|
1
|
GBD 2015 Disease and Injury Incidence and
Prevalence Collaborators. Global, regional, and national incidence,
prevalence, and years lived with disability for 310 diseases and
injuries, 1990-2015: A systematic analysis for the Global Burden of
Disease Study 2015. Lancet. 388:1545–1602. 2016.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Minghelli B: Musculoskeletal spine pain in
adolescents: Epidemiology of non-specific neck and low back pain
and risk factors. J Orthop Sci. 25:776–780. 2020.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Frymoyer JW and Cats-Baril WL: An overview
of the incidences and costs of low back pain. Orthop Clin North Am.
22:263–271. 1991.PubMed/NCBI
|
|
4
|
Steenstra IA, Verbeek JH, Prinsze FJ and
Knol DL: Changes in the incidence of occupational disability as a
result of back and neck pain in the Netherlands. BMC Public Health.
6(190)2006.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Maniadakis N and Gray A: The economic
burden of back pain in the UK. Pain. 84:95–103. 2000.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Dagenais S, Caro J and Haldeman S: A
systematic review of low back pain cost of illness studies in the
United States and internationally. Spine J. 8:8–20. 2008.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Borghouts JAJ, Koes BW, Vondeling H and
Bouter LM: Cost-of-illness of neck pain in The Netherlands in 1996.
Pain. 80:629–636. 1999.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Brockow T, Dillner A, Franke A and Resch
KL: Analgesic effectiveness of subcutaneous carbon-dioxide
insufflations as an adjunct treatment in patients with non-specific
neck or low back pain. Complement Ther Med. 9:68–76.
2001.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Miyamoto GC, Lin CC, Cabral CMN, van
Dongen JM and van Tulder MW: Cost-effectiveness of exercise therapy
in the treatment of non-specific neck pain and low back pain: A
systematic review with meta-analysis. Br J Sports Med. 53:172–181.
2019.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Nakamura M, Nishiwaki Y, Ushida T and
Toyama Y: Prevalence and characteristics of chronic musculoskeletal
pain in Japan. J Orthop Sci. 16:424–432. 2011.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Nakamura M, Toyama Y, Nishiwaki Y and
Ushida T: Prevalence and characteristics of chronic musculoskeletal
pain in Japan: A second survey of people with or without chronic
pain. J Orthop Sci. 19:339–350. 2014.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Samartzis D, Karppinen J, Mok F, Fong DY,
Luk KD and Cheung KM: A population-based study of juvenile disc
degeneration and its association with overweight and obesity, low
back pain, and diminished functional status. J Bone Joint Surg Am.
93:662–670. 2011.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Gibson J, Nouri A, Krueger B, Lakomkin N,
Nasser R, Gimbel D and Cheng J: Degenerative cervical myelopathy: A
clinical review. Yale J Biol Med. 91:43–48. 2018.PubMed/NCBI
|
|
14
|
Slade SC and Keating JL: Unloaded movement
facilitation exercise compared to no exercise or alternative
therapy on outcomes for people with nonspecific chronic low back
pain: A systematic review. J Manipulative Physiol Ther. 30:301–311.
2007.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Furlan AD, Imamura M, Dryden T and Irvin
E: Massage for low-back pain. Cochrane Database Syst Rev.
(4)(Cd001929)2008.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Hall J, Swinkels A, Briddon J and McCabe
CS: Does aquatic exercise relieve pain in adults with neurologic or
musculoskeletal disease? A systematic review and meta-analysis of
randomized controlled trials. Arch Phys Med Rehabil. 89:873–883.
2008.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Hendrick P, Te Wake AM, Tikkisetty AS,
Wulff L, Yap C and Milosavljevic S: The effectiveness of walking as
an intervention for low back pain: A systematic review. Eur Spine
J. 19:1613–1620. 2010.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Miller J, Gross A, D'Sylva J, Burnie SJ,
Goldsmith CH, Graham N, Haines T, Brønfort G and Hoving J: Manual
therapy and exercise for neck pain: A systematic review. Man Ther.
15:334–354. 2010.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Rubinstein SM, van Middelkoop M,
Assendelft WJ, de Boer MR and van Tulder MW: Spinal manipulative
therapy for chronic low-back pain: An update of a Cochrane review.
Spine (Phila Pa 1976). 36:E825–E846. 2011.PubMed/NCBI View Article : Google Scholar
|
|
20
|
van Middelkoop M, Rubinstein SM, Kuijpers
T, Verhagen AP, Ostelo R, Koes BW and van Tulder MW: A systematic
review on the effectiveness of physical and rehabilitation
interventions for chronic non-specific low back pain. Eur Spine J.
20:19–39. 2011.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Noble M, Treadwell JR, Tregear SJ, Coates
VH, Wiffen PJ, Akafomo C and Schoelles KM: Long-term opioid
management for chronic noncancer pain. Cochrane Database Syst Rev.
2010(Cd006605)2010.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Chou R and Huffman LH: American Pain
Society; American College of Physicians. Medications for acute and
chronic low back pain: A review of the evidence for an American
Pain Society/American College of Physicians clinical practice
guideline. Ann Intern Med. 147:505–514. 2007.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Roelofs PD, Deyo RA, Koes BW, Scholten RJ
and van Tulder MW: Non-steroidal anti-inflammatory drugs for low
back pain. Cochrane Database Syst Rev. (1)(Cd000396)2008.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Mason L, Moore RA, Edwards JE, Derry S and
McQuay HJ: Topical NSAIDs for chronic musculoskeletal pain:
Systematic review and meta-analysis. BMC Musculoskelet Disord.
5(28)2004.PubMed/NCBI View Article : Google Scholar
|
|
25
|
van Geen JW, Edelaar MJ, Janssen M and van
Eijk JT: The long-term effect of multidisciplinary back training: A
systematic review. Spine (Phila Pa 1976). 32:249–255.
2007.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Scascighini L, Toma V, Dober-Spielmann S
and Sprott H: Multidisciplinary treatment for chronic pain: A
systematic review of interventions and outcomes. Rheumatology
(Oxford). 47:670–678. 2008.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Ravenek MJ, Hughes ID, Ivanovich N, Tyrer
K, Desrochers C, Klinger L and Shaw L: A systematic review of
multidisciplinary outcomes in the management of chronic low back
pain. Work. 35:349–367. 2010.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Sakai D and Andersson GB: Stem cell
therapy for intervertebral disc regeneration: Obstacles and
solutions. Nat Rev Rheumatol. 11:243–256. 2015.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Yang X, Chen Y, Guo J, Li J, Zhang P, Yang
H, Rong K, Zhou T, Fu J and Zhao J: Polydopamine nanoparticles
targeting ferroptosis mitigate intervertebral disc degeneration via
reactive oxygen species depletion, iron ions chelation, and GPX4
ubiquitination suppression. Adv Sci (Weinh).
10(e2207216)2023.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Haufe SM and Mork AR: Intradiscal
injection of hematopoietic stem cells in an attempt to rejuvenate
the intervertebral discs. Stem Cells Dev. 15:136–137.
2006.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Hoogendoorn RJ, Lu ZF, Kroeze RJ, Bank RA,
Wuisman PI and Helder MN: Adipose stem cells for intervertebral
disc regeneration: Current status and concepts for the future. J
Cell Mol Med. 12:2205–2216. 2008.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Orozco L, Soler R, Morera C, Alberca M,
Sanchez A and Garcia-Sancho J: Intervertebral disc repair by
autologous mesenchymal bone marrow cells: A pilot study.
Transplantation. 92:822–828. 2011.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Noriega DC, Ardura F, Hernandez-Ramajo R,
Martín-Ferrero MÁ, Sánchez-Lite I, Toribio B, Alberca M, García V,
Moraleda JM, Sánchez A and García-Sancho J: Intervertebral disc
repair by allogeneic mesenchymal bone marrow cells: A randomized
controlled trial. Transplantation. 101:1945–1951. 2017.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Zhou T, Yang X, Chen Z, Yang Y, Wang X,
Cao X, Chen C, Han C, Tian H, Qin A, et al: Prussian blue
nanoparticles stabilize SOD1 from ubiquitination-proteasome
degradation to rescue intervertebral disc degeneration. Adv Sci
(Weinh). 9(e2105466)2022.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Šećerović A, Ristaniemi A, Cui S, Li Z,
Soubrier A, Alini M, Ferguson SJ, Weder G, Heub S, Ledroit D and
Grad S: Toward the next generation of spine bioreactors: Validation
of an ex vivo intervertebral disc organ model and customized
specimen holder for multiaxial loading. ACS Biomater Sci Eng.
8:3969–3976. 2022.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Grunhagen T, Wilde G, Soukane DM,
Shirazi-Adl SA and Urban JP: Nutrient supply and intervertebral
disc metabolism. J Bone Joint Surg Am. 88 (Suppl 2):S30–S35.
2006.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Song Y, Lu S, Geng W, Feng X, Luo R, Li G
and Yang C: Mitochondrial quality control in intervertebral disc
degeneration. Exp Mol Med. 53:1124–1133. 2021.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Roughley PJ: Biology of intervertebral
disc aging and degeneration: Involvement of the extracellular
matrix. Spine (Phila Pa 1976). 29:2691–2699. 2004.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Urban JP, Holm S and Maroudas A: Diffusion
of small solutes into the intervertebral disc: As in vivo study.
Biorheology. 15:203–221. 1978.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Ogata K and Whiteside LA: 1980 Volvo award
winner in basic science. Nutritional pathways of the intervertebral
disc. An experimental study using hydrogen washout technique. Spine
(Phila Pa 1976). 6:211–216. 1981.PubMed/NCBI
|
|
41
|
van der Werf M, Lezuo P, Maissen O, van
Donkelaar CC and Ito K: Inhibition of vertebral endplate perfusion
results in decreased intervertebral disc intranuclear diffusive
transport. J Anat. 211:769–774. 2007.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Rajasekaran S, Babu JN, Arun R, Armstrong
BR, Shetty AP and Murugan S: ISSLS prize winner: A study of
diffusion in human lumbar discs: A serial magnetic resonance
imaging study documenting the influence of the endplate on
diffusion in normal and degenerate discs. Spine (Phila Pa 1976).
29:2654–2667. 2004.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Kang R, Li H, Ringgaard S, Rickers K, Sun
H, Chen M, Xie L and Bünger C: Interference in the endplate
nutritional pathway causes intervertebral disc degeneration in an
immature porcine model. Int Orthop. 38:1011–1017. 2014.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Yin S, Du H, Zhao W, Ma S, Zhang M, Guan M
and Liu M: Inhibition of both endplate nutritional pathways results
in intervertebral disc degeneration in a goat model. J Orthop Surg
Res. 14(138)2019.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Hutton WC, Murakami H, Li J, Elmer WA,
Yoon ST, Minamide A, Akamaru T and Tomita K: The effect of blocking
a nutritional pathway to the intervertebral disc in the dog model.
J Spinal Disord Tech. 17:53–63. 2004.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Jiang C, Guo Q, Jin Y, Xu JJ, Sun ZM, Zhu
DC, Lin JH, Tian NF, Sun LJ, Zhang XL and Wu YS: Inhibition of EZH2
ameliorates cartilage endplate degeneration and attenuates the
progression of intervertebral disc degeneration via demethylation
of Sox-9. EBioMedicine. 48:619–629. 2019.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Määttä JH, Kraatari M, Wolber L, Niinimäki
J, Wadge S, Karppinen J and Williams FM: Vertebral endplate change
as a feature of intervertebral disc degeneration: A heritability
study. Eur Spine J. 23:1856–1862. 2014.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Wang Y, Videman T and Battié MC: ISSLS
prize winner: Lumbar vertebral endplate lesions: Associations with
disc degeneration and back pain history. Spine (Phila Pa 1976).
37:1490–1496. 2012.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Livshits G, Popham M, Malkin I, Sambrook
PN, Macgregor AJ, Spector T and Williams FM: Lumbar disc
degeneration and genetic factors are the main risk factors for low
back pain in women: The UK Twin Spine Study. Ann Rheum Dis.
70:1740–1745. 2011.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Pennicooke B, Moriguchi Y, Hussain I,
Bonssar L and Härtl R: Biological treatment approaches for
degenerative disc disease: A review of clinical trials and future
directions. Cureus. 8(e892)2016.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Mattick JS: Non-coding RNAs: The
architects of eukaryotic complexity. EMBO Rep. 2:986–991.
2001.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Patrushev LI and Kovalenko TF: Functions
of noncoding sequences in mammalian genomes. Biochemistry (Mosc).
79:1442–1469. 2014.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Palazzo AF and Lee ES: Non-coding RNA:
What is functional and what is junk? Front Genet.
6(2)2015.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Watson CN, Belli A and Di Pietro V: Small
Non-coding RNAs: New class of biomarkers and potential therapeutic
targets in neurodegenerative disease. Front Genet.
10(364)2019.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Braicu C, Calin GA and Berindan-Neagoe I:
MicroRNAs and cancer therapy - from bystanders to major players.
Curr Med Chem. 20:3561–3573. 2013.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Cătană CS, Pichler M, Giannelli G, Mader
RM and Berindan-Neagoe I: Non-coding RNAs, the Trojan horse in
two-way communication between tumor and stroma in colorectal and
hepatocellular carcinoma. Oncotarget. 8:29519–29534.
2017.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Guo TF, Zhou MW, Li SH, Ye BL, Chen W and
Fu ZB: Long non-coding RNA for metabolism of bone tissue. Zhongguo
Gu Shang. 31:286–291. 2018.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
|
58
|
Wang J, Sun Y, Liu J, Yang B, Wang T,
Zhang Z, Jiang X, Guo Y and Zhang Y: Roles of long non-coding RNA
in osteoarthritis (Review). Int J Mol Med. 48(133)2021.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Liu Q, Peng F and Chen J: The role of
exosomal MicroRNAs in the tumor microenvironment of breast cancer.
Int J Mol Sci. 20(3884)2019.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Lan T, Shiyu-Hu Shen Z, Yan B and Chen J:
New insights into the interplay between miRNAs and autophagy in the
aging of intervertebral discs. Ageing Res Rev.
65(101227)2021.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Guo HY, Guo MK, Wan ZY, Song F and Wang
HQ: Emerging evidence on noncoding-RNA regulatory machinery in
intervertebral disc degeneration: A narrative review. Arthritis Res
Ther. 22(270)2020.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Wang T, Hao Z, Liu C, Yuan L, Li L, Yin M,
Li Q, Qi Z and Wang Z: LEF1 mediates osteoarthritis progression
through circRNF121/miR-665/MYD88 axis via NF-кB signaling pathway.
Cell Death Dis. 11(598)2020.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Zhao R, Fu J, Zhu L, Chen Y and Liu B:
Designing strategies of small-molecule compounds for modulating
non-coding RNAs in cancer therapy. J Hematol Oncol.
15(14)2022.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Matsui M and Corey DR: Non-coding RNAs as
drug targets. Nat Rev Drug Discov. 16:167–179. 2017.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Huang W, Li H, Yu Q, Xiao W and Wang DO:
LncRNA-mediated DNA methylation: An emerging mechanism in cancer
and beyond. J Exp Clin Cancer Res. 41(100)2022.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Zhao Y, Ling S, Li J, Zhong G, Du R, Li Y,
Wang Y, Liu C, Jin X, Liu W, et al: 3' untranslated region of
Ckip-1 inhibits cardiac hypertrophy independently of its cognate
protein. Eur Heart J. 42:3786–3799. 2021.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Wu AC, Yang WB, Chang KY, Lee JS, Liou JP,
Su RY, Cheng SM, Hwang DY, Kikkawa U, Hsu TI, et al: HDAC6 involves
in regulating the lncRNA-microRNA-mRNA network to promote the
proliferation of glioblastoma cells. J Exp Clin Cancer Res.
41(47)2022.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Chen X, Gong W, Shao X, Shi T, Zhang L,
Dong J, Shi Y, Shen S, Qin J, Jiang Q and Guo B: METTL3-mediated
m(6)A modification of ATG7 regulates autophagy-GATA4 axis to
promote cellular senescence and osteoarthritis progression. Ann
Rheum Dis. 81:87–99. 2022.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Chen J, Huang T, Liu R, Wang C, Jiang H
and Sun H: Congenital microtia patients: The genetically engineered
exosomes released from porous gelatin methacryloyl hydrogel for
downstream small RNA profiling, functional modulation of microtia
chondrocytes and tissue-engineered ear cartilage regeneration. J
Nanobiotechnology. 20(164)2022.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Li Z, Yu X, Shen J, Chan MT and Wu WK:
MicroRNA in intervertebral disc degeneration. Cell Prolif.
48:278–283. 2015.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Ambros V and Chen X: The regulation of
genes and genomes by small RNAs. Development. 134:1635–1641.
2007.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Krol J, Loedige I and Filipowicz W: The
widespread regulation of microRNA biogenesis, function and decay.
Nat Rev Genet. 11:597–610. 2010.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Zhu Y, Li K, Yan L, He Y, Wang L and Sheng
L: miR-223-3p promotes cell proliferation and invasion by targeting
Arid1a in gastric cancer. Acta Biochim Biophys Sin (Shanghai).
52:150–159. 2020.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Lu TX and Rothenberg ME: MicroRNA. J
Allergy Clin Immunol. 141:1202–1207. 2018.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Rau CS, Yang JC, Wu SC, Chen YC, Lu TH,
Lin MW, Wu YC, Tzeng SL, Wu CJ and Hsieh CH: Profiling circulating
microRNA expression in a mouse model of nerve allotransplantation.
J Biomed Sci. 20(64)2013.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Guerau-de-Arellano M, Smith KM, Godlewski
J, Liu Y, Winger R, Lawler SE, Whitacre CC, Racke MK and
Lovett-Racke AE: Micro-RNA dysregulation in multiple sclerosis
favours pro-inflammatory T-cell-mediated autoimmunity. Brain.
134(Pt 12):3578–3589. 2011.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Nie H, Zhang K, Xu J, Liao K, Zhou W and
Fu Z: Combining bioinformatics techniques to study diabetes
biomarkers and related molecular mechanisms. Front Genet.
11(367)2020.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Shen P, Yang Y, Liu G, Chen W, Chen J,
Wang Q, Gao H, Fan S, Shen S and Zhao X: CircCDK14 protects against
Osteoarthritis by sponging miR-125a-5p and promoting the expression
of Smad2. Theranostics. 10:9113–9131. 2020.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Li S, Liu J, Liu S, Jiao W and Wang X:
Mesenchymal stem cell-derived extracellular vesicles prevent the
development of osteoarthritis via the circHIPK3/miR-124-3p/MYH9
axis. J Nanobiotechnology. 9(194)2021.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Wu Z, Qiu X, Gao B, Lian C, Peng Y, Liang
A, Xu C, Gao W, Zhang L, Su P, et al: Melatonin-mediated
miR-526b-3p and miR-590-5p upregulation promotes chondrogenic
differentiation of human mesenchymal stem cells. J Pineal Res.
65(e12483)2018.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Chen L, Li Q, Wang J, Jin S, Zheng H, Lin
J, He F, Zhang H, Ma S, Mei J and Yu J: MiR-29b-3p promotes
chondrocyte apoptosis and facilitates the occurrence and
development of osteoarthritis by targeting PGRN. J Cell Mol Med.
21:3347–3359. 2017.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Razmara E, Bitaraf A, Yousefi H, Nguyen
TH, Garshasbi M, Cho WC and Babashah S: Non-Coding RNAs in
cartilage development: An updated review. Int J Mol Sci.
20(4475)2019.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Peng B, Hou S, Shi Q and Jia L: The
relationship between cartilage end-plate calcification and disc
degeneration: An experimental study. Chin Med J (Engl).
114:308–312. 2001.PubMed/NCBI
|
|
84
|
Bian Q, Liang QQ, Wan C, Hou W, Li CG,
Zhao YJ, Lu S, Shi Q and Wang YJ: Prolonged upright posture induces
calcified hypertrophy in the cartilage end plate in rat lumbar
spine. Spine (Phila Pa 1976). 36:2011–2020. 2011.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Feng C, Liu M, Fan X, Yang M, Liu H and
Zhou Y: Intermittent cyclic mechanical tension altered the microRNA
expression profile of human cartilage endplate chondrocytes. Mol
Med Rep. 17:5238–5246. 2018.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Chen H, Wang J, Hu B, Wu X, Chen Y, Li R
and Yuan W: MiR-34a promotes Fas-mediated cartilage endplate
chondrocyte apoptosis by targeting Bcl-2. Mol Cell Biochem.
406:21–30. 2015.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Onodera K, Takahashi I, Sasano Y, Bae JW
and Mitani H, Kagayama M and Mitani H: Stepwise mechanical
stretching inhibits chondrogenesis through cell-matrix adhesion
mediated by integrins in embryonic rat limb-bud mesenchymal cells.
Eur J Cell Biol. 84:45–58. 2005.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Bleuel J, Zaucke F, Brüggemann GP and
Niehoff A: Effects of cyclic tensile strain on chondrocyte
metabolism: A systematic review. PLoS One.
10(e0119816)2015.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Yuan W, Che W, Jiang YQ, Yuan FL, Wang HR,
Zheng GL, Li XL and Dong J: Establishment of intervertebral disc
degeneration model induced by ischemic sub-endplate in rat tail.
Spine J. 15:1050–1059. 2015.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Xiao L, Xu S, Xu Y, Liu C, Yang B, Wang J
and Xu H: TGF-β/SMAD signaling inhibits intermittent cyclic
mechanical tension-induced degeneration of endplate chondrocytes by
regulating the miR-455-5p/RUNX2 axis. J Cell Biochem.
119:10415–10425. 2018.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Liu MH, Sun C, Yao Y, Fan X, Liu H, Cui
YH, Bian XW, Huang B and Zhou Y: Matrix stiffness promotes
cartilage endplate chondrocyte calcification in disc degeneration
via miR-20a targeting ANKH expression. Sci Rep.
6(25401)2016.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Zhang F, Zhao X, Shen H and Zhang C:
Molecular mechanisms of cell death in intervertebral disc
degeneration (Review). Int J Mol Med. 37:1439–1448. 2016.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Chen WK, Yu XH, Yang W, Wang C, He WS, Yan
YG, Zhang J and Wang WJ: lncRNAs: Novel players in intervertebral
disc degeneration and osteoarthritis. Cell Prolif.
50(e12313)2017.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Sheng B, Yuan Y, Liu X, Zhang Y, Liu H,
Shen X, Liu B and Chang L: Protective effect of estrogen against
intervertebral disc degeneration is attenuated by miR-221 through
targeting estrogen receptor α. Acta Biochim Biophys Sin (Shanghai).
50:345–354. 2018.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Chen Y, Chen Q, Zhong M, Xu C, Wu Y and
Chen R: miR-637 inhibits osteogenic differentiation of human
intervertebral disc cartilage endplate stem cells by targeting
WNT5A. J Invest Surg. 35:1313–1321. 2022.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Chen D and Jiang X: Exosomes-derived
miR-125-5p from cartilage endplate stem cells regulates autophagy
and ECM metabolism in nucleus pulposus by targeting SUV38H1. Exp
Cell Res. 414(113066)2022.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Wang B, Ji D, Xing W, Li F, Huang Z, Zheng
W, Xue J, Zhu Y and Yang X: miR-142-3p and HMGB1 are negatively
regulated in proliferation, apoptosis, migration, and autophagy of
cartilage endplate cells. Cartilage. 13 (2_suppl):592S–603S.
2021.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Jarroux J, Morillon A and Pinskaya M:
History, discovery, and classification of lncRNAs. Adv Exp Med
Biol. 1008:1–46. 2017.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Qian X, Zhao J, Yeung PY, Zhang QC and
Kwok CK: Revealing lncRNA structures and interactions by
sequencing-based approaches. Trends Biochem Sci. 44:33–52.
2019.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Khan S, Masood M, Gaur H, Ahmad S and Syed
MA: Long non-coding RNA: An immune cells perspective. Life Sci.
271(119152)2021.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Bridges MC, Daulagala AC and Kourtidis A:
LNCcation: lncRNA localization and function. J Cell Biol.
220(e202009045)2021.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Huang H, Xing D, Zhang Q, Li H and Lin J,
He Z and Lin J: LncRNAs as a new regulator of chronic
musculoskeletal disorder. Cell Prolif. 54(e13113)2021.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Liu X, Li W, Jiang L, Lü Z, Liu M, Gong L,
Liu B, Liu L and Yin X: Immunity-associated long non-coding RNA and
expression in response to bacterial infection in large yellow
croaker (Larimichthys crocea). Fish Shellfish Immunol. 94:634–642.
2019.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Li Z, Li X, Chen C, Li S, Shen J, Tse G,
Chan MTV and Wu WKK: Long non-coding RNAs in nucleus pulposus cell
function and intervertebral disc degeneration. Cell Prolif.
51(e12483)2018.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Zhu J, Zhang X, Gao W, Hu H, Wang X and
Hao D: lncRNA/circRNA-miRNA-mRNA ceRNA network in lumbar
intervertebral disc degeneration. Mol Med Rep. 20:3160–3174.
2019.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Wan ZY, Song F, Sun Z, Chen YF, Zhang WL,
Samartzis D, Ma CJ, Che L, Liu X, Ali MA, et al: Aberrantly
expressed long noncoding RNAs in human intervertebral disc
degeneration: A microarray related study. Arthritis Res Ther.
16(465)2014.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Kitagawa M, Kitagawa K, Kotake Y, Niida H
and Ohhata T: Cell cycle regulation by long non-coding RNAs. Cell
Mol Life Sci. 70:4785–4794. 2013.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Solé C, Nadal-Ribelles M, de Nadal E and
Posas F: A novel role for lncRNAs in cell cycle control during
stress adaptation. Curr Genet. 61:299–308. 2015.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Guiducci G and Stojic L: Long Noncoding
RNAs at the crossroads of cell cycle and genome integrity. Trends
Genet. 37:528–546. 2021.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Fatica A and Bozzoni I: Long non-coding
RNAs: New players in cell differentiation and development. Nat Rev
Genet. 15:7–21. 2014.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Ballarino M, Morlando M, Fatica A and
Bozzoni I: Non-coding RNAs in muscle differentiation and
musculoskeletal disease. J Clin Invest. 126:2021–2030.
2016.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Delás MJ, Sabin LR, Dolzhenko E, Knott SR,
Munera Maravilla E, Jackson BT, Wild SA, Kovacevic T, Stork EM,
Zhou M, et al: lncRNA requirements for mouse acute myeloid leukemia
and normal differentiation. Elife. 6(e25607)2017.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Deniz E and Erman B: Long noncoding RNA
(lincRNA), a new paradigm in gene expression control. Funct Integr
Genomics. 17:135–143. 2017.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Mondal T, Subhash S, Vaid R, Enroth S,
Uday S, Reinius B, Mitra S, Mohammed A, James AR, Hoberg E, et al:
MEG3 long noncoding RNA regulates the TGF-β pathway genes through
formation of RNA-DNA triplex structures. Nat Commun.
6(7743)2015.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Mi D, Cai C, Zhou B, Liu X, Ma P, Shen S,
Lu W and Huang W: Long non-coding RNA FAF1 promotes intervertebral
disc degeneration by targeting the Erk signaling pathway. Mol Med
Rep. 17:3158–3163. 2018.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Yuan J, Jia J, Wu T, Liu X, Hu S, Zhang J,
Ding R, Pang C and Cheng X: Comprehensive evaluation of
differential long non-coding RNA and gene expression in patients
with cartilaginous endplate degeneration of cervical vertebra. Exp
Ther Med. 20(260)2020.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Li B, Balasubramanian K, Krakow D and Cohn
DH: Genes uniquely expressed in human growth plate chondrocytes
uncover a distinct regulatory network. BMC Genomics.
18(983)2017.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Gu W, Zhu Q, Gao X and Brown MD:
Simulation of the progression of intervertebral disc degeneration
due to decreased nutritional supply. Spine (Phila Pa 1976).
39:E1411–E1417. 2014.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Fields AJ, Berg-Johansen B, Metz LN,
Miller S, La B, Liebenberg EC, Coughlin DG, Graham JL, Stanhope KL,
Havel PJ and Lotz JC: Alterations in intervertebral disc
composition, matrix homeostasis and biomechanical behavior in the
UCD-T2DM rat model of type 2 diabetes. J Orthop Res. 33:738–746.
2015.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Agius R, Galea R and Fava S: Bone mineral
density and intervertebral disc height in type 2 diabetes. J
Diabetes Complications. 30:644–650. 2016.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Jiang Z, Lu W, Zeng Q, Li D, Ding L and Wu
J: High glucose-induced excessive reactive oxygen species promote
apoptosis through mitochondrial damage in rat cartilage endplate
cells. J Orthop Res. 36:2476–2483. 2018.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Li X, Wu FR, Xu RS, Hu W, Jiang DL, Ji C,
Chen FH and Yuan FL: Acid-sensing ion channel 1a-mediated calcium
influx regulates apoptosis of endplate chondrocytes in
intervertebral discs. Expert Opin Ther Targets. 18:1–14.
2014.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Yuan FL, Wang HR, Zhao MD, Yuan W, Cao L,
Duan PG, Jiang YQ, Li XL and Dong J: Ovarian cancer G
protein-coupled receptor 1 is involved in acid-induced apoptosis of
endplate chondrocytes in intervertebral discs. J Bone Miner Res.
29:67–77. 2014.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Jiang Z, Zeng Q, Li D, Ding L, Lu W, Bian
M and Wu J: Long non-coding RNA MALAT1 promotes high
glucose-induced rat cartilage endplate cell apoptosis via the
p38/MAPK signalling pathway. Mol Med Rep. 21:2220–2226.
2020.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Sanger HL, Klotz G, Riesner D, Gross HJ
and Kleinschmidt AK: Viroids are single-stranded covalently closed
circular RNA molecules existing as highly base-paired rod-like
structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Hsu MT and Coca-Prados M: Electron
microscopic evidence for the circular form of RNA in the cytoplasm
of eukaryotic cells. Nature. 280:339–340. 1979.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Capel B, Swain A, Nicolis S, Hacker A,
Walter M, Koopman P, Goodfellow P and Lovell-Badge R: Circular
transcripts of the testis-determining gene Sry in adult mouse
testis. Cell. 73:1019–1030. 1993.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Grabowski PJ, Zaug AJ and Cech TR: The
intervening sequence of the ribosomal RNA precursor is converted to
a circular RNA in isolated nuclei of Tetrahymena. Cell. 23:467–476.
1981.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Ford E and Ares M Jr: Synthesis of
circular RNA in bacteria and yeast using RNA cyclase ribozymes
derived from a group I intron of phage T4. Proc Natl Acad Sci USA.
91:3117–3121. 1994.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Kos A, Dijkema R, Arnberg AC, van der
Meide PH and Schellekens H: The hepatitis delta (delta) virus
possesses a circular RNA. Nature. 323:558–560. 1986.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Chen LL: The expanding regulatory
mechanisms and cellular functions of circular RNAs. Nat Rev Mol
Cell Biol. 21:475–490. 2020.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Xiao MS, Ai Y and Wilusz JE: Biogenesis
and functions of circular RNAs come into focus. Trends Cell Biol.
30:226–240. 2020.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Jeck WR and Sharpless NE: Detecting and
characterizing circular RNAs. Nat Biotechnol. 32:453–461.
2014.PubMed/NCBI View Article : Google Scholar
|
|
134
|
O'Conor CJ, Case N and Guilak F:
Mechanical regulation of chondrogenesis. Stem Cell Res Ther.
4(61)2013.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Xia DD, Lin SL, Wang XY, Wang YL, Xu HM,
Zhou F and Tan J: Effects of shear force on intervertebral disc: An
in vivo rabbit study. Eur Spine J. 24:1711–1719. 2015.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Xiao L, Ding B, Xu S, Gao J, Yang B, Wang
J and Xu H: circRNA_0058097 promotes tension-induced degeneration
of endplate chondrocytes by regulating HDAC4 expression through
sponge adsorption of miR-365a-5p. J Cell Biochem. 121:418–429.
2020.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Li X, Yang L and Chen LL: The biogenesis,
functions, and challenges of circular RNAs. Mol Cell. 71:428–442.
2018.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Ren S, Lin P, Wang J, Yu H, Lv T, Sun L
and Du G: Circular RNAs: Promising molecular biomarkers of human
aging-related diseases via functioning as an miRNA Sponge. Mol Ther
Methods Clin Dev. 18:215–229. 2020.PubMed/NCBI View Article : Google Scholar
|
|
139
|
Xu D, Ma X, Sun C, Han J, Zhou C, Wong SH,
Chan MTV and Wu WKK: Circular RNAs in intervertebral disc
degeneration: An updated review. Front Mol Biosci.
8(781424)2022.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Zhang J, Hu S, Ding R, Yuan J, Jia J, Wu T
and Cheng X: CircSNHG5 Sponges Mir-495-3p and Modulates CITED2 to
protect cartilage endplate from degradation. Front Cell Dev Biol.
9(668715)2021.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Larsson ME and Nordholm LA: Responsibility
for managing musculoskeletal disorders-a cross-sectional postal
survey of attitudes. BMC Musculoskelet Disord.
9(110)2008.PubMed/NCBI View Article : Google Scholar
|
|
142
|
Hu B, Xiao L, Wang C, Liu C, Zhang Y, Ding
B, Gao D, Lu Y and Xu H: Circ_0022382 ameliorated intervertebral
disc degeneration by regulating TGF-β3 expression through sponge
adsorption of miR-4726-5p. Bone. 154(116185)2022.PubMed/NCBI View Article : Google Scholar
|
|
143
|
Zhang H, Wu S, Chen W, Hu Y, Geng Z and Su
J: Bone/cartilage targeted hydrogel: Strategies and applications.
Bioact Mater. 23:156–169. 2022.PubMed/NCBI View Article : Google Scholar
|
|
144
|
Guo J, Wang F, Hu Y, Luo Y, Wei Y, Xu K,
Zhang H, Liu H, Bo L, Lv S, et al: Exosome-based bone-targeting
drug delivery alleviates impaired osteoblastic bone formation and
bone loss in inflammatory bowel diseases. Cell Rep Med.
4(100881)2023.PubMed/NCBI View Article : Google Scholar
|
|
145
|
Ji ML, Jiang H, Zhang XJ, Shi PL, Li C, Wu
H, Wu XT, Wang YT, Wang C and Lu J: Preclinical development of a
microRNA-based therapy for intervertebral disc degeneration. Nat
Commun. 9(5051)2018.PubMed/NCBI View Article : Google Scholar
|
|
146
|
Hu Y, Li X, Zhang Q, Gu Z, Luo Y, Guo J,
Wang X, Jing Y, Chen X and Su J: Exosome-guided bone targeted
delivery of Antagomir-188 as an anabolic therapy for bone loss.
Bioact Mater. 6:2905–2913. 2021.PubMed/NCBI View Article : Google Scholar
|
|
147
|
Wang Y, Chu X and Wang B: Recombinant
adeno-associated virus-based gene therapy combined with tissue
engineering for musculoskeletal regenerative medicine. Biomater
Transl. 2:19–29. 2021.PubMed/NCBI View Article : Google Scholar
|
|
148
|
Ahn J, Park EM, Kim BJ, Kim JS, Choi B,
Lee SH and Han I: Transplantation of human Wharton's jelly-derived
mesenchymal stem cells highly expressing TGFβ receptors in a rabbit
model of disc degeneration. Stem Cell Res Ther.
6(190)2015.PubMed/NCBI View Article : Google Scholar
|