Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
April-2023 Volume 25 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2023 Volume 25 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

4'‑O‑methylbavachalcone inhibits succinate induced cardiomyocyte hypertrophy via the NFATc4 pathway

  • Authors:
    • Han Sun
    • Guanghao Zhu
    • Shuang Ling
    • Jun Liu
    • Jin-Wen Xu
  • View Affiliations / Copyright

    Affiliations: Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Pudong New Area, Shanghai 201203, P.R. China
  • Article Number: 172
    |
    Published online on: March 6, 2023
       https://doi.org/10.3892/etm.2023.11871
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Pathological cardiac hypertrophy is an independent risk factor for complications such as arrhythmia, myocardial infarction, sudden mortality and heart failure. Succinate, an intermediate product of the Krebs cycle, is released into the bloodstream by cells; its levels increase with exacerbations of hypertension, myocardial and other tissue damage and metabolic disease. Succinate may also be involved in several metabolic pathways and mediates numerous pathological effects through its receptor, succinate receptor 1 (SUCNR1; previously known as GPR91). Succinate‑induced activation of SUCNR1 has been reported to be related to cardiac hypertrophy, making SUCNR1 a potential target for treating cardiac hypertrophy. Traditional Chinese medicine (TCM) and its active ingredients have served important roles in improving cardiac functions and treating heart failure. The present study investigated whether 4'‑O‑methylbavachadone (MeBavaC), an active ingredient of the herbal remedy Fructus Psoraleae, which is often used in TCM and has protective effect on myocardial injury and hypertrophy induced by adriamycin, ischemia‑reperfusion and sepsis, could ameliorate succinate‑induced cardiomyocyte hypertrophy by inhibiting the NFATc4 pathway. Using immunofluorescence staining, reverse transcription‑quantitative PCR, western blotting and molecular docking analysis, it was determined that succinate activated the calcineurin/NFATc4 and ERK1/2 pathways to promote cardiomyocyte hypertrophy. MeBavaC inhibited cardiomyocyte hypertrophy, nuclear translocation of NFATc4 and ERK1/2 signaling activation in succinate‑induced cardiomyocytes. Molecular docking analysis revealed that MeBavaC interacts with SUCNR1 to form a relatively stable binding and inhibits the succinate‑SUCNR1 interaction. The results demonstrated that MeBavaC suppressed cardiomyocyte hypertrophy by blocking SUCNR1 receptor activity and inhibiting NFATc4 and ERK1/2 signaling, which will contribute to the preclinical development of this compound.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Gould KL, Lipscomb K, Hamilton GW and Kennedy JW: Left ventricular hypertrophy in coronary artery disease. A cardiomyopathy syndrome following myocardial infarction. Am J Med. 55:595–601. 1973.PubMed/NCBI View Article : Google Scholar

2 

Momiyama Y, Suzuki Y, Ohsuzu F, Atsumi Y, Matsuoka K and Kimura M: Left ventricular hypertrophy and diastolic dysfunction in mitochondrial diabetes. Diabetes Care. 24:604–605. 2001.PubMed/NCBI View Article : Google Scholar

3 

De Simone G, Devereux RB, Roman MJ, Alderman MH and Laragh JH: Relation of obesity and gender to left ventricular hypertrophy in normotensive and hypertensive adults. Hypertension. 23:600–606. 1994.PubMed/NCBI View Article : Google Scholar

4 

Li H, He C, Feng J, Zhang Y, Tang Q, Bian Z, Bai X, Zhou H, Jiang H, Heximer SP, et al: Regulator of G protein signaling 5 protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload. Proc Natl Acad Sci USA. 107:13818–13823. 1994.PubMed/NCBI View Article : Google Scholar

5 

Cibi DM, Bi-Lin KW, Shekeran SG, Sandireddy R, Tee N, Singh A, Wu Y, Srinivasan DK, Kovalik JP, Ghosh S, et al: Prdm16 deficiency leads to age-dependent cardiac hypertrophy, adverse remodeling, mitochondrial dysfunction, and heart failure. Cell Rep. 33(108288)2020.PubMed/NCBI View Article : Google Scholar

6 

Ritterhoff J, Young S, Villet O, Shao D, Neto FC, Bettcher LF, Hsu YA, Kolwicz SC Jr, Raftery D and Tian R: Metabolic remodeling promotes cardiac hypertrophy by directing glucose to aspartate biosynthesis. Circ Res. 126:182–196. 2020.PubMed/NCBI View Article : Google Scholar

7 

Zhang T and Brown JH: Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovasc Res. 63:476–486. 2004.PubMed/NCBI View Article : Google Scholar

8 

Yang L, Cao J, Ma J, Li M and Mu Y: Differences in the microcirculation disturbance in the right and left ventricles of neonatal rats with hypoxic pulmonary hypertension. Microvasc Res. 135(104129)2021.PubMed/NCBI View Article : Google Scholar

9 

Liu HB, Yang BF and Dong DL: Calcineurin and electrical remodeling in pathologic cardiac hypertrophy. Trends Cardiovasc Med. 20:148–153. 2010.PubMed/NCBI View Article : Google Scholar

10 

Molkentin JD: Calcineurin and beyond: Cardiac hypertrophic signaling. Circ Res. 87:731–738. 2000.PubMed/NCBI View Article : Google Scholar

11 

Crabtree GR: Generic signals and specific outcomes: Signaling through Ca2+, calcineurin, and NF-AT. Cell. 96:611–614. 1999.PubMed/NCBI View Article : Google Scholar

12 

Wilkins BJ, Dai YS, Bueno OF, Parsons SA, Xu J, Plank DM, Jones F, Kimball TR and Molkentin JD: Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res. 94:110–118. 2004.PubMed/NCBI View Article : Google Scholar

13 

Mathew S, Mascareno E and Siddiqui MA: A ternary complex of transcription factors, Nished and NFATc4, and co-activator p300 bound to an intronic sequence, intronic regulatory element, is pivotal for the up-regulation of myosin light chain-2v gene in cardiac hypertrophy. J Biol Chem. 279:41018–41027. 2004.PubMed/NCBI View Article : Google Scholar

14 

Van Rooij E, Doevendans PA, de Theije CC, Babiker FA, Molkentin JD and de Windt LJ: Requirement of nuclear factor of activated T-cells in calcineurin-mediated cardiomyocyte hypertrophy. J Biol Chem. 277:48617–48626. 2002.PubMed/NCBI View Article : Google Scholar

15 

Molkentin JD: Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res. 63:467–475. 2004.PubMed/NCBI View Article : Google Scholar

16 

Pin F, Barreto R, Couch ME, Bonetto A and O'Connell TM: Cachexia induced by cancer and chemotherapy yield distinct perturbations to energy metabolism. J Cachexia Sarcopenia Muscle. 10:140–154. 2019.PubMed/NCBI View Article : Google Scholar

17 

Lehwald N, Tao GZ, Jang KY, Papandreou I, Liu B, Liu B, Pysz MA, Willmann JK, Knoefel WT, Denko NC and Sylvester KG: β-Catenin regulates hepatic mitochondrial function and energy balance in mice. Gastroenterology. 143:754–764. 2012.PubMed/NCBI View Article : Google Scholar

18 

Björntorp P: The oxidation of fatty acids combined with albumin by isolated rat liver mitochondria. J Biol Chem. 241:1537–1543. 1966.PubMed/NCBI

19 

Sadagopan N, Li W, Roberds SL, Major T, Preston GM, Yu Y and Tones MA: Circulating succinate is elevated in rodent models of hypertension and metabolic disease. Am J Hypertens. 20:209–1215. 2007.PubMed/NCBI View Article : Google Scholar

20 

Kohlhauer M, Dawkins S, Costa ASH, Lee R, Young T, Pell VR, Choudhury RP, Banning AP and Kharbanda RK: Oxford Acute Myocardial Infarction (OxAMI) Study et al. Metabolomic profiling in acute ST-segment-elevation myocardial infarction identifies succinate as an early marker of human ischemia-reperfusion injury. J Am Heart Assoc. 7(e007546)2018.PubMed/NCBI View Article : Google Scholar

21 

de Castro Fonseca M, Aguiar CJ, da Rocha Franco JA, Gingold RN and Leite MF: GPR91: Expanding the frontiers of Krebs cycle intermediates. Cell Commun Signal. 14(3)2016.PubMed/NCBI View Article : Google Scholar

22 

Li X, Xie L, Qu X, Zhao B, Fu W, Wu B and Wu J: GPR91, a critical signaling mechanism in modulating pathophysiologic processes in chronic illnesses. FASEB J. 34:13091–13105. 2020.PubMed/NCBI View Article : Google Scholar

23 

Yang L, Yu D, Mo R, Zhang J, Hua H, Hu L, Feng Y, Wang S, Zhang WY, Yin N and Mo XM: The succinate receptor GPR91 is involved in pressure overload-induced ventricular hypertrophy. PLoS One. 11(e0147597)2016.PubMed/NCBI View Article : Google Scholar

24 

Aguiar CJ, Rocha-Franco JA, Sousa PA, Santos AK, Ladeira M, Rocha-Resende C, Ladeira LO, Resende RR, Botoni FA, Melo MB, et al: Succinate causes pathological cardiomyocyte hypertrophy through GPR91 activation. Cell Commun Signal. 12(78)2014.PubMed/NCBI View Article : Google Scholar

25 

Chinese Pharmacopoeia Commission, 2020. Psoraleae. Fructus. In: Pharmacopoeia of the People's Republic of China. China Medical Science Press, Beijing. pp 195.

26 

Zhou YT, Zhu L, Yuan Y, Ling S and Xu JW: Effects and mechanisms of five psoralea prenylflavonoids on aging-related diseases. Oxid Med Cell Longev. 2020(2128513)2020.PubMed/NCBI View Article : Google Scholar

27 

Yan C, Wu Y, Weng Z, Gao Q, Yang G, Chen Z, Cai B and Li W: Development of an HPLC method for absolute quantification and QAMS of flavonoids components in Psoralea corylifolia L. J Anal Methods Chem. 2015(792637)2015.PubMed/NCBI View Article : Google Scholar

28 

Kim DW, Seo KH, Curtis-Long MJ, Oh KY, Oh JW, Cho JK, Lee KH and Park KH: Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J Enzyme Inhib Med Chem. 29:59–63. 2014.PubMed/NCBI View Article : Google Scholar

29 

Cooper JA: Effects of cytochalasin and phalloidin on actin. J Cell Biol. 105:1473–1478. 1987.PubMed/NCBI View Article : Google Scholar

30 

Jia G, Liang C, Li W and Dai H: MiR-410-3p facilitates angiotensin II-induced cardiac hypertrophy by targeting Smad7. Bioengineered. 13:119–127. 2022.PubMed/NCBI View Article : Google Scholar

31 

Sugawara Y, Kamioka H, Honjo T, Tezuka K and Takano-Yamamoto T: Three-dimensional reconstruction of chick calvarial osteocytes and their cell processes using confocal microscopy. Bone. 36:877–883. 2005.PubMed/NCBI View Article : Google Scholar

32 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(Delta Delta C(T)) method. Methods. 25:402–408. 2001.PubMed/NCBI View Article : Google Scholar

33 

Burley SK, Berman HM, Kleywegt GJ, Markley JL, Nakamura H and Velankar S: Protein data bank (PDB): The single global macromolecular structure archive. Methods Mol Biol. 1607:627–641. 2017.PubMed/NCBI View Article : Google Scholar

34 

Haffke M, Fehlmann D, Rummel G, Boivineau J, Duckely M, Gommermann N, Cotesta S, Sirockin F, Freuler F, Littlewood-Evans A, et al: Structural basis of species-selective antagonist binding to the succinate receptor. Nature. 574:581–585. 2019.PubMed/NCBI View Article : Google Scholar

35 

Trauelsen M, Ulven ER, Hjorth SA, Brvar M, Monaco C, Frimurer TM and Schwartz TW: Receptor structure-based discovery of non-metabolite agonists for the succinate receptor GPR91. Mol Metab. 6:1585–1596. 2017.PubMed/NCBI View Article : Google Scholar

36 

Tang X, Fuchs D, Tan S, Trauelsen M, Schwartz TW, Wheelock CE, Li N and Haeggström JZ: Activation of metabolite receptor GPR91 promotes platelet aggregation and transcellular biosynthesis of leukotriene C4. J Thromb Haemost. 18:976–984. 2020.PubMed/NCBI View Article : Google Scholar

37 

Bulló M, Papandreou C, García-Gavilán J, Ruiz-Canela M, Li J, Guasch-Ferré M, Toledo E, Clish C, Corella D, Estruch R, et al: Tricarboxylic acid cycle related-metabolites and risk of atrial fibrillation and heart failure. Metabolism. 125(154915)2021.PubMed/NCBI View Article : Google Scholar

38 

Du Z, Shen A, Huang Y, Su L, Lai W, Wang P, Xie Z, Xie Z, Zeng Q, Ren H and Xu D: 1H-NMR-based metabolic analysis of human serum reveals novel markers of myocardial energy expenditure in heart failure patients. PLoS One. 9(e88102)2014.PubMed/NCBI View Article : Google Scholar

39 

Yao H, Shi P, Zhang L, Fan X, Shao Q and Cheng Y: Untargeted metabolic profiling reveals potential biomarkers in myocardial infarction and its application. Mol Biosyst. 6:1061–1070. 2010.PubMed/NCBI View Article : Google Scholar

40 

Zhang J, Wang YT, Miller JH, Day MM, Munger JC and Brookes PS: Accumulation of succinate in cardiac ischemia primarily occurs via canonical Krebs cycle activity. Cell Rep. 23:2617–2628. 2018.PubMed/NCBI View Article : Google Scholar

41 

Galla S, Chakraborty S, Cheng X, Yeo JY, Mell B, Chiu N, Wenceslau CF, Vijay-Kumar M and Joe B: Exposure to amoxicillin in early life is associated with changes in gut microbiota and reduction in blood pressure: Findings from a study on rat dams and offspring. J Am Heart Assoc. 9(e014373)2020.PubMed/NCBI View Article : Google Scholar

42 

Serena C, Ceperuelo-Mallafré V, Keiran N, Queipo-Ortuño MI, Bernal R, Gomez-Huelgas R, Urpi-Sarda M, Sabater M, Pérez-Brocal V, Andrés-Lacueva C, et al: Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota. ISME J. 12:1642–1657. 2018.PubMed/NCBI View Article : Google Scholar

43 

Yang L, Yu D, Fan HH, Feng Y, Hu L, Zhang WY, Zhou K and Mo XM: Triggering the succinate receptor GPR91 enhances pressure overload-induced right ventricular hypertrophy. Int J Clin Exp Pathol. 7:5415–5428. 2014.PubMed/NCBI

44 

Littlewood-Evans A, Sarret S, Apfel V, Loesle P, Dawson J, Zhang J, Muller A, Tigani B, Kneuer R, Patel S, et al: GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J Exp Med. 213:1655–1662. 2016.PubMed/NCBI View Article : Google Scholar

45 

Ko SH, Choi GE, Oh JY, Lee HJ, Kim JS, Chae CW, Choi D and Han HJ: Succinate promotes stem cell migration through the GPR91-dependent regulation of DRP1-mediated mitochondrial fission. Sci Rep. 7(12582)2017.PubMed/NCBI View Article : Google Scholar

46 

Trauelsen M, Hiron TK, Lin D, Petersen JE, Breton B, Husted AS, Hjorth SA, Inoue A, Frimurer TM, Bouvier M, et al: Extracellular succinate hyperpolarizes M2 macrophages through SUCNR1/GPR91-mediated Gq signaling. Cell Rep. 35(109246)2021.PubMed/NCBI View Article : Google Scholar

47 

Sundström L, Greasley PJ, Engberg S, Wallander M and Ryberg E: Succinate receptor GPR91, a Gα(i) coupled receptor that increases intracellular calcium concentrations through PLCβ. FEBS Lett. 587:2399–2404. 2013.PubMed/NCBI View Article : Google Scholar

48 

Pfeil EM, Brands J, Merten N, Vögtle T, Vescovo M, Rick U, Albrecht IM, Heycke N, Kawakami K, Ono Y, et al: Heterotrimeric G protein subunit Gαq is a master switch for Gβγ-mediated calcium mobilization by Gi-coupled GPCRs. Mol Cell. 80:940–954.e6. 2020.PubMed/NCBI View Article : Google Scholar

49 

Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA, et al: The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci USA. 106:2342–2347. 2009.PubMed/NCBI View Article : Google Scholar

50 

Pieske B, Kretschmann B, Meyer M, Holubarsch C, Weirich J, Posival H, Minami K, Just H and Hasenfuss G: Alterations in intracellular calcium handling associated with the inverse force-frequency relation in human dilated cardiomyopathy. Circulation. 92:1169–1178. 1995.PubMed/NCBI View Article : Google Scholar

51 

Prondzynski M, Lemoine MD, Zech AT, Horváth A, Di Mauro V, Koivumäki JT, Kresin N, Busch J, Krause T, Krämer E, et al: Disease modeling of a mutation in α-actinin 2 guides clinical therapy in hypertrophic cardiomyopathy. EMBO Mol Med. 11(e11115)2019.PubMed/NCBI View Article : Google Scholar

52 

Sheng JJ, Feng HZ, Pinto JR, Wei H and Jin JP: Increases of desmin and α-actinin in mouse cardiac myofibrils as a response to diastolic dysfunction. J Mol Cell Cardiol. 99:218–229. 2016.PubMed/NCBI View Article : Google Scholar

53 

Hall DD, Dai S, Tseng PY, Malik Z, Nguyen M, Matt L, Schnizler K, Shephard A, Mohapatra DP, Tsuruta F, et al: Competition between α-actinin and Ca²+-calmodulin controls surface retention of the L-type Ca²+ channel Ca(V)1.2. Neuron. 78:483–497. 2013.PubMed/NCBI View Article : Google Scholar

54 

Turner M, Anderson DE, Bartels P, Nieves-Cintron M, Coleman AM, Henderson PB, Man KNM, Tseng PY, Yarov-Yarovoy V, Bers DM, et al: α-Actinin-1 promotes activity of the L-type Ca2+ channel Cav 1.2. EMBO J. 39(e102622)2020.PubMed/NCBI View Article : Google Scholar

55 

Han JW, Kang C, Kim Y, Lee MG and Kim JY: Isoproterenol-induced hypertrophy of neonatal cardiac myocytes and H9c2 cell is dependent on TRPC3-regulated CaV1.2 expression. Cell Calcium. 92(102305)2020.PubMed/NCBI View Article : Google Scholar

56 

Hu Z, Wang JW, Yu D, Soon JL, de Kleijn DP, Foo R, Liao P, Colecraft HM and Soong TW: Aberrant splicing promotes proteasomal degradation of L-type Cav1.2 calcium channels by competitive binding for Cavβ subunits in cardiac hypertrophy. Sci Rep. 6(35247)2016.PubMed/NCBI View Article : Google Scholar

57 

Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR and Olson EN: A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 93:215–228. 1998.PubMed/NCBI View Article : Google Scholar

58 

Sanna B, Bueno OF, Dai YS, Wilkins BJ and Molkentin JD: Direct and indirect interactions between calcineurin-NFAT and MEK1-extracellular signal-regulated kinase 1/2 signaling pathways regulate cardiac gene expression and cellular growth. Mol Cell Biol. 25:865–878. 2005.PubMed/NCBI View Article : Google Scholar

59 

Arnaiz-Cot JJ, Cleemann L and Morad M: Xanthohumol modulates calcium signaling in rat ventricular myocytes: Possible antiarrhythmic properties. J Pharmacol Exp Ther. 360:239–248. 2017.PubMed/NCBI View Article : Google Scholar

60 

Lin JH, Yang KT, Lee WS, Ting PC, Luo YP, Lin DJ, Wang YS and Chang JC: Xanthohumol protects the rat myocardium against ischemia/reperfusion injury-induced ferroptosis. Oxid Med Cell Longev. 2022(9523491)2022.PubMed/NCBI View Article : Google Scholar

61 

Sun TL, Li WQ, Tong XL, Liu XY and Zhou WH: Xanthohumol attenuates isoprenaline-induced cardiac hypertrophy and fibrosis through regulating PTEN/AKT/mTOR pathway. Eur J Pharmacol. 891(173690)2021.PubMed/NCBI View Article : Google Scholar

62 

Hu L, Wang Z, Li H, Wei J, Tang F, Wang Q, Wang J, Zhang X and Zhang Q: Icariin inhibits isoproterenol-induced cardiomyocyte hypertropic injury through activating autophagy via the AMPK/mTOR signaling pathway. Biochem Biophys Res Commun. 593:65–72. 2022.PubMed/NCBI View Article : Google Scholar

63 

Song YH, Cai H, Gu N, Qian CF, Cao SP and Zhao ZM: Icariin attenuates cardiac remodelling through down-regulating myocardial apoptosis and matrix metalloproteinase activity in rats with congestive heart failure. J Pharm Pharmacol. 63:541–549. 2011.PubMed/NCBI View Article : Google Scholar

64 

Wu B, Feng JY, Yu LM, Wang YC, Chen YQ, Wei Y, Han JS, Feng X, Zhang Y, Di SY, et al: Icariin protects cardiomyocytes against ischaemia/reperfusion injury by attenuating sirtuin 1-dependent mitochondrial oxidative damage. Br J Pharmacol. 175:4137–4153. 2018.PubMed/NCBI View Article : Google Scholar

65 

Zhou H, Yuan Y, Liu Y, Deng W, Zong J, Bian ZY, Dai J and Tang QZ: Icariin attenuates angiotensin II-induced hypertrophy and apoptosis in H9c2 cardiomyocytes by inhibiting reactive oxygen species-dependent JNK and p38 pathways. Exp Ther Med. 7:1116–1122. 2014.PubMed/NCBI View Article : Google Scholar

66 

Wang Z, Gao L, Xiao L, Kong L, Shi H, Tian X and Zhao L: Bakuchiol protects against pathological cardiac hypertrophy by blocking NF-κB signaling pathway. Biosci Rep. 38(BSR20181043)2018.PubMed/NCBI View Article : Google Scholar

67 

Bhuniya D, Umrani D, Dave B, Salunke D, Kukreja G, Gundu J, Naykodi M, Shaikh NS, Shitole P, Kurhade S, et al: Discovery of a potent and selective small molecule hGPR91 antagonist. Bioorg Med Chem Lett. 21:3596–3602. 2011.PubMed/NCBI View Article : Google Scholar

68 

Velcicky J, Wilcken R, Cotesta S, Janser P, Schlapbach A, Wagner T, Piechon P, Villard F, Bouhelal R, Piller F, et al: Discovery and optimization of novel SUCNR1 inhibitors: Design of zwitterionic derivatives with a salt bridge for the improvement of oral exposure. J Med Chem. 63:9856–9875. 2020.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Sun H, Zhu G, Ling S, Liu J and Xu J: 4'‑O‑methylbavachalcone inhibits succinate induced cardiomyocyte hypertrophy via the NFATc4 pathway. Exp Ther Med 25: 172, 2023.
APA
Sun, H., Zhu, G., Ling, S., Liu, J., & Xu, J. (2023). 4'‑O‑methylbavachalcone inhibits succinate induced cardiomyocyte hypertrophy via the NFATc4 pathway. Experimental and Therapeutic Medicine, 25, 172. https://doi.org/10.3892/etm.2023.11871
MLA
Sun, H., Zhu, G., Ling, S., Liu, J., Xu, J."4'‑O‑methylbavachalcone inhibits succinate induced cardiomyocyte hypertrophy via the NFATc4 pathway". Experimental and Therapeutic Medicine 25.4 (2023): 172.
Chicago
Sun, H., Zhu, G., Ling, S., Liu, J., Xu, J."4'‑O‑methylbavachalcone inhibits succinate induced cardiomyocyte hypertrophy via the NFATc4 pathway". Experimental and Therapeutic Medicine 25, no. 4 (2023): 172. https://doi.org/10.3892/etm.2023.11871
Copy and paste a formatted citation
x
Spandidos Publications style
Sun H, Zhu G, Ling S, Liu J and Xu J: 4'‑O‑methylbavachalcone inhibits succinate induced cardiomyocyte hypertrophy via the NFATc4 pathway. Exp Ther Med 25: 172, 2023.
APA
Sun, H., Zhu, G., Ling, S., Liu, J., & Xu, J. (2023). 4'‑O‑methylbavachalcone inhibits succinate induced cardiomyocyte hypertrophy via the NFATc4 pathway. Experimental and Therapeutic Medicine, 25, 172. https://doi.org/10.3892/etm.2023.11871
MLA
Sun, H., Zhu, G., Ling, S., Liu, J., Xu, J."4'‑O‑methylbavachalcone inhibits succinate induced cardiomyocyte hypertrophy via the NFATc4 pathway". Experimental and Therapeutic Medicine 25.4 (2023): 172.
Chicago
Sun, H., Zhu, G., Ling, S., Liu, J., Xu, J."4'‑O‑methylbavachalcone inhibits succinate induced cardiomyocyte hypertrophy via the NFATc4 pathway". Experimental and Therapeutic Medicine 25, no. 4 (2023): 172. https://doi.org/10.3892/etm.2023.11871
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team