Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
April-2023 Volume 25 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2023 Volume 25 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Nanomedicines for high‑intensity focused ultrasound cancer treatment and theranostics (Review)

  • Authors:
    • Qinyun Zheng
    • Bingxin Xia
    • Xianlong Huang
    • Jie Luo
    • Shigen Zhong
    • Xuelin Li
  • View Affiliations / Copyright

    Affiliations: Department of Health Management Centre, Chongqing General Hospital, Chongqing 401147, P.R. China, Department of Health Management Centre, Chongqing General Hospital, Chongqing 401147, P.R. China, College of Biomedical Engineering, Chongqing Medical University, Chongqing 401147, P.R. China
    Copyright: © Zheng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 170
    |
    Published online on: March 3, 2023
       https://doi.org/10.3892/etm.2023.11869
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

High‑intensity focused ultrasound (HIFU) is a promising and representative non‑invasive therapeutic method for treating cancer with a high degree of efficacy. This non‑invasive method induces tumour cell necrosis by increasing the local temperature and mechanical pressure. However, the clinical application of HIFU is limited given its low penetration depth and the incidence of off‑target side effects. With their promising structural adjustability and targeting ability, nanomedicines have been adopted to improve the ablative efficacy of HIFU in the treatment of cancer. By selectively changing the acoustic environment (tissue structure, density and blood supply) of tumour tissue, these nanomedicines may allow for lower HIFU doses and treatment duration, while additionally achieving a higher degree of efficacy. The use of nanomedicines may also enable cancer theranostics of HIFU, allowing for precise cancer therapeutics. The present review aimed to provide an overview of advances in nanomedicines for HIFU cancer treatment and theranostics, stating their current limitations and future perspectives.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Patel D, Shah Y, Thakkar N, Shah K and Shah M: Implementation of artificial intelligence techniques for cancer detection. Augment Hum Res. 5:1–10. 2020.

2 

Burugu S, Dancsok AR and Nielsen TO: Emerging targets in cancer immunotherapy. Semin Cancer Biol. 52:39–52. 2018.PubMed/NCBI View Article : Google Scholar

3 

Liu S, Zhou X, Yao Y, Shi K, Yu M and Ji F: Resection of the gastric submucosal tumor (G-SMT) originating from the muscularis propria layer: Comparison of efficacy, patients' tolerability, and clinical outcomes between endoscopic full-thickness resection and surgical resection. Surg Endosc. 34:4053–4064. 2020.PubMed/NCBI View Article : Google Scholar

4 

Pirisinu M, Pham TC, Zhang DX, Hong TN, Nguyen LT and Le MT: Extracellular vesicles as natural therapeutic agents and innate drug delivery systems for cancer treatment: Recent advances, current obstacles, and challenges for clinical translation. Semin Cancer Biol. 80:340–355. 2022.PubMed/NCBI View Article : Google Scholar

5 

Westhoff N, Ernst R, Kowalewski KF, Derigs F, Neuberger M, Nörenberg D, Popovic ZV, Ritter M, Stephan Michel M and von Hardenberg J: Medium-term oncological efficacy and patient-reported outcomes after focal high-intensity focused ultrasound: The FOXPRO trial. Eur Urol Focus. 22:S2405–S4569. 2022.PubMed/NCBI View Article : Google Scholar

6 

Li Y, Wang S, Chen L, Feng Y, Shen Z, Chen X, Huang G and Ni Y: Sequential administrations of a vascular-disrupting agent, high-intensity focused ultrasound, and a radioactively labeled necrosis avid compound for eradicating solid malignancies. Technol Cancer Res Treat. 21(15330338221136716)2022.PubMed/NCBI View Article : Google Scholar

7 

Zhong Q, Tang F, Ni T, Chen Y, Liu Y, Wu J, Zhou W, Feng Z, Lu X, Tan S and Zhang Y: Salvage high intensity focused ultrasound for residual or recurrent cervical cancer after definitive chemoradiotherapy. Front Immunol. 13(995930)2022.PubMed/NCBI View Article : Google Scholar

8 

Lindstrom PA: Prefrontal ultrasonic irradiation-a substitute for lobotomy. AMA Arch Neurol Psychiatry. 72:399–425. 1954.PubMed/NCBI View Article : Google Scholar

9 

Fry WJ, Barnard JW, Fry EJ, Krumins RF and Brennan JF: Ultrasonic lesions in the mammalian central nervous system. Science. 122:517–518. 1955.PubMed/NCBI

10 

ter Haar G: Intervention and therapy. Ultrasound Med Biol 26 Suppl. 1:S51–S54. 2000.PubMed/NCBI View Article : Google Scholar

11 

Liu L, Wang T and Lei B: High-intensity focused ultrasound (HIFU) ablation versus surgical interventions for the treatment of symptomatic uterine fibroids: A meta-analysis. Eur Radiol. 32:1195–1204. 2022.PubMed/NCBI View Article : Google Scholar

12 

Wang C, Li Z and Bai J: Bubble-assisted HIFU ablation enabled by calcium peroxide. J Mater Chem B. 10:4442–4451. 2022.PubMed/NCBI View Article : Google Scholar

13 

Chaussy CG and Thüroff S: High-Intensity focused ultrasound for the treatment of prostate cancer: A review. J Endourol. 31(S1):S30–S37. 2017.PubMed/NCBI View Article : Google Scholar

14 

Napoli A, Alfieri G, Scipione R, Leonardi A, Fierro D, Panebianco V, De Nunzio C, Leonardo C and Catalano C: High-intensity focused ultrasound for prostate cancer. Expert Rev Med Devices. 17:427–433. 2020.PubMed/NCBI View Article : Google Scholar

15 

Fishman PS and Fischell JM: Focused ultrasound mediated opening of the blood-brain barrier for neurodegenerative diseases. Front Neurol. 12(749047)2021.PubMed/NCBI View Article : Google Scholar

16 

Martínez-Fernández R, Máñez-Miró JU, Rodríguez-Rojas R, Del Álamo M, Shah BB, Hernández-Fernández F, Pineda-Pardo JA, Monje MHG, Fernández-Rodríguez B, Sperling SA, et al: Randomized trial of focused ultrasound subthalamotomy for Parkinson's Disease. N Engl J Med. 383:2501–2513. 2020.PubMed/NCBI View Article : Google Scholar

17 

Moosa S, Martínez-Fernández R, Elias WJ, Del Alamo M, Eisenberg HM and Fishman PS: The role of high-intensity focused ultrasound as a symptomatic treatment for Parkinson's disease. Mov Disord. 34:1243–1251. 2019.PubMed/NCBI View Article : Google Scholar

18 

Giordano M, Caccavella VM, Zaed I, Foglia Manzillo L, Montano N, Olivi A and Polli FM: Comparison between deep brain stimulation and magnetic resonance-guided focused ultrasound in the treatment of essential tremor: A systematic review and pooled analysis of functional outcomes. J Neurol Neurosurg Psychiatry. 91:1270–1278. 2020.PubMed/NCBI View Article : Google Scholar

19 

Abe K, Horisawa S, Yamaguchi T, Hori H, Yamada K, Kondo K, Furukawa H, Kamada H, Kishima H, Oshino S, et al: Focused ultrasound thalamotomy for refractory essential tremor: A Japanese multicenter single-arm study. Neurosurgery. 88:751–757. 2021.PubMed/NCBI View Article : Google Scholar

20 

Jeng CJ, Ou KY, Long CY, Chuang L and Ker CR: 500 cases of high-intensity focused ultrasound (HIFU) ablated uterine fibroids and adenomyosis. Taiwan J Obstet Gynecol. 59:865–871. 2020.PubMed/NCBI View Article : Google Scholar

21 

Sequeiros RB, Joronen K, Komar G and Koskinen SK: High intensity focused ultrasound (HIFU) in tumor therapy. Duodecim. 133:143–149. 2017.PubMed/NCBI

22 

Marinova M, Wilhelm-Buchstab T and Strunk H: Advanced pancreatic cancer: High-Intensity Focused Ultrasound (HIFU) and other local ablative therapies. RoFo. 191:216–227. 2019.PubMed/NCBI View Article : Google Scholar

23 

Zhou YF: High intensity focused ultrasound in clinical tumor ablation. World J Clin Oncol. 2:8–27. 2011.PubMed/NCBI View Article : Google Scholar

24 

Bachu VS, Kedda J, Suk I, Green JJ and Tyler B: High-Intensity Focused Ultrasound: A Review of Mechanisms and Clinical Applications. Ann Biomed Eng. 49:1975–1991. 2021.PubMed/NCBI View Article : Google Scholar

25 

Izadifar Z, Izadifar Z, Chapman D and Babyn P: An introduction to high intensity focused ultrasound: Systematic review on principles, devices, and clinical applications. J Clin Med. 9(460)2020.PubMed/NCBI View Article : Google Scholar

26 

Miller DL, Smith NB, Bailey MR, Czarnota GJ, Hynynen K and Makin IR: Bioeffects Committee of the American Institute of Ultrasound in Medicine. Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med. 31:623–634. 2012.PubMed/NCBI View Article : Google Scholar

27 

Awad NS, Paul V, AlSawaftah NM, Ter Haar G, Allen TM, Pitt WG and Husseini GA: Ultrasound-responsive nanocarriers in cancer treatment: A review. ACS Pharmacol Transl Sci. 4:589–612. 2021.PubMed/NCBI View Article : Google Scholar

28 

Zhang Q, Dai X, Zhang H, Zeng Y, Luo K and Li W: Recent advances in development of nanomedicines for multiple sclerosis diagnosis. Biomed Mater. 16(024101)2021.PubMed/NCBI View Article : Google Scholar

29 

Zeng Y, Li Z, Zhu H, Gu Z, Zhang H and Luo K: Recent advances in nanomedicines for multiple sclerosis therapy. ACS Appl Bio Mater. 3:6571–6597. 2020.PubMed/NCBI View Article : Google Scholar

30 

Zhou Y, Wang Z, Chen Y, Shen H, Luo Z, Li A, Wang Q, Ran H, Li P, Song W, et al: Microbubbles from gas-generating perfluorohexane nanoemulsions for targeted temperature-sensitive ultrasonography and synergistic HIFU ablation of tumors. Adv Mater. 25:4123–4130. 2013.PubMed/NCBI View Article : Google Scholar

31 

Du Y, Lin L, Zhang Z, Tang Y, Ou X, Wang Y and Zou J: Drug-loaded nanoparticles conjugated with genetically engineered bacteria for cancer therapy. Biochem Biophys Res Commun. 606:29–34. 2022.PubMed/NCBI View Article : Google Scholar

32 

Manthe RL, Foy SP, Krishnamurthy N, Sharma B and Labhasetwar V: Tumor ablation and nanotechnology. Mol Pharm. 7:1880–1898. 2010.PubMed/NCBI View Article : Google Scholar

33 

Chen D and Wu J: An in vitro feasibility study of controlled drug release from encapsulated nanometer liposomes using high intensity focused ultrasound. Ultrasonics. 50:744–749. 2010.PubMed/NCBI View Article : Google Scholar

34 

O'Neill BE, Vo H, Angstadt M, Li KP, Quinn T and Frenkel V: Pulsed high intensity focused ultrasound mediated nanoparticle delivery: Mechanisms and efficacy in murine muscle. Ultrasound Med Biol. 35:416–424. 2009.PubMed/NCBI View Article : Google Scholar

35 

Chen J, Nan Z, Zhao Y, Zhang L, Zhu H, Wu D, Zong Y, Lu M, Ilovitsh T, Wan M, et al: Enhanced HIFU Theranostics with dual-frequency-ring focused ultrasound and activatable perfluoropentane-loaded polymer nanoparticles. Micromachines (Basel). 12(1324)2021.PubMed/NCBI View Article : Google Scholar

36 

Sadeghi-Goughari M, Jeon S and Kwon HJ: Analytical and numerical model of high intensity focused ultrasound enhanced with nanoparticles. IEEE Trans Biomed Eng. 67:3083–3093. 2020.PubMed/NCBI View Article : Google Scholar

37 

Chen Y, Chen H and Shi J: Nanobiotechnology promotes noninvasive high-intensity focused ultrasound cancer surgery. Adv Healthc Mater. 4:158–165. 2015.PubMed/NCBI View Article : Google Scholar

38 

Poh S, Chelvam V and Low PS: Comparison of nanoparticle penetration into solid tumors and sites of inflammation: Studies using targeted and nontargeted liposomes. Nanomedicine (Lond). 10:1439–1449. 2015.PubMed/NCBI View Article : Google Scholar

39 

Tang H, Guo Y, Peng L, Fang H, Wang Z, Zheng Y, Ran H and Chen Y: In Vivo targeted, responsive, and synergistic cancer nanotheranostics by magnetic resonance imaging-guided synergistic high-intensity focused ultrasound ablation and chemotherapy. ACS Appl Mater Interfaces. 10:15428–15441. 2018.PubMed/NCBI View Article : Google Scholar

40 

Tharkar P, Varanasi R, Wong WSF, Jin CT and Chrzanowski W: Nano-Enhanced drug delivery and therapeutic ultrasound for cancer treatment and beyond. Front Bioeng Biotechnol. 7(324)2019.PubMed/NCBI View Article : Google Scholar

41 

Wang X, Yan F, Liu X, Wang P, Shao S, Sun Y, Sheng Z, Liu Q, Lovell JF and Zheng H: Enhanced drug delivery using sonoactivatable liposomes with membrane-embedded porphyrins. J Control Release. 286:358–368. 2018.PubMed/NCBI View Article : Google Scholar

42 

Chaudhuri A, Kumar DN, Shaik RA, Eid BG, Abdel-Naim AB, Md S, Ahmad A and Agrawal AK: Lipid-Based nanoparticles as a pivotal delivery approach in triple negative breast cancer (TNBC) therapy. Int J Mol Sci. 23(10068)2022.PubMed/NCBI View Article : Google Scholar

43 

Yudina A and Moonen C: Ultrasound-induced cell permeabilisation and hyperthermia: Strategies for local delivery of compounds with intracellular mode of action. Int J Hyperthermia. 28:311–319. 2012.PubMed/NCBI View Article : Google Scholar

44 

Cha JM, You DG, Choi EJ, Park SJ, Um W, Jeon J, Kim K, Kwon IC, Park JC, Kim HR and Park JH: Improvement of Antitumor Efficacy by Combination of Thermosensitive Liposome with High-Intensity Focused Ultrasound. J Biomed Nanotechnol. 12:1724–1733. 2016.PubMed/NCBI View Article : Google Scholar

45 

Deng Z, Xiao Y, Pan M, Li F, Duan W, Meng L, Liu X, Yan F and Zheng H: Hyperthermia-triggered drug delivery from iRGD-modified temperature-sensitive liposomes enhances the anti-tumor efficacy using high intensity focused ultrasound. J Control Release. 243:333–341. 2016.PubMed/NCBI View Article : Google Scholar

46 

Yang Q, Zhou Y, Chen J, Huang N, Wang Z and Cheng Y: Gene therapy for drug-resistant glioblastoma via lipid-polymer hybrid nanoparticles combined with focused ultrasound. Int J Nanomedicine. 16:185–199. 2021.PubMed/NCBI View Article : Google Scholar

47 

Arsiwala TA, Sprowls SA, Blethen KE, Adkins CE, Saralkar PA, Fladeland RA, Pentz W, Gabriele A, Kielkowski B, Mehta RI, et al: Ultrasound-mediated disruption of the blood tumor barrier for improved therapeutic delivery. Neoplasia. 23:676–691. 2021.PubMed/NCBI View Article : Google Scholar

48 

Luo Z, Jin K, Pang Q, Shen S, Yan Z, Jiang T, Zhu X, Yu L, Pang Z and Jiang X: On-Demand drug release from dual-targeting small nanoparticles triggered by high-intensity focused ultrasound enhanced glioblastoma-targeting therapy. ACS Appl Mater Interfaces. 9:31612–31625. 2017.PubMed/NCBI View Article : Google Scholar

49 

Sokka S, King R and Hynynen K: MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh. Phys Med Biol. 48:223–241. 2003.PubMed/NCBI View Article : Google Scholar

50 

Clark A, Bonilla S, Suo D, Shapira Y and Averkiou M: Microbubble-Enhanced Heating: Exploring the effect of microbubble concentration and pressure amplitude on high-intensity focused ultrasound treatments. Ultrasound Med Biol. 47:2296–2309. 2021.PubMed/NCBI View Article : Google Scholar

51 

Xin Y, Zhang A, Xu LX and Fowlkes JB: Numerical study of bubble cloud and thermal lesion evolution during acoustic droplet vaporization enhanced HIFU treatment. J Biomech Eng. 144(031007)2022.PubMed/NCBI View Article : Google Scholar

52 

Okita K, Sugiyama K, Takagi S and Matsumto Y: Microbubble behavior in an ultrasound field for high intensity focused ultrasound therapy enhancement. J Acoust Soc Am. 134:1576–1585. 2013.PubMed/NCBI View Article : Google Scholar

53 

Hamano N, Negishi Y, Takatori K, Endo-Takahashi Y, Suzuki R, Maruyama K, Niidome T and Aramaki Y: Combination of bubble liposomes and high-intensity focused ultrasound (HIFU) enhanced antitumor effect by tumor ablation. Biol Pharm Bull. 37:174–177. 2014.PubMed/NCBI View Article : Google Scholar

54 

VanOsdol J, Ektate K, Ramasamy S, Maples D, Collins W, Malayer J and Ranjan A: Sequential HIFU heating and nanobubble encapsulation provide efficient drug penetration from stealth and temperature sensitive liposomes in colon cancer. J Control Release. 247:55–63. 2017.PubMed/NCBI View Article : Google Scholar

55 

Zhou LQ, Li P, Cui XW and Dietrich CF: Ultrasound nanotheranostics in fighting cancer: Advances and prospects. Cancer Lett. 470:204–219. 2020.PubMed/NCBI View Article : Google Scholar

56 

Li K, Liu Y, Zhang S, Xu Y, Jiang J, Yin F, Hu Y, Han B, Ge S, Zhang L and Wang Y: Folate receptor-targeted ultrasonic PFOB nanoparticles: Synthesis, characterization and application in tumor-targeted imaging. Int J Mol Med. 39:1505–1515. 2017.PubMed/NCBI View Article : Google Scholar

57 

Sheeran PS, Matsunaga TO and Dayton PA: Phase change events of volatile liquid perfluorocarbon contrast agents produce unique acoustic signatures. Phys Med Biol. 59:379–401. 2014.PubMed/NCBI View Article : Google Scholar

58 

Picheth G, Houvenagel S, Dejean C, Couture O, Alves de Freitas R, Moine L and Tsapis N: Echogenicity enhancement by end-fluorinated polylactide perfluorohexane nanocapsules: Towards ultrasound-activable nanosystems. Acta Biomater. 64:313–322. 2017.PubMed/NCBI View Article : Google Scholar

59 

Ashida R, Kawabata K, Maruoka T, Asami R, Yoshikawa H, Takakura R, Ioka T, Katayama K and Tanaka S: New approach for local cancer treatment using pulsed high-intensity focused ultrasound and phase-change nanodroplets. J Med Ultrason (2001). 42:457–466. 2015.PubMed/NCBI View Article : Google Scholar

60 

Xu T, Cui Z, Li D, Cao F, Xu J, Zong Y, Wang S, Bouakaz A, Wan M and Zhang S: Cavitation characteristics of flowing low and high boiling-point perfluorocarbon phase-shift nanodroplets during focused ultrasound exposures. Ultrason Sonochem. 65(105060)2020.PubMed/NCBI View Article : Google Scholar

61 

Rapoport N: Phase-shift, stimuli-responsive perfluorocarbon nanodroplets for drug delivery to cancer. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 4:492–510. 2012.PubMed/NCBI View Article : Google Scholar

62 

Sheeran PS and Dayton PA: Phase-change contrast agents for imaging and therapy. Curr Pharm Des. 18:2152–2165. 2012.PubMed/NCBI View Article : Google Scholar

63 

Kwizera EA, Stewart S, Mahmud MM and He X: Magnetic nanoparticle-mediated heating for biomedical applications. J Heat Transfer. 144(030801)2022.PubMed/NCBI View Article : Google Scholar

64 

Zhang Y, Yong L, Luo Y, Ding X, Xu D, Gao X, Yan S, Wang Q, Luo J, Pu D and Zou J: Enhancement of HIFU ablation by sonosensitizer-loading liquid fluorocarbon nanoparticles with pre-targeting in a mouse model. Sci Rep. 9(6982)2019.PubMed/NCBI View Article : Google Scholar

65 

Sun Y, Zheng Y, Ran H, Zhou Y, Shen H, Chen Y, Chen H, Krupka TM, Li A, Li P, et al: Superparamagnetic PLGA-iron oxide microcapsules for dual-modality US/MR imaging and high intensity focused US breast cancer ablation. Biomaterials. 33:5854–5864. 2012.PubMed/NCBI View Article : Google Scholar

66 

Sun Y, Zheng Y, Li P, Wang D, Niu C, Gong Y, Huang R, Wang Z, Wang Z and Ran H: Evaluation of superparamagnetic iron oxide-polymer composite microcapsules for magnetic resonance-guided high-intensity focused ultrasound cancer surgery. BMC Cancer. 14(800)2014.PubMed/NCBI View Article : Google Scholar

67 

You Y, Wang Z, Ran H, Zheng Y, Wang D, Xu J, Wang Z, Chen Y and Li P: Nanoparticle-enhanced synergistic HIFU ablation and transarterial chemoembolization for efficient cancer therapy. Nanoscale. 8:4324–4339. 2016.PubMed/NCBI View Article : Google Scholar

68 

Ho VH, Smith MJ and Slater NK: Effect of magnetite nanoparticle agglomerates on the destruction of tumor spheroids using high intensity focused ultrasound. Ultrasound Med Biol. 37:169–175. 2011.PubMed/NCBI View Article : Google Scholar

69 

Dibaji SAR, Al-Rjoub MF, Myers MR and Banerjee RK: Enhanced heat transfer and thermal dose using magnetic nanoparticles during HIFU thermal ablation-an in-vitro study. J Nanotechnol Eng Med. 4(040902)2014.

70 

Devarakonda SB, Myers MR, Giridhar D, Dibaji SA and Banerjee RK: Enhanced thermal effect using magnetic nano-particles during high-intensity focused ultrasound. PLoS One. 12(e0175093)2017.PubMed/NCBI View Article : Google Scholar

71 

Devarakonda SB, Myers MR and Banerjee RK: Comparison of heat transfer enhancement between magnetic and gold nanoparticles during HIFU sonication. J Biomech Eng. 140:2018.PubMed/NCBI View Article : Google Scholar

72 

Kaczmarek K, Hornowski T, Kubovčíková M, Timko M, Koralewski M and Józefczak A: Heating induced by therapeutic ultrasound in the presence of magnetic nanoparticles. ACS Appl Mater Interfaces. 10:11554–11564. 2018.PubMed/NCBI View Article : Google Scholar

73 

Sadeghi-Goughari M, Jeon S and Kwon HJ: Magnetic nanoparticles-enhanced focused ultrasound heating: Size effect, mechanism, and performance analysis. Nanotechnology. 31(245101)2020.PubMed/NCBI View Article : Google Scholar

74 

Kimura NT, Taniguchi S, Aoki K and Baba T: Selective localization and growth of Bifidobacterium bifidum in mouse tumors following intravenous administration. Cancer Res. 40:2061–2068. 1980.PubMed/NCBI

75 

Li X, Fu GF, Fan YR, Liu WH, Liu XJ, Wang JJ and Xu GX: Bifidobacterium adolescentis as a delivery system of endostatin for cancer gene therapy: Selective inhibitor of angiogenesis and hypoxic tumor growth. Cancer Gene Ther. 10:105–111. 2003.PubMed/NCBI View Article : Google Scholar

76 

Luo CH, Huang CT, Su CH and Yeh CS: Bacteria-Mediated hypoxia-specific delivery of nanoparticles for tumors imaging and therapy. Nano Lett. 16:3493–3499. 2016.PubMed/NCBI View Article : Google Scholar

77 

Xu D, Zou W, Luo Y, Gao X, Jiang B, Wang Y, Jiang F, Xiong J, Chen C, Tang Y, et al: Feasibility between bifidobacteria targeting and changes in the acoustic environment of tumor tissue for synergistic HIFU. Sci Rep. 10(7772)2020.PubMed/NCBI View Article : Google Scholar

78 

Jiang BL, Gao X, Xiong J, Zhu PY, Luo Y, Xu D, Tang Y, Wang YT, Chen C, Yang HY, et al: Experimental study on synergistic effect of HIFU treatment of tumors using Bifidobacterium bound with cationic phase-change nanoparticles. Eur Rev Med Pharmacol Sci. 24:5714–5725. 2020.PubMed/NCBI View Article : Google Scholar

79 

Zhu C, Ji Z, Ma J, Ding Z, Shen J and Wang QW: Recent advances of nanotechnology-facilitated bacteria-based drug and gene delivery systems for cancer treatment. Pharmaceutics. 13(940)2021.PubMed/NCBI View Article : Google Scholar

80 

Yin T, Diao Z, Blum NT, Qiu L, Ma A and Huang P: Engineering bacteria and bionic bacterial derivatives with nanoparticles for cancer therapy. Small. 18(e2104643)2022.PubMed/NCBI View Article : Google Scholar

81 

Kalia VC, Patel SKS, Cho BK, Wood TK and Lee JK: Emerging applications of bacteria as antitumor agents. Semin Cancer Biol. 86(Pt 2):1014–1025. 2022.PubMed/NCBI View Article : Google Scholar

82 

Tang Y, Chen C, Jiang B, Wang L, Jiang F, Wang D, Wang Y, Yang H, Ou X, Du Y, et al: Bifidobacterium bifidum-Mediated specific delivery of nanoparticles for tumor therapy. Int J Nanomedicine. 16:4643–4659. 2021.PubMed/NCBI View Article : Google Scholar

83 

Wang D, Jiang F, Wang L, Tang Y, Zhang Z, Du Y and Zou J: Polyethylenimine (PEI)-modified poly (lactic-co-glycolic) acid (PLGA) nanoparticles conjugated with tumor-homing bacteria facilitate high intensity focused ultrasound-mediated tumor ablation. Biochem Biophys Res Commun. 571:104–109. 2021.PubMed/NCBI View Article : Google Scholar

84 

Tee JK, Yip LX, Tan ES, Santitewagun S, Prasath A, Ke PC, Ho HK and Leong DT: Nanoparticles' interactions with vasculature in diseases. Chem Soc Rev. 48:5381–5407. 2019.PubMed/NCBI View Article : Google Scholar

85 

Wang Y, Chen C, Luo Y, Xiong J, Tang Y, Yang H, Wang L, Jiang F, Gao X, Xu D, et al: Experimental study of tumor therapy mediated by multimodal imaging based on a biological targeting synergistic agent. Int J Nanomedicine. 15:1871–1888. 2020.PubMed/NCBI View Article : Google Scholar

86 

Han H, Lee H, Kim K and Kim H: Effect of high intensity focused ultrasound (HIFU) in conjunction with a nanomedicines-microbubble complex for enhanced drug delivery. J Control Release. 266:75–86. 2017.PubMed/NCBI View Article : Google Scholar

87 

Frazier N, Payne A, Dillon C, Subrahmanyam N and Ghandehari H: Enhanced efficacy of combination heat shock targeted polymer therapeutics with high intensity focused ultrasound. Nanomedicine. 13:1235–1243. 2017.PubMed/NCBI View Article : Google Scholar

88 

Li Q, Zhang J, Li J, Ye H, Li M, Hou W, Li H and Wang Z: Glutathione-Activated NO-/ROS-Generation nanoparticles to modulate the tumor hypoxic microenvironment for enhancing the effect of HIFU-Combined Chemotherapy. ACS Appl Mater Interfaces. 13:26808–26823. 2021.PubMed/NCBI View Article : Google Scholar

89 

Kang Y, Kim J, Park J, Lee YM, Saravanakumar G, Park KM, Choi W, Kim K, Lee E, Kim C and Kim WJ: Tumor vasodilation by N-Heterocyclic carbene-based nitric oxide delivery triggered by high-intensity focused ultrasound and enhanced drug homing to tumor sites for anti-cancer therapy. Biomaterials. 217(119297)2019.PubMed/NCBI View Article : Google Scholar

90 

Li H, Yu C, Zhang J, Li Q, Qiao H, Wang Z and Zeng D: pH-sensitive pullulan-doxorubicin nanoparticles loaded with 1,1,2-trichlorotrifluoroethane as a novel synergist for high intensity focused ultrasound mediated tumor ablation. Int J Pharm. 556:226–235. 2019.PubMed/NCBI View Article : Google Scholar

91 

Yildirim A, Shi D, Roy S, Blum NT, Chattaraj R, Cha JN and Goodwin AP: Nanoparticle-Mediated acoustic cavitation enables high intensity focused ultrasound ablation without tissue heating. ACS Appl Mater Interfaces. 10:36786–36795. 2018.PubMed/NCBI View Article : Google Scholar

92 

Yildirim A, Chattaraj R, Blum NT, Shi D, Kumar K and Goodwin AP: Phospholipid capped mesoporous nanoparticles for targeted high intensity focused ultrasound ablation. Adv Healthc Mater. 6:2017.PubMed/NCBI View Article : Google Scholar

93 

Yildirim A, Blum NT and Goodwin AP: Colloids, nanoparticles, and materials for imaging, delivery, ablation, and theranostics by focused ultrasound (FUS). Theranostics. 9:2572–2594. 2019.PubMed/NCBI View Article : Google Scholar

94 

Jain K and Zhong J: Theranostic applications of nanomaterials. Curr Pharm Des. 28(77)2022.PubMed/NCBI View Article : Google Scholar

95 

Hartl D, de Luca V, Kostikova A, Laramie J, Kennedy S, Ferrero E, Siegel R, Fink M, Ahmed S, Millholland J, et al: Translational precision medicine: An industry perspective. J Transl Med. 19(245)2021.PubMed/NCBI View Article : Google Scholar

96 

Sisodiya SM: Precision medicine and therapies of the future. Epilepsia. 62 (Suppl 2):S90–S105. 2021.PubMed/NCBI View Article : Google Scholar

97 

Li H, Zeng Y, Zhang H, Gu Z, Gong Q and Luo K: Functional gadolinium-based nanoscale systems for cancer theranostics. J Control Release. 329:482–512. 2021.PubMed/NCBI View Article : Google Scholar

98 

Kavros SJ and Coronado R: Diagnostic and therapeutic ultrasound on venous and arterial ulcers: A focused review. Adv Skin Wound Care. 31:55–65. 2018.PubMed/NCBI View Article : Google Scholar

99 

Meng Y, Pople CB, Budiansky D, Li D, Suppiah S, Lim-Fat MJ, Perry J, Sahgal A and Lipsman N: Current state of therapeutic focused ultrasound applications in neuro-oncology. J Neurooncol. 156:49–59. 2022.PubMed/NCBI View Article : Google Scholar

100 

Blum NT, Yildirim A, Chattaraj R and Goodwin AP: Nanoparticles formed by acoustic destruction of microbubbles and their utilization for imaging and effects on therapy by high intensity focused ultrasound. Theranostics. 7:694–702. 2017.PubMed/NCBI View Article : Google Scholar

101 

Zhu J, Li Z, Zhang C, Lin L, Cao S, Che H, Shi X, Wang H and van Hest JCM: Single enzyme loaded nanoparticles for combinational ultrasound-guided focused ultrasound ablation and hypoxia-relieved chemotherapy. Theranostics. 9:8048–8060. 2019.PubMed/NCBI View Article : Google Scholar

102 

Li C, Lu Y, Cheng L, Zhang X, Yue J and Liu J: Combining mechanical high-intensity focused ultrasound ablation with chemotherapy for augmentation of anticancer immune responses. Mol Pharm. 18:2091–2103. 2021.PubMed/NCBI View Article : Google Scholar

103 

Zhu S, Zhang T, Zheng L, Liu H, Song W, Liu D, Li Z and Pan CX: Combination strategies to maximize the benefits of cancer immunotherapy. J Hematol Oncol. 14(156)2021.PubMed/NCBI View Article : Google Scholar

104 

Chen J, Tan Q, Yang Z and Jin Y: Engineered extracellular vesicles: Potentials in cancer combination therapy. J Nanobiotechnology. 20(132)2022.PubMed/NCBI View Article : Google Scholar

105 

Barisano G, Sepehrband F, Ma S, Jann K, Cabeen R, Wang DJ, Toga AW and Law M: Clinical 7 T MRI: Are we there yet? A review about magnetic resonance imaging at ultra-high field. Br J Radiol. 92(20180492)2019.PubMed/NCBI View Article : Google Scholar

106 

Lutz NW and Bernard M: Contactless Thermometry by MRI and MRS: Advanced methods for thermotherapy and biomaterials. iScience. 23(101561)2020.PubMed/NCBI View Article : Google Scholar

107 

Sparacia G and Sakai K: Temperature measurement by diffusion-weighted imaging. Magn Reson Imaging Clin N Am. 29:253–261. 2021.PubMed/NCBI View Article : Google Scholar

108 

Devarakonda SB, Myers MR, Lanier M, Dumoulin C and Banerjee RK: Assessment of gold nanoparticle-mediated-enhanced hyperthermia using MR-Guided high-intensity focused ultrasound ablation procedure. Nano Lett. 17:2532–2538. 2017.PubMed/NCBI View Article : Google Scholar

109 

Devarakonda SB, Stringer K, Rao M, Myers M and Banerjee R: Assessment of enhanced thermal effect due to gold nanoparticles during MR-Guided high-intensity focused ultrasound (HIFU) procedures using a mouse-tumor model. ACS Biomater Sci Eng. 5:4102–4111. 2019.PubMed/NCBI View Article : Google Scholar

110 

Kuai X, Zhu Y, Yuan Z, Wang S, Lin L, Ye X, Lu Y, Luo Y, Pang Z, Geng D and Yin B: Perfluorooctyl bromide nanoemulsions holding MnO2 nanoparticles with dual-modality imaging and glutathione depletion enhanced HIFU-eliciting tumor immunogenic cell death. Acta Pharm Sin B. 12:967–981. 2022.PubMed/NCBI View Article : Google Scholar

111 

Mattrey RF: Perfluorooctylbromide: A new contrast agent for CT, sonography, and MR imaging. AJR Am J Roentgenol. 152:247–252. 1989.PubMed/NCBI View Article : Google Scholar

112 

Li X, Sui Z, Li X, Xu W, Guo Q, Sun J and Jing F: Perfluorooctylbromide nanoparticles for ultrasound imaging and drug delivery. Int J Nanomedicine. 13:3053–3067. 2018.PubMed/NCBI View Article : Google Scholar

113 

Pellico J, Ellis CM and Davis JJ: Nanoparticle-based paramagnetic contrast agents for magnetic resonance imaging. Contrast Media Mol Imaging. 2019(1845637)2019.PubMed/NCBI View Article : Google Scholar

114 

Cai X, Zhu Q, Zeng Y, Zeng Q, Chen X and Zhan Y: Manganese oxide nanoparticles As MRI contrast agents in tumor multimodal imaging and therapy. Int J Nanomedicine. 14:8321–8344. 2019.PubMed/NCBI View Article : Google Scholar

115 

Das D, Sharma A, Rajendran P and Pramanik M: Another decade of photoacoustic imaging. Phys Med Biol. 66(5)2021.PubMed/NCBI View Article : Google Scholar

116 

Jacques SL: Optical properties of biological tissues: A review. Phys Med Biol. 58:R37–R61. 2013.PubMed/NCBI View Article : Google Scholar

117 

Wu D, Huang L, Jiang MS and Jiang H: Contrast agents for photoacoustic and thermoacoustic imaging: A review. Int J Mol Sci. 15:23616–23639. 2014.PubMed/NCBI View Article : Google Scholar

118 

Palma-Chavez J, Pfefer TJ, Agrawal A, Jokerst JV and Vogt WC: Review of consensus test methods in medical imaging and current practices in photoacoustic image quality assessment. J Biomed Opt. 26(090901)2021.PubMed/NCBI View Article : Google Scholar

119 

Steinberg I, Huland DM, Vermesh O, Frostig HE, Tummers WS and Gambhir SS: Photoacoustic clinical imaging. Photoacoustics. 14:77–98. 2019.PubMed/NCBI View Article : Google Scholar

120 

Brunker J, Yao JJ, Laufer J and Bohndiek SE: Photoacoustic imaging using genetically encoded reporters: A review. J Biomed Opt. 22:2017.PubMed/NCBI View Article : Google Scholar

121 

Feng G, Hao L, Xu C, Ran H, Zheng Y, Li P, Cao Y, Wang Q, Xia J and Wang Z: High-intensity focused ultrasound-triggered nanoscale bubble-generating liposomes for efficient and safe tumor ablation under photoacoustic imaging monitoring. Int J Nanomedicine. 12:4647–4659. 2017.PubMed/NCBI View Article : Google Scholar

122 

Attia ABE, Balasundaram G, Moothanchery M, Dinish US, Bi R, Ntziachristos V and Olivo M: A review of clinical photoacoustic imaging: Current and future trends. Photoacoustics. 16(100144)2019.PubMed/NCBI View Article : Google Scholar

123 

Gao H, Wang Z, Tan M, Liu W, Zhang L, Huang J, Cao Y, Li P, Wang Z, Wen J, et al: pH-Responsive nanoparticles for enhanced antitumor activity by high-intensity focused ultrasound therapy combined with sonodynamic therapy. Int J Nanomedicine. 17:333–350. 2022.PubMed/NCBI View Article : Google Scholar

124 

Chen Q, Qin W, Qi W and Xi L: Progress of clinical translation of handheld and semi-handheld photoacoustic imaging. Photoacoustics. 22(100264)2021.PubMed/NCBI View Article : Google Scholar

125 

Neprokin A, Broadway C, Myllylä T, Bykov A and Meglinski I: Photoacoustic Imaging in Biomedicine and Life Sciences. Life (Basel). 12(588)2022.PubMed/NCBI View Article : Google Scholar

126 

Yan S, Lu M, Ding X, Chen F, He X, Xu C, Zhou H, Wang Q, Hao L and Zou J: HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy. Sci Rep. 6(31833)2016.PubMed/NCBI View Article : Google Scholar

127 

Zhang N, Cai X, Gao W, Wang R, Xu C, Yao Y, Hao L, Sheng D, Chen H, Wang Z and Zheng Y: A multifunctional theranostic nanoagent for dual-mode image-guided HIFU/Chemo-Synergistic cancer therapy. Theranostics. 6:404–417. 2016.PubMed/NCBI View Article : Google Scholar

128 

Park EY, Lee H, Han S, Kim C and Kim J: Photoacoustic imaging systems based on clinical ultrasound platform. Exp Biol Med (Maywood). 247:551–560. 2022.PubMed/NCBI View Article : Google Scholar

129 

Li Y, Hao L, Liu F, Yin L, Yan S, Zhao H, Ding X, Guo Y, Cao Y, Li P, et al: Cell penetrating peptide-modified nanoparticles for tumor targeted imaging and synergistic effect of sonodynamic/HIFU therapy. Int J Nanomedicine. 14:5875–5894. 2019.PubMed/NCBI View Article : Google Scholar

130 

Yang H, Jiang F, Zhang L, Wang L, Luo Y, Li N, Guo Y, Wang Q and Zou J: Multifunctional l-arginine-based magnetic nanoparticles for multiple-synergistic tumor therapy. Biomater Sci. 9:2230–2243. 2021.PubMed/NCBI View Article : Google Scholar

131 

Isoda K, Nagata R, Hasegawa T, Taira Y, Taira I, Shimizu Y, Isama K, Nishimura T and Ishida I: Hepatotoxicity and drug/chemical interaction toxicity of nanoclay particles in mice. Nanoscale Res Lett. 12(199)2017.PubMed/NCBI View Article : Google Scholar

132 

Dai X, Zeng Y, Zhang H, Gu Z, Gong Q and Luo K: Advances on Nanomedicines for Diagnosis and Theranostics of Hepatic Fibrosis. Adv Biomed Res. 1(2000091)2021.

133 

Federau C, Goubran M, Rosenberg J, Henderson J, Halpern CH, Santini V, Wintermark M, Butts Pauly K and Ghanouni P: Transcranial MRI-guided high-intensity focused ultrasound for treatment of essential tremor: A pilot study on the correlation between lesion size, lesion location, thermal dose, and clinical outcome. J Magn Reson Imaging. 48:58–65. 2018.PubMed/NCBI View Article : Google Scholar

134 

Huber PM, Afzal N, Arya M, Boxler S, Dudderidge T, Emberton M, Guillaumier S, Hindley RG, Hosking-Jervis F, Leemann L, et al: An exploratory study of dose escalation vs standard focal high-intensity focused ultrasound for treating nonmetastatic prostate cancer. J Endourol. 34:641–646. 2020.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zheng Q, Xia B, Huang X, Luo J, Zhong S and Li X: Nanomedicines for high‑intensity focused ultrasound cancer treatment and theranostics (Review). Exp Ther Med 25: 170, 2023.
APA
Zheng, Q., Xia, B., Huang, X., Luo, J., Zhong, S., & Li, X. (2023). Nanomedicines for high‑intensity focused ultrasound cancer treatment and theranostics (Review). Experimental and Therapeutic Medicine, 25, 170. https://doi.org/10.3892/etm.2023.11869
MLA
Zheng, Q., Xia, B., Huang, X., Luo, J., Zhong, S., Li, X."Nanomedicines for high‑intensity focused ultrasound cancer treatment and theranostics (Review)". Experimental and Therapeutic Medicine 25.4 (2023): 170.
Chicago
Zheng, Q., Xia, B., Huang, X., Luo, J., Zhong, S., Li, X."Nanomedicines for high‑intensity focused ultrasound cancer treatment and theranostics (Review)". Experimental and Therapeutic Medicine 25, no. 4 (2023): 170. https://doi.org/10.3892/etm.2023.11869
Copy and paste a formatted citation
x
Spandidos Publications style
Zheng Q, Xia B, Huang X, Luo J, Zhong S and Li X: Nanomedicines for high‑intensity focused ultrasound cancer treatment and theranostics (Review). Exp Ther Med 25: 170, 2023.
APA
Zheng, Q., Xia, B., Huang, X., Luo, J., Zhong, S., & Li, X. (2023). Nanomedicines for high‑intensity focused ultrasound cancer treatment and theranostics (Review). Experimental and Therapeutic Medicine, 25, 170. https://doi.org/10.3892/etm.2023.11869
MLA
Zheng, Q., Xia, B., Huang, X., Luo, J., Zhong, S., Li, X."Nanomedicines for high‑intensity focused ultrasound cancer treatment and theranostics (Review)". Experimental and Therapeutic Medicine 25.4 (2023): 170.
Chicago
Zheng, Q., Xia, B., Huang, X., Luo, J., Zhong, S., Li, X."Nanomedicines for high‑intensity focused ultrasound cancer treatment and theranostics (Review)". Experimental and Therapeutic Medicine 25, no. 4 (2023): 170. https://doi.org/10.3892/etm.2023.11869
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team