|
1
|
Zura R, Watson JT, Einhorn T, Mehta S,
Della Rocca GJ, Xiong Z, Wang Z, Jones J and Steen RG: An inception
cohort analysis to predict nonunion in tibia and 17 other fracture
locations. Injury. 48:1194–1203. 2017.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Tian R, Zheng F, Zhao W, Zhang Y, Yuan J,
Zhang B and Li L: Prevalence and influencing factors of nonunion in
patients with tibial fracture: Systematic review and meta-analysis.
J Orthop Surg Res. 15(377)2020.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Lerner RK, Esterhai JL Jr, Polomano RC,
Cheatle MD and Heppenstall RB: Quality of life assessment of
patients with posttraumatic fracture nonunion, chronic refractory
osteomyelitis, and lower-extremity amputation. Clin Orthop Relat
Res. (295) 28-36:1993.PubMed/NCBI
|
|
4
|
Zura R, Braid-Forbes MJ, Jeray K, Mehta S,
Einhorn TA, Watson JT, Della Rocca GJ, Forbes K and Steen RG: Bone
fracture nonunion rate decreases with increasing age: A prospective
inception cohort study. Bone. 95:26–32. 2017.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Yin Y, Xu K, Zhang N, Yi Z, Liu B and Chen
S: Clinical and epidemiological features of scaphoid fracture
nonunion: A hospital-based study in Beijing, China. Orthop Surg.
14:2455–2461. 2022.PubMed/NCBI View
Article : Google Scholar
|
|
6
|
Van Wijck SFM, Van Lieshout EMM, Prins
JTH, Verhofstad MHJ, Van Huijstee PJ, Vermeulen J and Wijffels MME:
Outcome after surgical stabilization of symptomatic rib fracture
nonunion: A multicenter retrospective case series. Eur J Trauma
Emerg Surg. 48:2783–2793. 2022.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Ho CH, Tzeng SC, Farn CJ and Lee CC:
Teriparatide as an effective nonsurgical treatment for a patient
with basicervical peritrochanteric fracture Nonunion-A case report.
Medicina (Kaunas). 58(983)2022.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Kumaran A and Soh HL: Management of
nonunion and malunion after primary mandibular condylar fracture
treatment: A review and recommendations. J Oral Maxillofac Surg.
78:2267–2272. 2020.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Neumann MV, Zwingmann J, Jaeger M, Hammer
TO and Sudkamp NP: Non-Union in upper limb fractures-clinical
evaluation and treatment options. Acta Chir Orthop Traumatol Cech.
83:223–230. 2016.PubMed/NCBI
|
|
10
|
Rao BM, Stokey P, Tanios M, Liu J and
Ebraheim NA: A systematic review of the surgical outcomes of
interprosthetic femur fractures. J Orthop. 33:105–111.
2022.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Yang S, Yang Y, Huo Y, Yu J, Sheng L, Sun
X, Liu X, Yin J and Yin Z: Effect of the degree of displacement of
the third fragment on healing of femoral shaft fracture treated by
intramedullary nailing. J Orthop Surg Res. 17(380)2022.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Lari A, Kashif S and AlMukaimi A:
Arthroscopic retrograde intramedullary nailing of periprosthetic
fractures after total knee arthroplasty-technique, safety, and
outcomes. Arthroplast Today. 17:47–52. 2022.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Kwok IHY, Ieong E, Aljalahma MA, Haldar A
and Welck M: Extracorporeal shock wave treatment in foot and ankle
fracture non-unions-A review. Foot (Edinb).
51(101889)2022.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Cacchio A, Giordano L, Colafarina O, Rompe
JD, Tavernese E, Ioppolo F, Flamini S, Spacca G and Santilli V:
Extracorporeal shock-wave therapy compared with surgery for
hypertrophic long-bone nonunions. J Bone Joint Surg Am.
91:2589–2597. 2009.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Willems A, van der Jagt OP and Meuffels
DE: Extracorporeal shock wave treatment for delayed union and
nonunion fractures: A systematic review. J Orthop Trauma.
33:97–103. 2019.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Wu GB: Effect of extracorporeal shock wave
therapy on fracture nonunion and delayed union. Med Equip.
34:99–100. 2021.(In Chinese).
|
|
17
|
Alkhawashki HM: Shock wave therapy of
fracture nonunion. Injury. 46:2248–2252. 2015.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Kaulesar Sukul DM, Johannes EJ, Pierik EG,
van Eijck GJ and Kristelijn MJ: The effect of high energy shock
waves focused on cortical bone: An in vitro study. J Surg Res.
54:46–51. 1993.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Gadomski BC, McGilvray KC, Easley JT,
Palmer RH, Jiao J, Li X, Qin YX and Puttlitz CM: An investigation
of shock wave therapy and low-intensity pulsed ultrasound on
fracture healing under reduced loading conditions in an ovine
model. J Orthop Res. 36:921–929. 2018.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Stojadinovic A, Elster EA, Anam K, Tadaki
D, Amare M, Zins S and Davis TA: Angiogenic response to
extracorporeal shock wave treatment in murine skin isografts.
Angiogenesis. 11:369–380. 2008.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Ko NY, Chang CN, Cheng CH, Yu HK and Hu
GC: Comparative effectiveness of focused extracorporeal versus
radial extracorporeal shockwave therapy for knee
osteoarthritis-randomized controlled study. Int J Environ Res
Public Health. 19(9001)2022.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Sah V, Kaplan S, Ozkan S, Adanas C and
Toprak M: Comparison between radial and focused types of
extracorporeal shock-wave therapy in plantar calcaneal spur: A
randomized sham-controlled trial. Phys Sportsmed. 51:82–87.
2023.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Saglam G, Cetinkaya Alisar D and Ozen S:
Physical therapy versus radial extracorporeal shock wave therapy in
the treatment of carpal tunnel syndrome: A randomized-controlled
study. Turk J Phys Med Rehabil. 68:126–135. 2022.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Kertzman P, Csaszar NBM, Furia JP and
Schmitz C: Radial extracorporeal shock wave therapy is efficient
and safe in the treatment of fracture nonunions of superficial
bones: A retrospective case series. J Orthop Surg Res.
12(164)2017.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Yue L, Chen H, Feng TH, Wang R and Sun HL:
Low-intensity extracorporeal shock wave therapy for midshaft
clavicular delayed union: A case report and review of literature.
World J Clin Cases. 9:8242–8248. 2021.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Wang CJ, Huang KE, Sun YC, Yang YJ, Ko JY,
Weng LH and Wang FS: VEGF modulates angiogenesis and osteogenesis
in shockwave-promoted fracture healing in rabbits. J Surg Res.
171:114–119. 2011.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Ginini JG, Emodi O, Sabo E, Maor G, Shilo
D and Rachmiel A: Effects of timing of extracorporeal shock wave
therapy on mandibular distraction osteogenesis: An experimental
study in a rat model. J Oral Maxillofac Surg. 77:629–638.
2019.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Lu CC, Chou SH, Shen PC, Chou PH, Ho ML
and Tien YC: Extracorporeal shock wave promotes activation of
anterior cruciate ligament remnant cells and their paracrine
regulation of bone marrow stromal cells' proliferation, migration,
collagen synthesis, and differentiation. Bone Joint Res. 9:458–468.
2020.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Li B, Wang R, Huang X, Ou Y, Jia Z, Lin S,
Zhang Y, Xia H and Chen B: Extracorporeal shock wave therapy
promotes osteogenic differentiation in a rabbit osteoporosis model.
Front Endocrinol (Lausanne). 12(627718)2021.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Song WP, Ma XH, Sun YX, Zhang L, Yao Y,
Hao XY and Zeng JY: Extracorporeal shock wave therapy (ESWT) may be
helpful in the osseointegration of dental implants: A hypothesis.
Med Hypotheses. 145(110294)2020.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Kobayashi M, Chijimatsu R, Yoshikawa H and
Yoshida K: Extracorporeal shock wave therapy accelerates
endochondral ossification and fracture healing in a rat femur
delayed-union model. Biochem Biophys Res Commun. 530:632–637.
2020.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Inoue S, Hatakeyama J, Aoki H, Kuroki H,
Niikura T, Oe K, Fukui T, Kuroda R, Akisue T and Moriyama H:
Utilization of Mechanical stress to treat osteoporosis: The effects
of electrical stimulation, radial extracorporeal shock wave, and
ultrasound on experimental osteoporosis in ovariectomized rats.
Calcif Tissue Int. 109:215–229. 2021.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Hu CC, Chang CH, Hsiao YM, Chang Y, Wu YY,
Ueng SWN and Chen MF: Lipoteichoic acid accelerates bone healing by
enhancing osteoblast differentiation and inhibiting osteoclast
activation in a mouse model of femoral defects. Int J Mol Sci.
21(5550)2020.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Wallimann A, Magrath W, Pugliese B,
Stocker N, Westermann P, Heider A, Gehweiler D, Zeiter S, Claesson
MJ, Richards RG, et al: Butyrate inhibits osteoclast activity in
vitro and regulates systemic inflammation and bone healing in a
murine osteotomy model compared to antibiotic-treated mice.
Mediators Inflamm. 2021(8817421)2021.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Li X, Wang L, Huang B, Gu Y, Luo Y, Zhi X,
Hu Y, Zhang H, Gu Z, Cui J, et al: Targeting actin-bundling protein
L-plastin as an anabolic therapy for bone loss. Sci Adv.
6(eabb7135)2020.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Chen Q, Xia C, Shi B, Chen C, Yang C, Mao
G and Shi F: Extracorporeal shock wave combined with
teriparatide-loaded hydrogel injection promotes segmental bone
defects healing in osteoporosis. Tissue Eng Regen Med.
18:1021–1033. 2021.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Alshihri A, Niu W, Kammerer PW, Al-Askar
M, Yamashita A, Kurisawa M and Spector M: The effects of shock wave
stimulation of mesenchymal stem cells on proliferation, migration,
and differentiation in an injectable gelatin matrix for osteogenic
regeneration. J Tissue Eng Regen Med. 14:1630–1640. 2020.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Chen Y, Xu J, Huang Z, Yu M, Zhang Y, Chen
H, Ma Z, Liao H and Hu J: An innovative approach for enhancing bone
defect healing using PLGA scaffolds seeded with
extracorporeal-shock-wave-treated bone marrow mesenchymal stem
cells (BMSCs). Sci Rep. 7(44130)2017.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Yang YQ, Tan YY, Wong R, Wenden A, Zhang
LK and Rabie AB: The role of vascular endothelial growth factor in
ossification. Int J Oral Sci. 4:64–68. 2012.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Street J, Bao M, deGuzman L, Bunting S,
Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL,
Daugherty A, et al: Vascular endothelial growth factor stimulates
bone repair by promoting angiogenesis and bone turnover. Proc Natl
Acad Sci USA. 99:9656–9661. 2002.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Sung PH, Yin TC, Chai HT, Chiang JY, Chen
CH, Huang CR and Yip HK: Extracorporeal shock wave therapy salvages
critical limb ischemia in B6 mice through upregulating cell
proliferation signaling and angiogenesis. Biomedicines.
10(117)2022.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Sorg H, Zwetzich I, Tilkorn DJ,
Kolbenschlag J, Hauser J, Goertz O, Spindler N, Langer S and Ring
A: Effects of extracorporeal shock waves on microcirculation and
angiogenesis in the in vivo wound model of the diver box. Eur Surg
Res. 62:134–143. 2021.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Modena DAO, Soares CD, Candido EC, Chaim
FDM, Cazzo E and Chaim EA: Effect of extracorporeal shock waves on
inflammation and angiogenesis of integumentary tissue in obese
individuals: Stimulating repair and regeneration. Lasers Med Sci.
37:1289–1297. 2022.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Sternecker K, Geist J, Beggel S,
Dietz-Laursonn K, de la Fuente M, Frank HG, Furia JP, Milz S and
Schmitz C: Exposure of zebra mussels to extracorporeal shock waves
demonstrates formation of new mineralized tissue inside and outside
the focus zone. Biol Open. 7(bio033258)2018.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Wu W, Maffulli N, Furia JP, Meindlhumer L,
Sternecker K, Milz S and Schmitz C: Exposure of zebra mussels to
radial extracorporeal shock waves: Implications for treatment of
fracture nonunions. J Orthop Surg Res. 16(707)2021.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Hsu PC, Chang KV, Chiu YH, Wu WT and
Ozcakar L: Comparative effectiveness of botulinum toxin injections
and extracorporeal shockwave therapy for post-stroke spasticity: A
systematic review and network meta-analysis. EClinicalMedicine.
43(101222)2021.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Hsiao MY, Hung CY, Chang KV, Chien KL, Tu
YK and Wang TG: Comparative effectiveness of autologous
blood-derived products, shock-wave therapy and corticosteroids for
treatment of plantar fasciitis: A network meta-analysis.
Rheumatology (Oxford). 54:1735–1743. 2015.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Chang KV, Chen SY, Chen WS, Tu YK and
Chien KL: Comparative effectiveness of focused shock wave therapy
of different intensity levels and radial shock wave therapy for
treating plantar fasciitis: A systematic review and network
meta-analysis. Arch Phys Med Rehabil. 93:1259–1268. 2012.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Gao J, Rubin JM, Chen J and O'Dell M:
Ultrasound elastography to assess botulinum toxin a treatment for
post-stroke spasticity: A feasibility study. Ultrasound Med Biol.
45:1094–1102. 2019.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Venkatakrishnan A, Francisco GE and
Contreras-Vidal JL: Applications of brain-machine interface systems
in stroke recovery and rehabilitation. Curr Phys Med Rehabil Rep.
2:93–105. 2014.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Rompe JD, Rosendahl T, Schollner C and
Theis C: High-energy extracorporeal shock wave treatment of
nonunions. Clin Orthop Relat Res. (387) 102-111:2001.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Elster EA, Stojadinovic A, Forsberg J,
Shawen S, Andersen RC and Schaden W: Extracorporeal shock wave
therapy for nonunion of the tibia. J Orthop Trauma. 24:133–141.
2010.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Zhang LH, Man LB, Huang GL and Xu X:
Effect of different dosage of radial extracorporeal shock waves on
fracture disunite and bone nonunions. Chinese Journal of
Rehabilitation Theory and Practice. 19:978–980. 2013.(In
Chinese).
|
|
54
|
Huang XW, Han W, Liu YJ, Zhang LH, Gong MQ
and Jiang XY: Comparison of the treatment results of hypertrophic
nonunion by using extracorporeal shock wave therapy(ESWT) or
traditional iliac autograft and internal fixation. J Nanjing Med
Univ (Natural Sciences). 35:1432–1436. 2015.(In Chinese).
|
|
55
|
Wang WZ, Xing GY and Zhai L: Clinical
study of extracorporeal shock wave therapy with autograf t of bone
marrow for bone nonunion. Chin J Prim Med Pharm. 13:1057–1059.
2006.(In Chinese).
|
|
56
|
Jin X, Tan YH, Zhang ZY, Ju CJ, Yan W and
Jiang HJ: A clinical study of injection of autologous cell growth
factors combined with extracorporeal shock wave therapy for
treatment of nonunion of lower limb fractures. J Trad Chin Orthop
Trauma. 30:10–13. 2018.(In Chinese).
|
|
57
|
Gvozdenovic R, Presman B, Larsen MB, Radev
DI, Joerring S and Jensen CH: Can CT-scan measurements of humpback
deformity, dislocation, and the size of bony cysts predict union
after surgery for scaphoid nonunion? J Wrist Surg. 10:418–429.
2021.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Doll J, Waizenegger S, Schmidmaier G,
Weber MA and Fischer C: Contrast-Enhanced Ultrasound: A viable
diagnostic tool in predicting treatment failure after non-union
revision surgery for Upper- and Lower-limb Non-unions. Ultrasound
Med Biol. 47:3147–3158. 2021.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Konda SR, Carlock KD, Hildebrandt KR and
Egol KA: Predicting functional outcomes following fracture nonunion
repair-development and validation of a risk profiling tool. J
Orthop Trauma. 34:e214–e220. 2020.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Yin J, Zhu H, Gao Y and Zhang C:
Vascularized fibular grafting in treatment of femoral neck
nonunion: A prognostic study based on long-term outcomes. J Bone
Joint Surg Am. 101:1294–1300. 2019.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Christiano AV, Goch AM, Leucht P, Konda SR
and Egol KA: Radiographic union score for tibia fractures predicts
success with operative treatment of tibial nonunion. J Clin Orthop
Trauma. 10:650–654. 2019.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Stojadinovic A, Kyle Potter B, Eberhardt
J, Shawen SB, Andersen RC, Forsberg JA, Shwery C, Ester EA and
Schaden W: Development of a prognostic naive bayesian classifier
for successful treatment of nonunions. J Bone Joint Surg Am.
93:187–194. 2011.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Chen S, Chen X, Geng Z and Su J: The
horizon of bone organoid: A perspective on construction and
application. Bioact Mater. 18:15–25. 2022.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Xue X, Hu Y, Wang S, Chen X, Jiang Y and
Su J: Fabrication of physical and chemical crosslinked hydrogels
for bone tissue engineering. Bioact Mater. 12:327–339.
2021.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Sun C, Kang J, Yang C, Zheng J, Su Y, Dong
E, Liu Y, Yao S, Shi C, Pang H, et al: Additive manufactured
polyether-ether-ketone implants for orthopaedic applications: A
narrative review. Biomater Transl. 3:116–133. 2022.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Li H, Yang P, Hwang J, Pageni P, Decho AW
and Tang C: Antifouling and antimicrobial cobaltocenium-containing
metallopolymer double-network hydrogels. Biomater Transl.
3:162–171. 2022.PubMed/NCBI View Article : Google Scholar
|