria and renal damage. Nitric Oxide. 42:87–98. 2014.PubMed/NCBI View Article : Google Scholar | |
Hyodo T, Oda T, Kikuchi Y, Higashi K, Kushiyama T, Yamamoto K, Yamada M, Suzuki S, Hokari R, Kinoshita M, et al: Voltage-gated potassium channel Kv1.3 blocker as a potential treatment for rat anti-glomerular basement membrane glomerulonephritis. Am J Physiol Renal Physiol. 299:F1258–F1269. 2010.PubMed/NCBI View Article : Google Scholar | |
Huang C, Zhang L, Shi Y, Yi H, Zhao Y, Chen J, Pollock CA and Chen XM: The KCa3.1 blocker TRAM34 reverses renal damage in a mouse model of established diabetic nephropathy. PLoS One. 13(e0192800)2018.PubMed/NCBI View Article : Google Scholar | |
Piwkowska A, Rogacka D, Audzeyenka I, Kasztan M, Angielski S and Jankowski M: Insulin increases glomerular filtration barrier permeability through PKGIα-dependent mobilization of BKCa channels in cultured rat podocytes. Biochim Biophys Acta. 1852:1599–1609. 2015.PubMed/NCBI View Article : Google Scholar | |
Neverisky DL and Abbott GW: Ion channel-transporter interactions. Crit Rev Biochem Mol Biol. 51:257–267. 2015.PubMed/NCBI View Article : Google Scholar | |
Veiras LC, McFarlin BE, Ralph DL, Buncha V, Prescott J, Shirvani BS, McDonough JC, Ha D, Giani J, Gurley SB, et al: Electrolyte and transporter responses to angiotensin II induced hypertension in female and male rats and mice. Acta Physiol (Oxf). 229(e13448)2020.PubMed/NCBI View Article : Google Scholar | |
Orlov SN, Adragna NC, Adarichev VA and Hamet P: Genetic and biochemical determinants of abnormal monovalent ion transport in primary hypertension. Am J Physiol. 276:C511–C536. 1999.PubMed/NCBI View Article : Google Scholar | |
Graves SW: Sodium regulation, sodium pump function and sodium pump inhibitors in uncomplicated pregnancy and preeclampsia. Front Biosci. 12:2438–2446. 2007.PubMed/NCBI View Article : Google Scholar | |
Devuyst O, Jouret F, Auzanneau C and Courtoy PJ: Chloride channels and endocytosis: New insights from Dent's disease and ClC-5 knockout mice. Nephron Physiol. 99:p69–p73. 2005.PubMed/NCBI View Article : Google Scholar | |
Shipman KE and Weisz OA: Making a dent in dent disease. Function (Oxf). 1(zqaa017)2020.PubMed/NCBI View Article : Google Scholar | |
Anglani F, Gianesello L, Beara-Lasic L and Lieske J: Dent disease: A window into calcium and phosphate transport. J Cell Mol Med. 23:7132–7142. 2019.PubMed/NCBI View Article : Google Scholar | |
Svenningsen P, Friis UG, Versland JB, Buhl KB, Møller Frederiksen B, Andersen H, Zachar RM, Bistrup C, Skøtt O, Jørgensen JS, et al: Mechanisms of renal NaCl retention in proteinuric disease. Acta Physiol (Oxf). 207:536–545. 2013.PubMed/NCBI View Article : Google Scholar | |
Gadau J, Peters H, Kastner C, Kühn H, Nieminen-Kelhä M, Khadzhynov D, Krämer S, Castrop H, Bachmann S and Theilig F: Mechanisms of tubular volume retention in immune-mediated glomerulonephritis. Kidney Int. 75:699–710. 2009.PubMed/NCBI View Article : Google Scholar | |
de Seigneux S, Wilhelm-Bals A and Courbebaisse M: On the relationship between proteinuria and plasma phosphate. Swiss Med Wkly. 147(w14509)2017.PubMed/NCBI View Article : Google Scholar | |
Shimizu MH, Volpini RA, de Bragança AC, Campos R, Canale D, Sanches TR, Andrade L and Seguro AC: N-acetylcysteine attenuates renal alterations induced by senescence in the rat. Exp Gerontol. 48:298–303. 2013.PubMed/NCBI View Article : Google Scholar |