|
1
|
Mojica MF, Rossi MA, Vila AJ and Bonomo
RA: The urgent need for metallo-β-lactamase inhibitors: An
unattended global threat. Lancet Infect Dis. 22:e28–e34.
2022.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Khan SN and Khan AU: Breaking the spell:
Combating multidrug resistant ‘superbugs.’. Front Microbiol.
7(174)2016.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Boral B, Unaldi Ö, Ergin A, Durmaz R and
Eser ÖK: Acinetobacter Study Group. A prospective multicenter study
on the evaluation of antimicrobial resistance and molecular
epidemiology of multidrug-resistant Acinetobacter baumanni
infections in intensive care units with clinical and environmental
features. Ann Clin Microbiol Antimicrob. 18(19)2019.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Torres HA, Vázquez EG, Yagüe G and Gómez
JG: Multidrug resistant Acinetobacter baumanii: Clinical
update and new highlights. Rev Esp Quimioter. 23:12–19.
2010.PubMed/NCBI(In Spanish).
|
|
5
|
Vázquez-López R, Solano-Gálvez SG, Juárez
Vignon-Whaley JJ, Abello Vaamonde JA, Padró Alonzo LA, Rivera
Reséndiz A, Muleiro Álvarez M, Vega López EN, Franyuti-Kelly G,
Álvarez-Hernández DA, et al: Acinetobacter baumannii
resistance: A real challenge for clinicians. Antibiotics (Basel).
9(205)2020.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Ayoub Moubareck C and Hammoudi Halat D:
Insights into Acinetobacter baumannii: A review of
microbiological, virulence, and resistance traits in a threatening
nosocomial pathogen. Antibiotics (Basel). 9(119)2020.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Ibrahim S, Al-Saryi N, Al-Kadmy IMS and
Aziz SN: Multidrug-resistant Acinetobacter baumannii as an
emerging concern in hospitals. Mol Biol Rep. 48:6987–6998.
2021.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Harding CM, Hennon SW and Feldman MF:
Uncovering the mechanisms of Acinetobacter baumannii
virulence. Nat Rev Microbiol. 16:91–102. 2018.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Bagińska N, Pichlak A, Górski A and
Jończyk-Matysiak E: Specific and selective bacteriophages in the
fight against multidrug-resistant Acinetobacter baumannii.
Virol Sin. 34:347–357. 2019.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Roy S, Chowdhury G, Mukhopadhyay AK, Dutta
S and Basu S: Convergence of biofilm formation and antibiotic
resistance in Acinetobacter baumannii infection. Front Med
(Lausanne). 9(793615)2022.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Ma C and McClean S: Mapping global
prevalence of Acinetobacter baumannii and recent vaccine
development to tackle it. Vaccines (Basel). 9(570)2021.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Colquhoun JM and Rather PN: Insights into
mechanisms of biofilm formation in Acinetobacter baumannii
and implications for uropathogenesis. Front Cell Infect Microbiol.
10(253)2020.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Bergogne-Bérézin E and Towner KJ:
Acinetobacter spp. as nosocomial pathogens: Microbiological,
clinical, and epidemiological features. Clin Microbiol Rev.
9:148–165. 1996.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Ramirez MS, Bonomo RA and Tolmasky ME:
Carbapenemases: Transforming Acinetobacter baumannii into a
yet more dangerous menace. Biomolecules. 10(720)2020.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Chapartegui-González I, Lázaro-Díez M,
Bravo Z, Navas J, Icardo JM and Ramos-Vivas J: Acinetobacter
baumannii maintains its virulence after long-time starvation.
PLoS One. 13(e0201961)2018.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Nguyen M and Joshi SG: Carbapenem
resistance in Acinetobacter baumannii, and their importance
in hospital-acquired infections: a scientific review. J Appl
Microbiol. 131:2715–2738. 2021.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Kim YA, Kim JJ, Won DJ and Lee K: Seasonal
and temperature-associated increase in community-onset
Acinetobacter baumannii complex colonization or infection.
Ann Lab Med. 38:266–270. 2018.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Guo J and Li C: Molecular epidemiology and
decreased susceptibility to disinfectants in carbapenem-resistant
Acinetobacter baumannii isolated from intensive care unit
patients in central China. J Infect Public Health. 12:890–896.
2019.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Weinberg SE, Villedieu A, Bagdasarian N,
Karah N, Teare L and Elamin WF: Control and management of multidrug
resistant Acinetobacter baumannii: A review of the evidence
and proposal of novel approaches. Infect Prev Pract.
2(100077)2020.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Oh DH, Kim YC, Kim EJ, Jung IY, Jeong SJ,
Kim SY, Park MS, Kim A, Lee JG and Paik HC: Multidrug-resistant
Acinetobacter baumannii infection in lung transplant
recipients: Risk factors and prognosis. Infect Dis (Lond).
51:493–501. 2019.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Martín-Aspas A, Guerrero-Sánchez FM,
García-Colchero F, Rodríguez-Roca S and Girón-González JA:
Differential characteristics of Acinetobacter baumannii
colonization and infection: Risk factors, clinical picture, and
mortality. Infect Drug Resist. 11:861–872. 2018.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Nie D, Hu Y, Chen Z, Li M, Hou Z, Luo X,
Mao X and Xue X: Outer membrane protein A (OmpA) as a potential
therapeutic target for Acinetobacter baumannii infection. J
Biomed Sci. 27(26)2020.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Kyriakidis I, Vasileiou E, Pana ZD and
Tragiannidis A: Acinetobacter baumannii antibiotic
resistance mechanisms. Pathogens. 10(373)2021.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Sawa T, Kooguchi K and Moriyama K:
Molecular diversity of extended-spectrum β-lactamases and
carbapenemases, and antimicrobial resistance. J Intensive Care.
8(13)2020.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Tsivkovski R, Totrov M and Lomovskaya O:
Biochemical characterization of QPX7728, a new ultrabroad-spectrum
beta-lactamase inhibitor of serine and metallo-beta-lactamases.
Antimicrob Agents Chemother. 64:e00130–20. 2020.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Philippon A, Jacquier H, Ruppé E and Labia
R: Structure-based classification of class A beta-lactamases, an
update. Curr Res Transl Med. 67:115–122. 2019.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Tooke CL, Hinchliffe P, Bragginton EC,
Colenso CK, Hirvonen VHA, Takebayashi Y and Spencer J: β-Lactamases
and β-lactamase inhibitors in the 21st century. J Mol Biol.
431:3472–3500. 2019.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Palzkill T: Structural and mechanistic
basis for extended-spectrum drug-resistance mutations in altering
the specificity of TEM, CTX-M, and KPC β-lactamases. Front Mol
Biosci. 5(16)2018.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Nikibakhsh M, Firoozeh F, Badmasti F,
Kabir K and Zibaei M: Molecular study of metallo-β-lactamases and
integrons in Acinetobacter baumannii isolates from burn
patients. BMC Infect Dis. 21(782)2021.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Amin M, Navidifar T, Saleh Shooshtari F
and Goodarzi H: Association of the genes encoding
metallo-β-lactamase with the presence of integrons among
multidrug-resistant clinical isolates of Acinetobacter
baumannii. Infect Drug Resist. 12:1171–1180. 2019.PubMed/NCBI View Article : Google Scholar
|
|
31
|
López C, Ayala JA, Bonomo RA, González LJ
and Vila AJ: Protein determinants of dissemination and host
specificity of metallo-β-lactamases. Nat Commun.
10(3617)2019.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Ejaz H, Alzahrani B, Hamad MFS, Abosalif
KOA, Junaid K, Abdalla AE, Elamir MYM, Aljaber NJ, Hamam SSM and
Younas S: Molecular analysis of the antibiotic resistant NDM-1 gene
in clinical isolates of enterobacteriaceae. Clin Lab.
66:2020.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Wu W, Feng Y, Tang G, Qiao F, McNally A
and Zong Z: NDM metallo-β-lactamases and their bacterial producers
in health care settings. Clin Microbiol Rev. 32:e00115–18.
2019.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Junaid K: Molecular diversity of NDM-1,
NDM-5, NDM-6, and NDM-7 variants of new delhi metallo-β-lactamases
and their impact on drug resistance. Clin Lab. 67:2021.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Jiang L, Yu Y, Zeng W, Guo J, Lv F, Wang
X, Liu X and Zhao Z: Whole-genome analysis of New Delhi
metallo-beta-lactamase-1-producing Acinetobacter haemolyticus from
China. J Glob Antimicrob Resist. 20:204–208. 2020.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Ingti B, Upadhyay S, Hazarika M, Khyriem
AB, Paul D, Bhattacharya P, Joshi SR, Bora D, Dhar D and
Bhattacharjee A: Distribution of carbapenem resistant
Acinetobacter baumannii with blaADC-30 and
induction of ADC-30 in response to beta-lactam antibiotics. Res
Microbiol. 171:128–133. 2020.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Said HS, Benmahmod AB and Ibrahim RH:
Co-production of AmpC and extended spectrum beta-lactamases in
cephalosporin-resistant Acinetobacter baumannii in Egypt.
World J Microbiol Biotechnol. 34(189)2018.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Bouza AA, Swanson HC, Smolen KA, VanDine
AL, Taracila MA, Romagnoli C, Caselli E, Prati F, Bonomo RA, Powers
RA and Wallar BJ: Structure-based analysis of boronic acids as
inhibitors of acinetobacter-derived cephalosporinase-7, a unique
class C β-lactamase. ACS Infect Dis. 4:325–336. 2018.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Porbaran M, Tahmasebi H and Arabestani M:
A comprehensive study of the relationship between the production of
β-lactamase enzymes and iron/siderophore uptake regulatory genes in
clinical isolates of Acinetobacter baumannii. Int J
Microbiol. 2021(5565537)2021.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Monem S, Furmanek-Blaszk B, Łupkowska A,
Kuczyńska-Wiśnik D, Stojowska-Swędrzyńska K and Laskowska E:
Mechanisms protecting Acinetobacter baumannii against
multiple stresses triggered by the host immune response,
antibiotics and outside-host environment. Int J Mol Sci.
21(5498)2020.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Lupo A, Haenni M and Madec JY:
Antimicrobial Resistance in Acinetobacter spp. and Pseudomonas spp.
Microbiol Spectr. 16:2018.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Hamidian M and Nigro SJ: Emergence,
molecular mechanisms and global spread of carbapenem-resistant
Acinetobacter baumannii. Microb Genom.
5(e000306)2019.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Shi X, Wang H, Wang X, Jing H, Duan R, Qin
S, Lv D, Fan Y, Huang Z, Stirling K, et al: Molecular
characterization and antibiotic resistance of Acinetobacter
baumannii in cerebrospinal fluid and blood. PLoS One.
16(e0247418)2021.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Ibrahim ME: Prevalence of Acinetobacter
baumannii in Saudi Arabia: Risk factors, antimicrobial
resistance patterns and mechanisms of carbapenem resistance. Ann
Clin Microbiol Antimicrob. 18(1)2019.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Slusky JSG and Dunbrack RL Jr: Charge
asymmetry in the proteins of the outer membrane. Bioinformatics.
29:2122–2128. 2013.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Uppalapati SR, Sett A and Pathania R: The
outer membrane proteins OmpA, CarO, and OprD of Acinetobacter
baumannii confer a two-pronged defense in facilitating its
success as a potent human pathogen. Front Microbiol.
11(589234)2020.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Tsai YK, Liou CH, Lin JC, Fung CP, Chang
FY and Siu LK: Effects of different resistance mechanisms on
antimicrobial resistance in Acinetobacter baumannii: A
strategic system for screening and activity testing of new
antibiotics. Int J Antimicrob Agents. 55(105918)2020.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Skerniškytė J, Karazijaitė E, Lučiūnaitė A
and Sužiedėlienė E: OmpA protein-deficient Acinetobacter
baumannii outer membrane vesicles trigger reduced inflammatory
response. Pathogens. 10(407)2021.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Zhang Y, Fan B, Luo Y, Tao Z, Nie Y, Wang
Y, Ding F, Li Y and Gu D: Comparative analysis of carbapenemases,
RND family efflux pumps and biofilm formation potential among
Acinetobacter baumannii strains with different carbapenem
susceptibility. BMC Infect Dis. 21(841)2021.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Kim CM, Park G, Ko YJ, Kang SH and Jang
SJ: Relationships between relative expression of RND efflux pump
genes, H33342 efflux activity, biofilm-forming activity, and
antimicrobial resistance in Acinetobacter baumannii clinical
isolates. Jpn J Infect Dis. 74:499–506. 2021.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Badmasti F, Habibi M, Firoozeh F,
Fereshteh S, Bolourchi N and Goodarzi NN: The combination of CipA
and PBP-7/8 proteins contribute to the survival of C57BL/6 mice
from sepsis of Acinetobacter baumannii. Microb Pathog.
158(105063)2021.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Liu H, Cao CY, Qiu FL, Huang HN, Xie H,
Dong R, Shi YZ and Hu XN: Iron-rich conditions induce OmpA and
virulence changes of Acinetobacter baumannii. Front
Microbiol. 12(725194)2021.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Abdul-Mutakabbir JC, Alosaimy S,
Morrisette T, Kebriaei R and Rybak MJ: Cefiderocol: A novel
siderophore cephalosporin against multidrug-resistant gram-negative
pathogens. Pharmacotherapy. 40:1228–1247. 2020.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Zhanel GG, Golden AR, Zelenitsky S, Wiebe
K, Lawrence CK, Adam HJ, Idowu T, Domalaon R, Schweizer F, Zhanel
MA, et al: Cefiderocol: A siderophore cephalosporin with activity
against carbapenem-resistant and multidrug-resistant gram-negative
bacilli. Drugs. 79:271–289. 2019.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Isler B, Doi Y, Bonomo RA and Paterson DL:
New treatment options against carbapenem-resistant Acinetobacter
baumannii infections. Antimicrob Agents Chemother.
63:e01110–18. 2018.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Sanchez-Carbonel A, Mondragón B,
López-Chegne N, Peña-Tuesta I, Huayan-Dávila G, Blitchtein D,
Carrillo-Ng H, Silva-Caso W, Aguilar-Luis MA and Del Valle-Mendoza
J: The effect of the efflux pump inhibitor carbonyl cyanide
m-chlorophenylhydrazone (CCCP) on the susceptibility to imipenem
and cefepime in clinical strains of Acinetobacter baumannii.
PLoS One. 16(e0259915)2021.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Pal A and Tripathi A: Quercetin
potentiates meropenem activity among pathogenic
carbapenem-resistant Pseudomonas aeruginosa and
Acinetobacter baumannii. J Appl Microbiol. 127:1038–1047.
2019.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Gellings PS, Wilkins AA and Morici LA:
Recent advances in the pursuit of an effective Acinetobacter
baumannii vaccine. Pathogens. 9(1066)2020.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Pasteran F, Cedano J, Baez M, Albornoz E,
Rapoport M, Osteria J, Montaña S, Le C, Ra G, Bonomo RA, et al: A
new twist: The combination of sulbactam/avibactam enhances
sulbactam activity against carbapenem-resistant Acinetobacter
baumannii (CRAB) isolates. Antibiotics (Basel).
10(577)2021.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Yahav D, Giske CG, Grāmatniece A, Abodakpi
H, Tam VH and Leibovici L: New β-lactam-β-lactamase inhibitor
combinations. Clin Microbiol Rev. 34:e00115–20. 2020.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Bartal C, Rolston KVI and Nesher L:
Carbapenem-resistant Acinetobacter baumannii: Colonization,
infection and current treatment options. Infect Dis Ther.
11:683–694. 2022.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Tamehri M, Rasooli I, Pishgahi M,
Jahangiri A, Ramezanalizadeh F and Banisaeed Langroodi SR:
Combination of BauA and OmpA elicit immunoprotection against
Acinetobacter baumannii in a murine sepsis model. Microb
Pathog. 173(105874)2022.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Li X, Song Y, Wang L, Kang G, Wang P, Yin
H and Huang H: A potential combination therapy of berberine
hydrochloride with antibiotics against multidrug-resistant
Acinetobacter baumannii. Front Cell Infect Microbiol.
11(660431)2021.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Duarte A, Ferreira S, Silva F and
Domingues FC: Synergistic activity of coriander oil and
conventional antibiotics against Acinetobacter baumannii.
Phytomedicine. 19:236–238. 2012.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Herman A and Herman AP: Herbal products
and their active constituents used alone and in combination with
antibiotics against multidrug-resistant bacteria. Planta Med.
89:168–182. 2023.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Lima WG, Alves MC, Cruz WS and Paiva MC:
Chromosomally encoded and plasmid-mediated polymyxins resistance in
Acinetobacter baumannii: A huge public health threat. Eur J
Clin Microbiol Infect Dis. 37:1009–1019. 2018.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Nasr P: Genetics, epidemiology, and
clinical manifestations of multidrug-resistant Acinetobacter
baumannii. J Hosp Infect. 104:4–11. 2020.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Trebosc V, Gartenmann S, Tötzl M, Lucchini
V, Schellhorn B, Pieren M, Lociuro S, Gitzinger M, Tigges M, Bumann
D and Kemmer C: Dissecting colistin resistance mechanisms in
extensively drug-resistant Acinetobacter baumannii clinical
isolates. mBio. 10:e01083–19. 2019.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Nurtop E, Bayındır Bilman F, Menekse S,
Kurt Azap O, Gönen M, Ergonul O and Can F: Promoters of Colistin
Resistance in Acinetobacter baumannii Infections. Microb
Drug Resist. 25:997–1002. 2019.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Wang Y, Luo Q, Xiao T, Zhu Y and Xiao Y:
Impact of polymyxin resistance on virulence and fitness among
clinically important gram-negative bacteria. Engineering.
13:178–185. 2022.
|
|
71
|
Moffatt JH, Harper M and Boyce JD:
Mechanisms of polymyxin resistance. Adv Exp Med Biol. 1145:55–71.
2019.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Nang SC, Azad MAK, Velkov T, Zhou Q and Li
J: Rescuing the last-line polymyxins: Achievements and challenges.
Pharmacol Rev. 73:679–728. 2021.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Mohapatra SS, Dwibedy SK and Padhy I:
Polymyxins, the last-resort antibiotics: Mode of action, resistance
emergence, and potential solutions. J Biosci. 46(85)2021.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Khaled JM, Alharbi NS, Siddiqi MZ,
Alobaidi AS, Nauman K, Alahmedi S, Almazyed AO, Almosallam MA and
Al Jurayyan AN: A synergic action of colistin, imipenem, and silver
nanoparticles against pandrug-resistant Acinetobacter
baumannii isolated from patients. J Infect Public Health.
14:1679–1685. 2021.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Wang Z, Koirala B, Hernandez Y, Zimmerman
M, Park S, Perlin DS and Brady SF: A naturally inspired antibiotic
to target multidrug-resistant pathogens. Nature. 601:606–611.
2022.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Zhang H, Zhu Y, Yang N, Kong Q, Zheng Y,
Lv N, Chen H, Yue C, Liu Y, Li J and Ye Y: In vitro and in vivo
Activity of combinations of polymyxin B with other antimicrobials
against carbapenem-resistant Acinetobacter baumannii. Infect
Drug Resist. 14:4657–4666. 2021.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Tsai CC, Lin CS, Hsu CR, Chang CM, Chang
IW, Lin LW, Hung CH and Wang JL: Using the Chinese herb
Scutellaria barbata against extensively drug-resistant
Acinetobacter baumannii infections: In vitro and in vivo
studies. BMC Complement Altern Med. 18(96)2018.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Yaghoubi S, Zekiy AO, Krutova M, Gholami
M, Kouhsari E, Sholeh M, Ghafouri Z and Maleki F: Tigecycline
antibacterial activity, clinical effectiveness, and mechanisms and
epidemiology of resistance: Narrative review. Eur J Clin Microbiol
Infect Dis. 41:1003–1022. 2022.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Jo J and Ko KS: Tigecycline
heteroresistance and resistance mechanism in clinical isolates of
Acinetobacter baumannii. Microbiol Spectr.
9(e0101021)2021.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Zhang Z, Morgan CE, Bonomo RA and Yu EW:
Cryo-EM determination of eravacycline-bound structures of the
ribosome and the multidrug efflux pump AdeJ of Acinetobacter
baumannii. mBio. 12(e0103121)2021.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Foong WE, Wilhelm J, Tam H-K and Pos KM:
Tigecycline efflux in Acinetobacter baumannii is mediated by
TetA in synergy with RND-type efflux transporters. J Antimicrob
Chemother. 75:1135–1139. 2020.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Cheng J, Kesavan DK, Vasudevan A, Cai W,
Wang H, Su Z, Wang S and Xu H: Genome and transcriptome analysis of
A. baumannii's ‘Transient’ increase in drug resistance under
tigecycline pressure. J Glob Antimicrob Resist. 22:219–225.
2020.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Huband MD, Mendes RE, Pfaller MA, Lindley
JM, Strand GJ, Benn VJ, Zhang J, Li L, Zhang M, Tan X, et al: In
vitro activity of KBP-7072, a novel third-generation tetracycline,
against 531 recent geographically diverse and molecularly
characterized Acinetobacter baumannii species complex
isolates. Antimicrob Agents Chemother. 64:e02375–19.
2020.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Abbey T, Vialichka A, Jurkovic M, Biagi M
and Wenzler E: Activity of omadacycline alone and in combination
against carbapenem-nonsusceptible Acinetobacter baumannii
with varying minocycline susceptibility. Microbiol Spectr.
10:e00542–22. 2022.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Konai MM and Haldar J: Lysine-based small
molecule sensitizes rifampicin and tetracycline against
multidrug-resistant Acinetobacter baumannii and
Pseudomonas aeruginosa. ACS Infect Dis. 6:91–99.
2020.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Pérez-Varela M, Corral J, Aranda J and
Barbé J: Functional characterization of AbaQ, a novel efflux pump
mediating quinolone resistance in Acinetobacter baumannii.
Antimicrob Agents Chemother. 62:e00906–18. 2018.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Mohammed MA, Salim MTA, Anwer BE,
Aboshanab KM and Aboulwafa MM: Impact of target site mutations and
plasmid associated resistance genes acquisition on resistance of
Acinetobacter baumannii to fluoroquinolones. Sci Rep.
11(20136)2021.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Vrancianu CO, Gheorghe I, Czobor IB and
Chifiriuc MC: Antibiotic resistance profiles, molecular mechanisms
and innovative treatment strategies of Acinetobacter
baumannii. Microorganisms. 8(935)2020.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Nogbou ND, Nkawane GM, Ntshane K, Wairuri
CK, Phofa DT, Mokgokong KK, Ramashia M, Nchabeleng M, Obi LC and
Musyoki AMz: Efflux pump activity and mutations driving multidrug
resistance in Acinetobacter baumannii at a Tertiary Hospital
in Pretoria, South Africa. Int J Microbiol.
2021(9923816)2021.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Mahmoudi H, Shokoohizadeh L, Zare Fahim N,
Mohamadi Bardebari A, Moradkhani S and Alikhani MY: Detection of
adeABC efllux pump encoding genes and antimicrobial effect of
Mentha longifolia and Menthol on MICs of imipenem and
ciprofloxacin in clinical isolates of Acinetobacter
baumannii. BMC Complement Med Ther. 20(92)2020.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Aleksić Sabo V, Škorić D, Jovanović-Šanta
S, Nikolić I, János C and Knežević P: Synergistic activity of bile
salts and their derivatives in combination with conventional
antimicrobial agents against Acinetobacter baumannii. J
Ethnopharmacol. 264(113266)2021.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Rizk M and Abou El-Khier N: Aminoglycoside
resistance genes in Acinetobacter baumannii clinical
isolates. Clin Lab. 65:2019.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Jouybari MA, Ahanjan M, Mirzaei B and Goli
HR: Role of aminoglycoside-modifying enzymes and 16S rRNA methylase
(ArmA) in resistance of Acinetobacter baumannii clinical
isolates against aminoglycosides. Rev Soc Bras Med Trop.
54(e05992020)2021.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Sheikhalizadeh V, Hasani A, Ahangarzadeh
Rezaee M, Rahmati-Yamchi M, Hasani A, Ghotaslou R and Goli HR:
Comprehensive study to investigate the role of various
aminoglycoside resistance mechanisms in clinical isolates of
Acinetobacter baumannii. J Infect Chemother. 23:74–79.
2017.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Juhas M, Widlake E, Teo J, Huseby DL,
Tyrrell JM, Polikanov YS, Ercan O, Petersson A, Cao S, Aboklaish
AF, et al: In vitro activity of apramycin against multidrug-,
carbapenem- and aminoglycoside-resistant Enterobacteriaceae and
Acinetobacter baumannii. J Antimicrob Chemother. 74:944–952.
2019.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Deng W, Fu T, Zhang Z, Jiang X, Xie J, Sun
H, Hu P, Ren H, Zhou P, Liu Q and Long Q: L-lysine potentiates
aminoglycosides against Acinetobacter baumannii via
regulation of proton motive force and antibiotics uptake. Emerg
Microbes Infect. 9:639–650. 2020.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Kashyap S, Kaur S, Sharma P and Capalash
N: Combination of colistin and tobramycin inhibits persistence of
Acinetobacter baumannii by membrane hyperpolarization and
down-regulation of efflux pumps. Microbes Infect.
23(104795)2021.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Law SKK and Tan HS: The role of quorum
sensing, biofilm formation, and iron acquisition as key virulence
mechanisms in Acinetobacter baumannii and the corresponding
anti-virulence strategies. Microbiol Res.
260(127032)2022.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Kaushik V, Tiwari M, Joshi R and Tiwari V:
Therapeutic strategies against potential antibiofilm targets of
multidrug-resistant Acinetobacter baumannii. J Cell Physiol.
237:2045–2063. 2022.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Donadu MG, Mazzarello V, Cappuccinelli P,
Zanetti S, Madléna M, Nagy ÁL, Stájer A, Burián K and Gajdács M:
Relationship between the biofilm-forming capacity and antimicrobial
resistance in clinical Acinetobacter baumannii isolates:
Results from a laboratory-based in vitro study. Microorganisms.
9(2384)2021.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Shenkutie AM, Yao MZ, Siu GKH, Wong BKC
and Leung PHM: Biofilm-induced antibiotic resistance in clinical
Acinetobacter baumannii Isolates. Antibiotics (Basel).
9(817)2020.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Selvaraj A, Valliammai A, Sivasankar C,
Suba M, Sakthivel G and Pandian SK: Antibiofilm and antivirulence
efficacy of myrtenol enhances the antibiotic susceptibility of
Acinetobacter baumannii. Sci Rep. 10(21975)2020.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Meng Q, Lin F and Ling B: In vitro
activity of peptide antibiotics in combination with other
antimicrobials on extensively drug-resistant Acinetobacter
baumannii in the planktonic and biofilm cell. Front Pharmacol.
13(890955)2022.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Salem MA, El-Shiekh RA, Hashem RA and
Hassan M: In vivo antibacterial activity of star anise (Illicium
verum Hook.) extract using murine MRSA skin infection model in
relation to its metabolite profile. Infect Drug Resist. 14:33–48.
2021.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Shahed-Al-Mahmud M, Roy R, Sugiokto FG,
Islam MN, Lin MD, Lin LC and Lin NT: Phage φAB6-borne depolymerase
combats Acinetobacter baumannii biofilm formation and
infection. Antibiotics (Basel). 10(279)2021.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Figueiredo-Godoi LMA, Garcia MT, Pinto JG,
Ferreira-Strixino J, Faustino EG, Pedroso LLC and Junqueira JC:
Antimicrobial photodynamic therapy mediated by fotenticine and
methylene blue on planktonic growth, biofilms, and burn infections
of Acinetobacter baumannii. Antibiotics (Basel).
11(619)2022.PubMed/NCBI View Article : Google Scholar
|
|
107
|
das Neves RC, Mortari MR, Schwartz EF,
Kipnis A and Junqueira-Kipnis AP: Antimicrobial and antibiofilm
effects of peptides from venom of social wasp and scorpion on
multidrug-resistant Acinetobacter baumannii. Toxins (Basel).
11(216)2019.PubMed/NCBI View Article : Google Scholar
|