Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
March-2023 Volume 25 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2023 Volume 25 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Tumour‑derived exosomes and their emerging roles in leukaemia (Review)

  • Authors:
    • Lei Chen
    • Ting Xie
    • Bing Wei
    • Da-Lin Di
  • View Affiliations / Copyright

    Affiliations: Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, P.R. China, Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 126
    |
    Published online on: February 6, 2023
       https://doi.org/10.3892/etm.2023.11825
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Exosomes are small vesicles with a diameter of ~40‑100 nm that are secreted by the majority of endogenous cells under normal and pathological conditions. They contain abundant proteins, lipids, microRNAs, and biomolecules such as signal transduction molecules, adhesion factors and cytoskeletal proteins, and play an important role in exchanging materials and transmitting information between cells. Recent studies have shown that exosomes are involved in the pathophysiology of leukaemia by affecting the bone marrow microenvironment, apoptosis, tumour angiogenesis, immune escape and chemotherapy resistance. Furthermore, exosomes are potential biomarkers and drug carriers for leukaemia, impacting the diagnosis and treatment of leukaemia. The present study describes the biogenesis and general characteristics of exosomes, and then highlight the emerging roles of exosomes in different types of leukaemia. Finally, the value of clinical application of exosomes as biomarkers and drug carriers is discussed with the aim to provide novel strategies for the treatment of leukaemia.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Juliusson G and Hough R: Leukemia. Prog Tumor Res. 43:87–100. 2016.PubMed/NCBI View Article : Google Scholar

2 

Alsobhi E, Farahat F, Daghistani M, Awad K, Al-Zahran O, Al-Saiari A and Koshak F: Overall survival of adult acute myeloid leukemia based on cytogenetic and molecular abnormalities during 5 years in a single center study. Saudi Med J. 40:1171–1176. 2019.PubMed/NCBI View Article : Google Scholar

3 

Schubert D: A brief history of adherons: The discovery of brain exosomes. Int J Mol Sci. 21(7673)2020.PubMed/NCBI View Article : Google Scholar

4 

Johnstone RM, Adam M, Hammond JR, Orr L and Turbide C: Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 262:9412–9420. 1987.PubMed/NCBI

5 

Keller S, Sanderson MP, Stoeck A and Altevogt P: Exosomes: From biogenesis and secretion to biological function. Immunol Lett. 107:102–108. 2006.PubMed/NCBI View Article : Google Scholar

6 

Simpson RJ, Jensen SS and Lim JW: Proteomic profiling of exosomes: Current perspectives. Proteomics. 8:4083–4099. 2008.PubMed/NCBI View Article : Google Scholar

7 

Théry C, Zitvogel L and Amigorena S: Exosomes: Composition, biogenesis and function. Nat Rev Immunol. 2:569–579. 2002.PubMed/NCBI View Article : Google Scholar

8 

Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM and Breakefield XO: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 10:1470–1476. 2008.PubMed/NCBI View Article : Google Scholar

9 

Mardani R, Jafari Najaf Abadi MH, Motieian M, Taghizadeh-Boroujeni S, Bayat A, Farsinezhad A, Gheibi HS, Motieian M and Pourghadamyari H: MicroRNA in leukemia: Tumor suppressors and oncogenes with prognostic potential. J Cell Physiol. 234:8465–8486. 2019.PubMed/NCBI View Article : Google Scholar

10 

Liu J, Ren L, Li S, Li W, Zheng X, Yang Y, Fu W, Yi J, Wang J and Du G: The biology, function, and applications of exosomes in cancer. Acta Pharm Sin B. 11:2783–2797. 2021.PubMed/NCBI View Article : Google Scholar

11 

Cheng L and Hill AF: Therapeutically harnessing extracellular vesicles. Nat Rev Drug Discov. 21:379–399. 2022.PubMed/NCBI View Article : Google Scholar

12 

De Toro J, Herschlik L, Waldner C and Mongini C: Emerging roles of exosomes in normal and pathological conditions: New insights for diagnosis and therapeutic applications. Front Immunol. 6(203)2015.PubMed/NCBI View Article : Google Scholar

13 

Zhang L and Yu D: Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer. 1871:455–468. 2019.PubMed/NCBI View Article : Google Scholar

14 

Lobb RJ, Becker M, Wen SW, Wong CS, Wiegmans AP, Leimgruber A and Möller A: Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 4(27031)2015.PubMed/NCBI View Article : Google Scholar

15 

Khatun Z, Bhat A, Sharma S and Sharma A: Elucidating diversity of exosomes: Biophysical and molecular characterization methods. Nanomedicine (Lond). 11:2359–2377. 2016.PubMed/NCBI View Article : Google Scholar

16 

Guo S, Xu J, Estell AP, Ivory CF, Du D, Lin Y and Dong WJ: Paper-based ITP technology: An application to specific cancer-derived exosome detection and analysis. Biosens Bioelectron. 164(112292)2020.PubMed/NCBI View Article : Google Scholar

17 

Agarwal P and Bhatia R: Influence of bone marrow microenvironment on leukemic stem cells: Breaking up an intimate relationship. Adv Cancer Res. 127:227–252. 2015.PubMed/NCBI View Article : Google Scholar

18 

Sharma A, Khatun Z and Shiras A: Tumor exosomes: Cellular postmen of cancer diagnosis and personalized therapy. Nanomedicine (Lond). 11:421–437. 2016.PubMed/NCBI View Article : Google Scholar

19 

Tan Z, Kan C, Wong M, Sun M, Liu Y, Yang F, Wang S and Zheng H: Regulation of malignant myeloid leukemia by mesenchymal stem cells. Front Cell Dev Biol. 10(857045)2022.PubMed/NCBI View Article : Google Scholar

20 

Boyiadzis M and Whiteside TL: Exosomes in acute myeloid leukemia inhibit hematopoiesis. Curr Opin Hematol. 25:279–284. 2018.PubMed/NCBI View Article : Google Scholar

21 

Huan J, Hornick NI, Shurtleff MJ, Skinner AM, Goloviznina NA, Roberts CT Jr and Kurre P: RNA trafficking by acute myelogenous leukemia exosomes. Cancer Res. 73:918–929. 2013.PubMed/NCBI View Article : Google Scholar

22 

Huan J, Hornick NI, Goloviznina NA, Kamimae-Lanning AN, David LL, Wilmarth PA, Mori T, Chevillet JR, Narla A, Roberts CT Jr, et al: Coordinate regulation of residual bone marrow function by paracrine trafficking of AML exosomes. Leukemia. 29:2285–2295. 2015.PubMed/NCBI View Article : Google Scholar

23 

Kumar B, Garcia M, Weng L, Jung X, Murakami JL, Hu X, McDonald T, Lin A, Kumar AR, DiGiusto DL, et al: Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia. 32:575–587. 2018.PubMed/NCBI View Article : Google Scholar

24 

Hornick NI, Doron B, Abdelhamed S, Huan J, Harrington CA, Shen R, Cambronne XA, Chakkaramakkil VS and Kurre P: AML suppresses hematopoiesis by releasing exosomes that contain microRNAs targeting c-MYB. Sci Signal. 9(ra88)2016.PubMed/NCBI View Article : Google Scholar

25 

Zhao C, Du F, Zhao Y, Wang S and Qi L: Acute myeloid leukemia cells secrete microRNA-4532-containing exosomes to mediate normal hematopoiesis in hematopoietic stem cells by activating the LDOC1-dependent STAT3 signaling pathway. Stem Cell Res Ther. 10(384)2019.PubMed/NCBI View Article : Google Scholar

26 

Yoshida M, Horiguchi H, Kikuchi S, Iyama S, Ikeda H, Goto A, Kawano Y, Murase K, Takada K, Miyanishi K, et al: miR-7977 inhibits the Hippo-YAP signaling pathway in bone marrow mesenchymal stromal cells. PLoS One. 14(e213220)2019.PubMed/NCBI View Article : Google Scholar

27 

Zhang L, Khadka B, Wu J, Feng Y, Long B, Xiao R and Liu J: Bone marrow mesenchymal stem cells-derived exosomal miR-425-5p inhibits acute myeloid leukemia cell proliferation, apoptosis, invasion and migration by targeting WTAP. Onco Targets Ther. 14:4901–4914. 2021.PubMed/NCBI View Article : Google Scholar

28 

Chiarini F, Lonetti A, Evangelisti C, Buontempo F, Orsini E, Evangelisti C, Cappellini A, Neri LM, Mccubrey JA and Martelli AM: Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. Biochim Biophys Acta. 1863:449–463. 2016.PubMed/NCBI View Article : Google Scholar

29 

Rios de Los Rios J, Enciso J, Vilchis-Ordoñez A, Vázquez-Ramírez R, Ramirez-Ramirez D, Balandrán JC, Rodríguez-Martínez A, Ruiz-Tachiquín M, Pompa-Mera E, Mendoza L, et al: Acute lymphoblastic leukemia-secreted miRNAs induce a proinflammatory microenvironment and promote the activation of hematopoietic progenitors. J Leukoc Biol. 112:31–45. 2022.PubMed/NCBI View Article : Google Scholar

30 

Yang Y, Li J and Geng Y: Exosomes derived from chronic lymphocytic leukaemia cells transfer miR-146a to induce the transition of mesenchymal stromal cells into cancer-associated fibroblasts. J Biochem. 168:491–498. 2020.PubMed/NCBI View Article : Google Scholar

31 

Paggetti J, Haderk F, Seiffert M, Janji B, Distler U, Ammerlaan W, Kim YJ, Adam J, Lichter P, Solary E, et al: Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood. 126:1106–1117. 2015.PubMed/NCBI View Article : Google Scholar

32 

Yeh YY, Ozer HG, Lehman AM, Maddocks K, Yu L, Johnson AJ and Byrd JC: Characterization of CLL exosomes reveals a distinct microRNA signature and enhanced secretion by activation of BCR signaling. Blood. 125:3297–3305. 2015.PubMed/NCBI View Article : Google Scholar

33 

Prieto D, Sotelo N, Seija N, Sernbo S, Abreu C, Durán R, Gil M, Sicco E, Irigoin V, Oliver C, et al: S100-A9 protein in exosomes from chronic lymphocytic leukemia cells promotes NF-κB activity during disease progression. Blood. 130:777–788. 2017.PubMed/NCBI View Article : Google Scholar

34 

Corrado C, Raimondo S, Saieva L, Flugy AM, De Leo G and Alessandro R: Exosome-mediated crosstalk between chronic myelogenous leukemia cells and human bone marrow stromal cells triggers an interleukin 8-dependent survival of leukemia cells. Cancer Lett. 348:71–76. 2014.PubMed/NCBI View Article : Google Scholar

35 

Taverna S, Amodeo V, Saieva L, Russo A, Giallombardo M, De Leo G and Alessandro R: Exosomal shuttling of miR-126 in endothelial cells modulates adhesive and migratory abilities of chronic myelogenous leukemia cells. Mol Cancer. 13(169)2014.PubMed/NCBI View Article : Google Scholar

36 

Jiang YH, Liu J, Lin J, Li SQ, Xu YM, Min QH, Zhong QH, Sun F, Li J, You XH, et al: K562 cell-derived exosomes suppress the adhesive function of bone marrow mesenchymal stem cells via delivery of miR-711. Biochem Biophys Res Commun. 521:584–589. 2020.PubMed/NCBI View Article : Google Scholar

37 

Yang Y, He H, He J, Gu X, Hu P, Zuo R and Sa Y: Hyperleukocytic acute leukemia circulating exosomes regulate HSCs and BM-MSCs. J Healthc Eng. 2021(9457070)2021.PubMed/NCBI View Article : Google Scholar

38 

Gao X, Wan Z, Wei M, Dong Y, Zhao Y, Chen X, Li Z, Qin W, Yang G and Liu L: Chronic myelogenous leukemia cells remodel the bone marrow niche via exosome-mediated transfer of miR-320. Theranostics. 9:5642–5656. 2019.PubMed/NCBI View Article : Google Scholar

39 

Jafarzadeh N, Gholampour MA, Alivand MR, Kavousi S, Arzi L, Rad F, Sadeghizadeh M and Pornour M: CML derived exosomes promote tumor favorable functional performance in T cells. BMC Cancer. 21(1002)2021.PubMed/NCBI View Article : Google Scholar

40 

Wan Z, Chen X, Gao X, Dong Y, Zhao Y, Wei M, Fan W, Yang G and Liu L: Chronic myeloid leukemia-derived exosomes attenuate adipogenesis of adipose derived mesenchymal stem cells via transporting miR-92a-3p. J Cell Physiol. 234:21274–21283. 2019.PubMed/NCBI View Article : Google Scholar

41 

Wang D, Ming X, Xu J and Xiao Y: Circ_0009910 shuttled by exosomes regulates proliferation, cell cycle and apoptosis of acute myeloid leukemia cells by regulating miR-5195-3p/GRB10 axis. Hematol Oncol. 39:390–400. 2021.PubMed/NCBI View Article : Google Scholar

42 

Cheng H, Ding J, Tang G, Huang A, Gao L, Yang J and Chen L: Human mesenchymal stem cells derived exosomes inhibit the growth of acute myeloid leukemia cells via regulating miR-23b-5p/TRIM14 pathway. Mol Med. 27(128)2021.PubMed/NCBI View Article : Google Scholar

43 

Jiang D, Wu X, Sun X, Tan W, Dai X, Xie Y, Du A and Zhao Q: Bone mesenchymal stem cell-derived exosomal microRNA-7-5p inhibits progression of acute myeloid leukemia by targeting OSBPL11. J Nanobiotechnology. 20(29)2022.PubMed/NCBI View Article : Google Scholar

44 

Zhang F, Lu Y, Wang M, Zhu J, Li J, Zhang P, Yuan Y and Zhu F: Exosomes derived from human bone marrow mesenchymal stem cells transfer miR-222-3p to suppress acute myeloid leukemia cell proliferation by targeting IRF2/INPP4B. Mol Cell Probes. 51(101513)2020.PubMed/NCBI View Article : Google Scholar

45 

Yan W, Song L, Wang H, Yang W, Hu L and Yang Y: Extracellular vesicles carrying miRNA-181b-5p affects the malignant progression of acute lymphoblastic leukemia. J Transl Med. 19(511)2021.PubMed/NCBI View Article : Google Scholar

46 

Raimondo S, Saieva L, Corrado C, Fontana S, Flugy A, Rizzo A, De Leo G and Alessandro R: Chronic myeloid leukemia-derived exosomes promote tumor growth through an autocrine mechanism. Cell Commun Signal. 13(8)2015.PubMed/NCBI View Article : Google Scholar

47 

Jaworski E, Narayanan A, Van Duyne R, Shabbeer-Meyering S, Iordanskiy S, Saifuddin M, Das R, Afonso PV, Sampey GC, Chung M, et al: Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. J Biol Chem. 289:22284–22305. 2014.PubMed/NCBI View Article : Google Scholar

48 

Haque S and Vaiselbuh SR: Silencing of exosomal miR-181a reverses pediatric acute lymphocytic leukemia cell proliferation. Pharmaceuticals (Basel). 13(241)2020.PubMed/NCBI View Article : Google Scholar

49 

Aslan C, Maralbashi S, Salari F, Kahroba H, Sigaroodi F, Kazemi T and Kharaziha P: Tumor-derived exosomes: Implication in angiogenesis and antiangiogenesis cancer therapy. J Cell Physiol. 234:16885–16903. 2019.PubMed/NCBI View Article : Google Scholar

50 

Ludwig N and Whiteside TL: Potential roles of tumor-derived exosomes in angiogenesis. Expert Opin Ther Targets. 22:409–417. 2018.PubMed/NCBI View Article : Google Scholar

51 

Mineo M, Garfield SH, Taverna S, Flugy A, De Leo G, Alessandro R and Kohn EC: Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a Src-dependent fashion. Angiogenesis. 15:33–45. 2012.PubMed/NCBI View Article : Google Scholar

52 

Corrado C, Saieva L, Raimondo S, Santoro A, De Leo G and Alessandro R: Chronic myelogenous leukaemia exosomes modulate bone marrow microenvironment through activation of epidermal growth factor receptor. J Cell Mol Med. 20:1829–1839. 2016.PubMed/NCBI View Article : Google Scholar

53 

Umezu T, Ohyashiki K, Kuroda M and Ohyashiki JH: Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene. 32:2747–2755. 2013.PubMed/NCBI View Article : Google Scholar

54 

Roma-Rodrigues C, Fernandes AR and Baptista PV: Counteracting the effect of leukemia exosomes by antiangiogenic gold nanoparticles. Int J Nanomedicine. 14:6843–6854. 2019.PubMed/NCBI View Article : Google Scholar

55 

Tadokoro H, Umezu T, Ohyashiki K, Hirano T and Ohyashiki JH: Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells. J Biol Chem. 288:34343–34351. 2013.PubMed/NCBI View Article : Google Scholar

56 

Ohyashiki JH, Umezu T and Ohyashiki K: Exosomes promote bone marrow angiogenesis in hematologic neoplasia: The role of hypoxia. Curr Opin Hematol. 23:268–273. 2016.PubMed/NCBI View Article : Google Scholar

57 

Taverna S, Fontana S, Monteleone F, Pucci M, Saieva L, De Caro V, Cardinale VG, Giallombardo M, Vicario E, Rolfo C, et al: Curcumin modulates chronic myelogenous leukemia exosomes composition and affects angiogenic phenotype via exosomal miR-21. Oncotarget. 7:30420–30439. 2016.PubMed/NCBI View Article : Google Scholar

58 

Wang B, Wang X, Hou D, Huang Q, Zhan W, Chen C, Liu J, You R, Xie J, Chen P and Huang H: Exosomes derived from acute myeloid leukemia cells promote chemoresistance by enhancing glycolysis-mediated vascular remodeling. J Cell Physiol. 234:10602–10614. 2019.PubMed/NCBI View Article : Google Scholar

59 

Ghosh AK, Secreto CR, Knox TR, Ding W, Mukhopadhyay D and Kay NE: Circulating microvesicles in B-cell chronic lymphocytic leukemia can stimulate marrow stromal cells: Implications for disease progression. Blood. 115:1755–1764. 2010.PubMed/NCBI View Article : Google Scholar

60 

El-Saghir J, Nassar F, Tawil N and El-Sabban M: ATL-derived exosomes modulate mesenchymal stem cells: Potential role in leukemia progression. Retrovirology. 13(73)2016.PubMed/NCBI View Article : Google Scholar

61 

Vago L and Gojo I: Immune escape and immunotherapy of acute myeloid leukemia. J Clin Invest. 130:1552–1564. 2020.PubMed/NCBI View Article : Google Scholar

62 

Clayton A, Mitchell JP, Court J, Linnane S, Mason MD and Tabi Z: Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol. 180:7249–7258. 2008.PubMed/NCBI View Article : Google Scholar

63 

Szczepanski MJ, Szajnik M, Welsh A, Whiteside TL and Boyiadzis M: Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-beta1. Haematologica. 96:1302–1309. 2011.PubMed/NCBI View Article : Google Scholar

64 

Haderk F, Schulz R, Iskar M, Cid LL, Worst T, Willmund KV, Schulz A, Warnken U, Seiler J, Benner A, et al: Tumor-derived exosomes modulate PD-L1 expression in monocytes. Sci Immunol. 2(eaah5509)2017.PubMed/NCBI View Article : Google Scholar

65 

Chitadze G, Bhat J, Lettau M, Janssen O and Kabelitz D: Generation of soluble NKG2D ligands: Proteolytic cleavage, exosome secretion and functional implications. Scand J Immunol. 78:120–129. 2013.PubMed/NCBI View Article : Google Scholar

66 

Whiteside TL: Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc Trans. 41:245–251. 2013.PubMed/NCBI View Article : Google Scholar

67 

Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ and Whiteside TL: Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol. 183:3720–3730. 2009.PubMed/NCBI View Article : Google Scholar

68 

Santos PM and Butterfield LH: Dendritic cell-based cancer vaccines. J Immunol. 200:443–449. 2018.PubMed/NCBI View Article : Google Scholar

69 

Yin W, Ouyang S, Li Y, Xiao B and Yang H: Immature dendritic cell-derived exosomes: A promise subcellular vaccine for autoimmunity. Inflammation. 36:232–240. 2013.PubMed/NCBI View Article : Google Scholar

70 

Van Acker HH, Versteven M, Lichtenegger FS, Roex G, Campillo-Davo D, Lion E, Subklewe M, Van Tendeloo VF, Berneman ZN and Anguille S: Dendritic cell-based immunotherapy of acute myeloid leukemia. J Clin Med. 8(579)2019.PubMed/NCBI View Article : Google Scholar

71 

Zhou J, Wang S, Sun K and Chng WJ: The emerging roles of exosomes in leukemogeneis. Oncotarget. 7:50698–50707. 2016.PubMed/NCBI View Article : Google Scholar

72 

Wang Y, Xiang Y, Xin VW, Wang XW, Peng XC, Liu XQ, Wang D, Li N, Cheng JT, Lyv YN, et al: Dendritic cell biology and its role in tumor immunotherapy. J Hematol Oncol. 13(107)2020.PubMed/NCBI View Article : Google Scholar

73 

Sabado RL, Balan S and Bhardwaj N: Dendritic cell-based immunotherapy. Cell Res. 27:74–95. 2017.PubMed/NCBI View Article : Google Scholar

74 

Huang L, Rong Y, Tang X, Yi K, Qi P, Hou J, Liu W, He Y, Gao X, Yuan C and Wang F: Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. Mol Cancer. 21(45)2022.PubMed/NCBI View Article : Google Scholar

75 

Lu Z, Zuo B, Jing R, Gao X, Rao Q, Liu Z, Qi H, Guo H and Yin H: Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models. J Hepatol. 67:739–748. 2017.PubMed/NCBI View Article : Google Scholar

76 

Wang X, He L, Huang X, Zhang S, Cao W, Che F, Zhu Y and Dai J: Recent progress of exosomes in multiple myeloma: Pathogenesis, diagnosis, prognosis and therapeutic strategies. Cancers (Basel). 13(1635)2021.PubMed/NCBI View Article : Google Scholar

77 

Huang F, Wan J, Hao S, Deng X, Chen L and Ma L: TGF-β1-silenced leukemia cell-derived exosomes target dendritic cells to induce potent anti-leukemic immunity in a mouse model. Cancer Immunol Immunother. 66:1321–1331. 2017.PubMed/NCBI View Article : Google Scholar

78 

Huang F, Li Z, Zhang W, Li J and Hao S: Enhancing the anti-leukemia immunity of acute lymphocytic leukemia-derived exosome-based vaccine by downregulation of PD-L1 expression. Cancer Immunol Immunother. 71:2197–2212. 2022.PubMed/NCBI View Article : Google Scholar

79 

Gabrusiewicz K, Li X, Wei J, Hashimoto Y, Marisetty AL, Ott M, Wang F, Hawke D, Yu J, Healy LM, et al: Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncoimmunology. 7(e1412909)2018.PubMed/NCBI View Article : Google Scholar

80 

Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z, Yang J, Wang B, Sun H, et al: Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 560:382–386. 2018.PubMed/NCBI View Article : Google Scholar

81 

Hu K, Gu Y, Lou L, Liu L, Hu Y, Wang B, Luo Y, Shi J, Yu X and Huang H: Galectin-3 mediates bone marrow microenvironment-induced drug resistance in acute leukemia cells via Wnt/β-catenin signaling pathway. J Hematol Oncol. 8(1)2015.PubMed/NCBI View Article : Google Scholar

82 

Cheng YL, Huang WC, Chen CL, Tsai CC, Wang CY, Chiu WH, Chen YL, Lin YS, Chang CF and Lin CF: Increased Galectin-3 facilitates leukemia cell survival from apoptotic stimuli. Biochem Biophys Res Commun. 412:334–340. 2011.PubMed/NCBI View Article : Google Scholar

83 

Fei F, Joo EJ, Tarighat SS, Schiffer I, Paz H, Fabbri M, Abdel-Azim H, Groffen J and Heisterkamp N: B-cell precursor acute lymphoblastic leukemia and stromal cells communicate through Galectin-3. Oncotarget. 6:11378–11394. 2015.PubMed/NCBI View Article : Google Scholar

84 

Chen T, Zhang G, Kong L, Xu S, Wang Y and Dong M: Leukemia-derived exosomes induced IL-8 production in bone marrow stromal cells to protect the leukemia cells against chemotherapy. Life Sci. 221:187–195. 2019.PubMed/NCBI View Article : Google Scholar

85 

Macanas-Pirard P, Broekhuizen R, González A, Oyanadel C, Ernst D, García P, Montecinos VP, Court F, Ocqueteau M, Ramirez P and Nervi B: Resistance of leukemia cells to cytarabine chemotherapy is mediated by bone marrow stroma, involves cell-surface equilibrative nucleoside transporter-1 removal and correlates with patient outcome. Oncotarget. 8:23073–23086. 2017.PubMed/NCBI View Article : Google Scholar

86 

Daver N, Venugopal S and Ravandi F: FLT3 mutated acute myeloid leukemia: 2021 Treatment algorithm. Blood Cancer J. 11(104)2021.PubMed/NCBI View Article : Google Scholar

87 

Daver N, Schlenk RF, Russell NH and Levis MJ: Targeting FLT3 mutations in AML: Review of current knowledge and evidence. Leukemia. 33:299–312. 2019.PubMed/NCBI View Article : Google Scholar

88 

Viola S, Traer E, Huan J, Hornick NI, Tyner JW, Agarwal A, Loriaux M, Johnstone B and Kurre P: Alterations in acute myeloid leukaemia bone marrow stromal cell exosome content coincide with gains in tyrosine kinase inhibitor resistance. Br J Haematol. 172:983–986. 2016.PubMed/NCBI View Article : Google Scholar

89 

Wu J, Zhang Y, Li X, Ren J, Chen L, Chen J and Cao Y: Exosomes from bone marrow mesenchymal stem cells decrease chemosensitivity of acute myeloid leukemia cells via delivering miR-10a. Biochem Biophys Res Commun. 622:149–156. 2022.PubMed/NCBI View Article : Google Scholar

90 

Crompot E, Van Damme M, Pieters K, Vermeersch M, Perez-Morga D, Mineur P, Maerevoet M, Meuleman N, Bron D, Lagneaux L and Stamatopoulos B: Extracellular vesicles of bone marrow stromal cells rescue chronic lymphocytic leukemia B cells from apoptosis, enhance their migration and induce gene expression modifications. Haematologica. 102:1594–1604. 2017.PubMed/NCBI View Article : Google Scholar

91 

Javidi-Sharifi N, Martinez J, English I, Joshi SK, Scopim-Ribeiro R, Viola SK, Edwards DT V, Agarwal A, Lopez C, Jorgens D, et al: FGF2-FGFR1 signaling regulates release of leukemia-protective exosomes from bone marrow stromal cells. Elife. 8(e40033)2019.PubMed/NCBI View Article : Google Scholar

92 

Shah CA, Bei L, Wang H, Platanias LC and Eklund EA: The leukemia-associated Mll-Ell oncoprotein induces fibroblast growth factor 2 (Fgf2)-dependent cytokine hypersensitivity in myeloid progenitor cells. J Biol Chem. 288:32490–32505. 2013.PubMed/NCBI View Article : Google Scholar

93 

Li MY, Zhao C, Chen L, Yao FY, Zhong FM, Chen Y, Xu S, Jiang JY, Yang YL, Min QH, et al: Quantitative proteomic analysis of plasma exosomes to identify the candidate biomarker of imatinib resistance in chronic myeloid leukemia patients. Front Oncol. 11(779567)2021.PubMed/NCBI View Article : Google Scholar

94 

Chen X, Chen Y, Zhang M, Cheng H, Mai H, Yi M, Xu H, Yuan X, Liu S and Wen F: HucMSC exosomes promoted imatinib-induced apoptosis in K562-R cells via a miR-145a-5p/USP6/GLS1 axis. Cell Death Dis. 13(92)2022.PubMed/NCBI View Article : Google Scholar

95 

Dong Y, Lin Y, Gao X, Zhao Y, Wan Z, Wang H, Wei M, Chen X, Qin W, Yang G and Liu L: Targeted blocking of miR328 lysosomal degradation with alkalized exosomes sensitizes the chronic leukemia cells to imatinib. Appl Microbiol Biotechnol. 103:9569–9582. 2019.PubMed/NCBI View Article : Google Scholar

96 

Min QH, Wang XZ, Zhang J, Chen QG, Li SQ, Liu XQ, Li J, Liu J, Yang WM, Jiang YH, et al: Exosomes derived from imatinib-resistant chronic myeloid leukemia cells mediate a horizontal transfer of drug-resistant trait by delivering miR-365. Exp Cell Res. 362:386–393. 2018.PubMed/NCBI View Article : Google Scholar

97 

Liu Y, Song B, Wei Y, Chen F, Chi Y, Fan H, Liu N, Li Z, Han Z and Ma F: Exosomes from mesenchymal stromal cells enhance imatinib-induced apoptosis in human leukemia cells via activation of caspase signaling pathway. Cytotherapy. 20:181–188. 2018.PubMed/NCBI View Article : Google Scholar

98 

Yu D, Li Y, Wang M, Gu J, Xu W, Cai H, Fang X and Zhang X: Exosomes as a new frontier of cancer liquid biopsy. Mol Cancer. 21(56)2022.PubMed/NCBI View Article : Google Scholar

99 

Jia Y, Chen Y, Wang Q, Jayasinghe U, Luo X, Wei Q, Wang J, Xiong H, Chen C, Xu B, et al: Exosome: Emerging biomarker in breast cancer. Oncotarget. 8:41717–41733. 2017.PubMed/NCBI View Article : Google Scholar

100 

Boyiadzis M and Whiteside TL: Plasma-derived exosomes in acute myeloid leukemia for detection of minimal residual disease: Are we ready? Expert Rev Mol Diagn. 16:623–629. 2016.PubMed/NCBI View Article : Google Scholar

101 

An T, Qin S, Xu Y, Tang Y, Huang Y, Situ B, Inal JM and Zheng L: Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis. J Extracell Vesicles. 4(27522)2015.PubMed/NCBI View Article : Google Scholar

102 

Bobrie A, Colombo M, Raposo G and Théry C: Exosome secretion: Molecular mechanisms and roles in immune responses. Traffic. 12:1659–1668. 2011.PubMed/NCBI View Article : Google Scholar

103 

Tzoran I, Rebibo-Sabbah A, Brenner B and Aharon A: Disease dynamics in patients with acute myeloid leukemia: New biomarkers. Exp Hematol. 43:936–943. 2015.PubMed/NCBI View Article : Google Scholar

104 

Hornick NI, Huan J, Doron B, Goloviznina NA, Lapidus J, Chang BH and Kurre P: Serum exosome MicroRNA as a minimally-invasive early biomarker of AML. Sci Rep. 5(11295)2015.PubMed/NCBI View Article : Google Scholar

105 

Hong CS, Muller L, Whiteside TL and Boyiadzis M: Plasma exosomes as markers of therapeutic response in patients with acute myeloid leukemia. Front Immunol. 5(160)2014.PubMed/NCBI View Article : Google Scholar

106 

Li Q, Wu Y, Zhang Y, Sun H, Lu Z, Du K, Fang S and Li W: miR-125b regulates cell progression in chronic myeloid leukemia via targeting BAK1. Am J Transl Res. 8:447–459. 2016.PubMed/NCBI

107 

Jiang L, Deng T, Wang D and Xiao Y: Elevated serum exosomal miR-125b level as a potential marker for poor prognosis in intermediate-risk acute myeloid leukemia. Acta Haematol. 140:183–192. 2018.PubMed/NCBI View Article : Google Scholar

108 

Lin X, Ling Q, Lv Y, Ye W, Huang J, Li X, Guo Q, Wang J, Li Z and Jin J: Plasma exosome-derived microRNA-532 as a novel predictor for acute myeloid leukemia. Cancer Biomark. 28:151–158. 2020.PubMed/NCBI View Article : Google Scholar

109 

Ferrajoli A, Shanafelt TD, Ivan C, Shimizu M, Rabe KG, Nouraee N, Ikuo M, Ghosh AK, Lerner S, Rassenti LZ, et al: Prognostic value of miR-155 in individuals with monoclonal B-cell lymphocytosis and patients with B chronic lymphocytic leukemia. Blood. 122:1891–1899. 2013.PubMed/NCBI View Article : Google Scholar

110 

Stamatopoulos B, Van Damme M, Crompot E, Dessars B, Housni HE, Mineur P, Meuleman N, Bron D and Lagneaux L: Opposite prognostic significance of cellular and serum circulating MicroRNA-150 in patients with chronic lymphocytic leukemia. Mol Med. 21:123–133. 2015.PubMed/NCBI View Article : Google Scholar

111 

Okimoto RA and Van Etten RA: Navigating the road toward optimal initial therapy for chronic myeloid leukemia. Curr Opin Hematol. 18:89–97. 2011.PubMed/NCBI View Article : Google Scholar

112 

Jabbour E and Kantarjian H: Chronic myeloid leukemia: 2020 Update on diagnosis, therapy and monitoring. Am J Hematol. 95:691–709. 2020.PubMed/NCBI View Article : Google Scholar

113 

Bernardi S, Foroni C, Zanaglio C, Re F, Polverelli N, Turra A, Morello E, Farina M, Cattina F, Gandolfi L, et al: Feasibility of tumor-derived exosome enrichment in the onco-hematology leukemic model of chronic myeloid leukemia. Int J Mol Med. 44:2133–2144. 2019.PubMed/NCBI View Article : Google Scholar

114 

Kibria G, Ramos EK, Wan Y, Gius DR and Liu H: Exosomes as a drug delivery system in cancer therapy: Potential and challenges. Mol Pharm. 15:3625–3633. 2018.PubMed/NCBI View Article : Google Scholar

115 

Ha D, Yang N and Nadithe V: Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharm Sin B. 6:287–296. 2016.PubMed/NCBI View Article : Google Scholar

116 

Bellavia D, Raimondo S, Calabrese G, Forte S, Cristaldi M, Patinella A, Memeo L, Manno M, Raccosta S, Diana P, et al: Interleukin 3-receptor targeted exosomes inhibit in vitro and in vivo chronic myelogenous leukemia cell growth. Theranostics. 7:1333–1345. 2017.PubMed/NCBI View Article : Google Scholar

117 

Taverna S, Giallombardo M, Pucci M, Flugy A, Manno M, Raccosta S, Rolfo C, De Leo G and Alessandro R: Curcumin inhibits in vitro and in vivo chronic myelogenous leukemia cells growth: A possible role for exosomal disposal of miR-21. Oncotarget. 6:21918–21933. 2015.PubMed/NCBI View Article : Google Scholar

118 

Gu X, Erb U, Büchler MW and Zöller M: Improved vaccine efficacy of tumor exosome compared to tumor lysate loaded dendritic cells in mice. Int J Cancer. 136:E74–E84. 2015.PubMed/NCBI View Article : Google Scholar

119 

Cheng Q, Shi X and Zhang Y: Reprogramming exosomes for immunotherapy. Methods Mol Biol. 2097:197–209. 2020.PubMed/NCBI View Article : Google Scholar

120 

Qiao L, Hu S, Huang K, Su T, Li Z, Vandergriff A, Cores J, Dinh PU, Allen T, Shen D, et al: Tumor cell-derived exosomes home to their cells of origin and can be used as Trojan horses to deliver cancer drugs. Theranostics. 10:3474–3487. 2020.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen L, Xie T, Wei B and Di D: Tumour‑derived exosomes and their emerging roles in leukaemia (Review). Exp Ther Med 25: 126, 2023.
APA
Chen, L., Xie, T., Wei, B., & Di, D. (2023). Tumour‑derived exosomes and their emerging roles in leukaemia (Review). Experimental and Therapeutic Medicine, 25, 126. https://doi.org/10.3892/etm.2023.11825
MLA
Chen, L., Xie, T., Wei, B., Di, D."Tumour‑derived exosomes and their emerging roles in leukaemia (Review)". Experimental and Therapeutic Medicine 25.3 (2023): 126.
Chicago
Chen, L., Xie, T., Wei, B., Di, D."Tumour‑derived exosomes and their emerging roles in leukaemia (Review)". Experimental and Therapeutic Medicine 25, no. 3 (2023): 126. https://doi.org/10.3892/etm.2023.11825
Copy and paste a formatted citation
x
Spandidos Publications style
Chen L, Xie T, Wei B and Di D: Tumour‑derived exosomes and their emerging roles in leukaemia (Review). Exp Ther Med 25: 126, 2023.
APA
Chen, L., Xie, T., Wei, B., & Di, D. (2023). Tumour‑derived exosomes and their emerging roles in leukaemia (Review). Experimental and Therapeutic Medicine, 25, 126. https://doi.org/10.3892/etm.2023.11825
MLA
Chen, L., Xie, T., Wei, B., Di, D."Tumour‑derived exosomes and their emerging roles in leukaemia (Review)". Experimental and Therapeutic Medicine 25.3 (2023): 126.
Chicago
Chen, L., Xie, T., Wei, B., Di, D."Tumour‑derived exosomes and their emerging roles in leukaemia (Review)". Experimental and Therapeutic Medicine 25, no. 3 (2023): 126. https://doi.org/10.3892/etm.2023.11825
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team