|
1
|
Klockgether T, Mariotti C and Paulson HL:
Spinocerebellar ataxia. Nat Rev Dis Primers. 5(24)2019.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Ruano L, Melo C, Silva MC and Coutinho P:
The global epidemiology of hereditary ataxia and spastic
paraplegia: A systematic review of prevalence studies.
Neuroepidemiology. 42:174–183. 2014.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Schmitz-Hubsch T, Coudert M, Bauer P,
Giunti P, Globas C, Baliko L, Filla A, Mariotti C, Rakowicz M,
Charles P, et al: Spinocerebellar ataxia types 1, 2, 3, and 6:
Disease severity and nonataxia symptoms. Neurology. 71:982–989.
2008.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Sun YM, Lu C and Wu ZY: Spinocerebellar
ataxia: Relationship between phenotype and genotype-a review. Clin
Genet. 90:305–314. 2016.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Ashizawa T, Öz G and Paulson HL:
Spinocerebellar ataxias: Prospects and challenges for therapy
development. Nat Rev Neurol. 14:590–605. 2018.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Paulson HL, Shakkottai VG, Clark HB and
Orr HT: Polyglutamine spinocerebellar ataxias-from genes to
potential treatments. Nat Rev Neurosci. 18:613–626. 2017.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Schöls L, Bauer P, Schmidt T, Schulte T
and Riess O: Autosomal dominant cerebellar ataxias: Clinical
features, genetics, and pathogenesis. Lancet Neurol. 3:291–304.
2004.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Monin ML, Tezenas du Montcel S, Marelli C,
Cazeneuve C, Charles P, Tallaksen C, Forlani S, Stevanin G, Brice A
and Durr A: Survival and severity in dominant cerebellar ataxias.
Ann Clin Transl Neur. 2:202–207. 2015.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Globas C, du Montcel ST, Baliko L, Boesch
S, Depondt C, DiDonato S, Durr A, Filla A, Klockgether T, Mariotti
C, et al: Early symptoms in spinocerebellar ataxia type 1, 2, 3,
and 6. Mov Disord. 23:2232–2238. 2008.PubMed/NCBI View Article : Google Scholar
|
|
10
|
van de Warrenburg BP, Hendriks H, Dürr A,
van Zuijlen MC, Stevanin G, Camuzat A, Sinke RJ, Brice A and Kremer
BP: Age at onset variance analysis in spinocerebellar ataxias: A
study in a Dutch-French cohort. Ann Neurol. 57:505–512.
2005.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Durr A: Autosomal dominant cerebellar
ataxias: Polyglutamine expansions and beyond. Lancet Neurol.
9:885–894. 2010.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Jacobi H, du Montcel ST, Romanzetti S,
Harmuth F, Mariotti C, Nanetti L, Rakowicz M, Makowicz G, Durr A,
Monin M, et al: Conversion of individuals at risk for
spinocerebellar ataxia types 1, 2, 3, and 6 to manifest ataxia
(RISCA): A longitudinal cohort study. Lancet Neurol. 19:738–747.
2020.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Seidel K, Siswanto S, Brunt ER, den Dunnen
W, Korf HW and Rüb U: Brain pathology of spinocerebellar ataxias.
Acta Neuropathol. 124:1–21. 2012.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Fratkin JD and Vig PJ: Neuropathology of
degenerative ataxias. Handb Clin Neurol. 103:111–125.
2012.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Jacobi H, Reetz K, du Montcel ST, Bauer P,
Mariotti C, Nanetti L, Rakowicz M, Sulek A, Durr A, Charles P, et
al: Biological and clinical characteristics of individuals at risk
for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal
RISCA study: Analysis of baseline data. Lancet Neurol. 12:650–658.
2013.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Moscovich M, Okun MS, Favilla C, Figueroa
KP, Pulst SM, Perlman S, Wilmot G, Gomez C, Schmahmann J, Paulson
H, et al: Clinical evaluation of eye movements in spinocerebellar
ataxias: A prospective multicenter study. J Neuroophthalmol.
35:16–21. 2015.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Rosini F, Pretegiani E, Battisti C, Dotti
MT, Federico A and Rufa A: Eye movement changes in autosomal
dominant spinocerebellar ataxias. Neurol Sci. 41:1719–1734.
2020.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Park JY, Joo K and Woo SJ: Ophthalmic
manifestations and genetics of the polyglutamine autosomal dominant
spinocerebellar ataxias: A review. Front Neurosci.
14(892)2020.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Stephen CD and Schmahmann JD: Eye movement
abnormalities are ubiquitous in the spinocerebellar ataxias.
Cerebellum. 18:1130–1136. 2019.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Halmagyi GM, Chen L, MacDougall HG, Weber
KP, McGarvie LA and Curthoys IS: The video head impulse test. Front
Neurol. 8(285)2017.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Choi JY, Kim HJ and Kim JS: Recent
advances in head impulse test findings in central vestibular
disorders. Neurology. 90:602–612. 2018.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Orr HT, Chung MY, Banfi S, Kwiatkowski TJ
Jr, Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP and
Zoghbi HY: Expansion of an unstable trinucleotide CAG repeat in
spinocerebellar ataxia type 1. Nat Genet. 4:221–226.
1993.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Jacobi H, Bauer P, Giunti P, Labrum R,
Sweeney MG, Charles P, Durr A, Marelli C, Globas C, Linnemann C, et
al: The natural history of spinocerebellar ataxia type 1, 2, 3, and
6: a 2-year follow-up study. Neurology. 77:1035–1041.
2011.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Jacobi H, du Montcel ST, Bauer P, Giunti
P, Cook A, Labrum R, Parkinson MH, Durr A, Brice A, Charles P, et
al: Long-term disease progression in spinocerebellar ataxia types
1, 2, 3, and 6: A longitudinal cohort study. Lancet Neurol.
14:1101–1108. 2015.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Diallo A, Jacobi H, Cook A, Labrum R, Durr
A, Brice A, Charles P, Marelli C, Mariotti C, Nanetti L, et al:
Survival in patients with spinocerebellar ataxia types 1, 2, 3, and
6 (EUROSCA): A longitudinal cohort study. Lancet Neurol.
17:327–334. 2018.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Robitaille Y, Schut L and Kish SJ:
Structural and immunocytochemical features of olivopontocerebellar
atrophy caused by the spinocerebellar ataxia type 1 (SCA-1)
mutation define a unique phenotype. Acta Neuropathol. 90:572–581.
1995.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Jacobi H, Hauser T, Giunti P, Globas C,
Bauer P, Schmitz-Hübsch T, Baliko L, Filla A, Mariotti C, Rakowicz
M, et al: Spinocerebellar ataxia types 1, 2, 3 and 6: The clinical
spectrum of ataxia and morphometric brainstem and cerebellar
findings. Cerebellum. 11:155–166. 2012.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Orr HT and Zoghbi HY: Trinucleotide repeat
disorders. Annu Rev Neurosci. 30:575–621. 2007.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Seshagiri DV, Pal PK, Jain S and Yadav R:
Optokinetic nystagmus in patients with SCA: A bedside test for
oculomotor dysfunction grading. Neurology. 91:e1255–e1261.
2018.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Kim M, Ahn JH, Mun JK, Choi EH, Kim JS,
Youn J and Cho JW: Extracerebellar signs and symptoms in 117 Korean
patients with early-stage spinocerebellar ataxia. J Clin Neurol.
17:242–248. 2021.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Alexandre MF, Rivaud-Péchoux S, Challe G,
Durr A and Gaymard B: Functional consequences of oculomotor
disorders in hereditary cerebellar ataxias. Cerebellum. 12:396–405.
2013.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Kim JS, Kim JS, Youn J, Seo DW, Jeong Y,
Kang JH, Park JH and Cho JW: Ocular motor characteristics of
different subtypes of spinocerebellar ataxia: Distinguishing
features. Mov Disord. 28:1271–1277. 2013.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Seshagiri DV, Sasidharan A, Kumar G, Pal
PK, Jain S, Kutty BM and Yadav R: Challenges in sleep stage R
scoring in patients with autosomal dominant spinocerebellar ataxias
(SCA1, SCA2 and SCA3) and oculomotor abnormalities: A whole night
polysomnographic evaluation. Sleep Med. 42:97–102. 2018.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Burk K, Fetter M, Abele M, Laccone F,
Brice A, Dichgans J and Klockgether T: Autosomal dominant
cerebellar ataxia type I: Oculomotor abnormalities in families with
SCA1, SCA2, and SCA3. J Neurol. 246:789–797. 1999.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Luis L, Costa J, Muñoz E, de Carvalho M,
Carmona S, Schneider E, Gordon CR and Valls-Solé J:
Vestibulo-ocular reflex dynamics with head-impulses discriminates
spinocerebellar ataxias types 1, 2 and 3 and Friedreich ataxia. J
Vestibul Res. 26:327–334. 2016.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Scoles DR and Pulst SM: Spinocerebellar
Ataxia Type 2. Adv Exp Med Biol. 1049:175–195. 2018.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Pulst SM, Nechiporuk A, Nechiporuk T,
Gispert S, Chen XN, Lopes-Cendes I, Pearlman S, Starkman S,
Orozco-Diaz G, Lunkes A, et al: Moderate expansion of a normally
biallelic trinucleotide repeat in spinocerebellar ataxia type 2.
Nat Genet. 14:269–276. 1996.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Fernandez M, McClain ME, Martinez RA, Snow
K, Lipe H, Ravits J, Bird TD and La Spada AR: Late-onset SCA2: 33
CAG repeats are sufficient to cause disease. Neurology. 55:569–572.
2000.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Charles P, Camuzat A, Benammar N, Sellal
F, Destee A, Bonnet AM, Lesage S, Le Ber I, Stevanin G, Durr A, et
al: Are interrupted SCA2 CAG repeat expansions responsible for
parkinsonism? Neurology. 69:1970–1975. 2007.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Elden AC, Kim HJ, Hart MP, Chen-Plotkin
AS, Johnson BS, Fang X, Armakola M, Geser F, Greene R, Lu MM, et
al: Ataxin-2 intermediate-length polyglutamine expansions are
associated with increased risk for ALS. Nature. 466:1069–1075.
2010.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Chio A, Calvo A, Moglia C, Canosa A,
Brunetti M, Barberis M, Restagno G, Conte A, Bisogni G, Marangi G,
et al: ATXN2 polyQ intermediate repeats are a modifier of ALS
survival. Neurology. 84:251–258. 2015.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Politi LS, Bianchi Marzoli S, Godi C,
Panzeri M, Ciasca P, Brugnara G, Castaldo A, Di Bella D, Taroni F,
Nanetti L and Mariotti C: MRI evidence of cerebellar and
extraocular muscle atrophy differently contributing to eye movement
abnormalities in SCA2 and SCA28 diseases. Invest Ophthalmol Vis
Sci. 57:2714–2720. 2016.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Hersheson J, Haworth A and Houlden H: The
inherited ataxias: Genetic heterogeneity, mutation databases, and
future directions in research and clinical diagnostics. Hum Mutat.
33:1324–1332. 2012.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Magaña JJ, Velázquez-Pérez L and Cisneros
B: Spinocerebellar ataxia type 2: Clinical presentation, molecular
mechanisms, and therapeutic perspectives. Mol Neurobiol. 47:90–104.
2013.PubMed/NCBI View Article : Google Scholar
|
|
45
|
van Gaalen J, Giunti P and van de
Warrenburg BP: Mov Disorders in spinocerebellar ataxias. Mov
Disord. 26:792–800. 2011.
|
|
46
|
Furtado S, Payami H, Lockhart PJ, Hanson
M, Nutt JG, Singleton AA, Singleton A, Bower J, Utti RJ, Bird TD,
et al: Profile of families with parkinsonism-predominant
spinocerebellar ataxia type 2 (SCA2). Mov Disord. 19:622–629.
2004.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Yadav R, Pal PK, Krishna N, Amar BR, Jain
S and Purushottam M: Electrophysiological evaluation of
spinocerebellar ataxias 1, 2 and 3. J Neurol Sci. 312:142–145.
2012.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Velázquez-Pérez L, Rodríguez-Labrada R,
Canales-Ochoa N, Montero JM, Sánchez-Cruz G, Aguilera-Rodríguez R,
Almaguer-Mederos LE and Laffita-Mesa JM: Progression of early
features of spinocerebellar ataxia type 2 in individuals at risk: A
longitudinal study. Lancet Neurol. 13:482–489. 2014.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Velázquez-Pérez L, Rodríguez-Labrada R and
Laffita-Mesa JM: Prodromal spinocerebellar ataxia type 2: Prospects
for early interventions and ethical challenges. Mov Disord.
32:708–718. 2017.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Velázquez-Pérez L, Seifried C,
Santos-Falcón N, Abele M, Ziemann U, Almaguer LE, Martínez-Góngora
E, Sánchez-Cruz G, Canales N, Pérez-González R, et al: Saccade
velocity is controlled by polyglutamine size in spinocerebellar
ataxia 2. Ann Neurol. 56:444–447. 2004.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Velázquez-Pérez L, Seifried C, Abele M,
Wirjatijasa F, Rodríguez-Labrada R, Santos-Falcón N, Sánchez-Cruz
G, Almaguer-Mederos L, Tejeda R, Canales-Ochoa N, et al: Saccade
velocity is reduced in presymptomatic spinocerebellar ataxia type
2. Clin Neurophysiol. 120:632–635. 2009.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Rodríguez-Labrada R, Vázquez-Mojena Y,
Canales-Ochoa N, Medrano-Montero J and Velázquez-Pérez L:
Heritability of saccadic eye movements in spinocerebellar ataxia
type 2: Insights into an endophenotype marker. Cerebellum Ataxias.
4(19)2017.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Rodríguez-Labrada R, Velázquez-Pérez L,
Seigfried C, Canales-Ochoa N, Auburger G, Medrano-Montero J,
Sánchez-Cruz G, Aguilera-Rodríguez R, Laffita-Mesa J,
Vázquez-Mojena Y, et al: Saccadic latency is prolonged in
Spinocerebellar Ataxia type 2 and correlates with the
frontal-executive dysfunctions. J Neurol Sci. 306:103–107.
2011.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Rodríguez-Labrada R, Velázquez-Pérez L,
Auburger G, Ziemann U, Canales-Ochoa N, Medrano-Montero J,
Vázquez-Mojena Y and González-Zaldivar Y: Spinocerebellar ataxia
type 2: Measures of saccade changes improve power for clinical
trials. Mov Disord. 31:570–578. 2016.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Rodríguez-Labrada R, Velázquez-Pérez L,
Aguilera-Rodríguez R, Seifried-Oberschmidt C, Peña-Acosta A,
Canales-Ochoa N, Medrano-Montero J, Estupiñan-Rodríguez A,
Vázquez-Mojena Y, González-Zaldivar Y and Laffita Mesa JM:
Executive deficit in spinocerebellar ataxia type 2 is related to
expanded CAG repeats: Evidence from antisaccadic eye movements.
Brain Cogn. 91:28–34. 2014.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Pretegiani E, Piu P, Rosini F, Federighi
P, Serchi V, Tumminelli G, Dotti MT, Federico A and Rufa A:
Anti-Saccades in Cerebellar Ataxias Reveal a Contribution of the
Cerebellum in Executive Functions. Front Neurol.
9(274)2018.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Dankova M, Jerabek J, Jester DJ, Zumrova
A, Paulasova Schwabova J, Cerny R, Kmetonyova S and Vyhnalek M:
Clinical dynamic visual acuity in patients with cerebellar ataxia
and vestibulopathy. PLoS One. 16(e255299)2021.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa
M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M,
Akiguchi I, et al: CAG expansions in a novel gene for
Machado-Joseph disease at chromosome 14q32.1. Nat Genet. 8:221–228.
1994.PubMed/NCBI View Article : Google Scholar
|
|
59
|
van Alfen N, Sinke RJ, Zwarts MJ,
Gabreels-Festen A, Praamstra P, Kremer BP and Horstink MW:
Intermediate CAG repeat lengths (53,54) for MJD/SCA3 are associated
with an abnormal phenotype. Ann Neurol. 49:805–807. 2001.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Faber J, Schaprian T, Berkan K, Reetz K,
França MC Jr, de Rezende TJR, Hong J, Liao W, van de Warrenburg B,
ven Gaalen J, et al: Regional brain and spinal cord volume loss in
spinocerebellar ataxia type 3. Mov Disord. 36:2273–2281.
2021.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Guo J, Jiang Z, Biswal BB, Zhou B, Xie D,
Gao Q, Sheng W, Chen H, Zhang Y, Fan Y, et al: Hypothalamic
atrophy, expanded CAG repeat, and low body mass index in
spinocerebellar ataxia type 3. Mov Disord. 37:1541–1546.
2022.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Rossi M, Perez-Lloret S, Doldan L,
Cerquetti D, Balej J, Millar Vernetti P, Hawkes M, Cammarota A and
Merello M: Autosomal dominant cerebellar ataxias: A systematic
review of clinical features. Eur J Neurol. 21:607–615.
2014.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Jardim LB, Pereira ML, Silveira I, Ferro
A, Sequeiros J and Giugliani R: Neurologic findings in
Machado-Joseph disease: Relation with disease duration, subtypes,
and (CAG)n. Arch Neurol. 58:899–904. 2001.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Franklin GL, Meira AT, Camargo CHF,
Nascimento FA and Teive HAG: Upward gaze palsy: A valuable sign to
distinguish spinocerebellar ataxias. Cerebellum. 19:685–690.
2020.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Lo RY, Figueroa KP, Pulst SM, Perlman S,
Wilmot G, Gomez C, Schmahmann J, Paulson H, Shakkottai VG, Ying S,
et al: Depression and clinical progression in spinocerebellar
ataxias. Parkinsonism Relat Disord. 22:87–92. 2016.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Lin J, Zhang L, Cao B, Wei Q, Ou R, Hou Y,
Xu X, Liu K, Gu X and Shang H: Abnormal eye movements in
spinocerebellar ataxia type 3. BMC Neurol. 21(28)2021.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Lemos J, Novo A, Duque C, Cunha I, Ribeiro
J, Castelhano J and Januário C: Static and dynamic ocular motor
abnormalities as potential biomarkers in spinocerebellar ataxia
type 3. Cerebellum. 20:402–409. 2021.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Wu C, Chen DB, Feng L, Zhou XX, Zhang JW,
You HJ, Liang XL, Pei Z and Li XH: Oculomotor deficits in
spinocerebellar ataxia type 3: Potential biomarkers of preclinical
detection and disease progression. CNS Neurosci Ther. 23:321–328.
2017.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Raposo M, Vasconcelos J, Bettencourt C,
Kay T, Coutinho P and Lima M: Nystagmus as an early ocular
alteration in Machado-Joseph disease (MJD/SCA3). BMC Neurol.
14(17)2014.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Gama MTD, Rezende Filho FM, Rezende TJR,
Braga Neto P, França Junior MC, Pedroso JL and Barsottini OGP:
Nystagmus may be the first neurological sign in early stages of
spinocerebellar ataxia type 3. Arq Neuropsiquiat. 79:891–894.
2021.PubMed/NCBI View Article : Google Scholar
|
|
71
|
de Oliveira CM, Leotti VB, Bolzan G,
Cappelli AH, Rocha AG, Ecco G, Kersting N, Rieck M, Martins AC,
Sena LS, et al: Pre-ataxic changes of clinical scales and eye
movement in machado-joseph disease: BIGPRO study. Mov Disord.
36:985–994. 2021.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Ohyagi Y, Yamada T, Okayama A, Sakae N,
Yamasaki T, Ohshima T, Sakamoto T, Fujii N and Kira J: Vergence
disorders in patients with spinocerebellar ataxia 3/Machado-Joseph
disease: A synoptophore study. J Neurol Sci. 173:120–123.
2000.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Ghasia FF, Wilmot G, Ahmed A and Shaikh
AG: Strabismus and micro-opsoclonus in machado-joseph disease.
Cerebellum. 15:491–497. 2016.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Lee SU, Kim HJ, Choi JY and Kim JS:
Alternating monocular adducting saccadic pulses and dissociated
adducting nystagmus during lateral gazes in spinocerebellar ataxia
type 3. J Neurol. 267:279–281. 2020.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Lemos J, Novo A, Duque C, Castelhano J,
Eggenberger E and Januário C: ‘Pinball’ intrusions in
spinocerebellar ataxia type 3. Neurology. 90:36–37. 2017.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Gordon CR, Joffe V, Vainstein G and Gadoth
N: Vestibulo-ocular arreflexia in families with spinocerebellar
ataxia type 3 (Machado-Joseph disease). J Neurol Neurosurg
Psychiatry. 74:1403–1406. 2003.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Gordon CR, Zivotofsky AZ and Caspi A:
Impaired vestibulo-ocular reflex (VOR) in spinocerebellar ataxia
type 3 (SCA3): Bedside and search coil evaluation. J Vestibul Res.
24:351–355. 2014.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Zaltzman R, Sharony R, Klein C and Gordon
CR: Spinocerebellar ataxia type 3 in Israel: Phenotype and genotype
of a Jew Yemenite subpopulation. J Neurol. 263:2207–2214.
2016.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Gordon CR, Caspi A, Levite R and
Zivotofsky AZ: Mechanisms of vestibulo-ocular reflex (VOR)
cancellation in spinocerebellar ataxia type 3 (SCA-3) and episodic
ataxia type 2 (EA-2). Prog Brain Res. 171:519–525. 2008.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Geisinger D, Elyoseph Z, Zaltzman R, Mintz
M and Gordon CR: Angular vestibulo ocular reflex loss with
preserved saccular function in Machado-Joseph disease. J Neurol
Sci. 424(117393)2021.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Kordasiewicz HB, Thompson RM, Clark HB and
Gomez CM: C-termini of P/Q-type Ca2+ channel alpha1A subunits
translocate to nuclei and promote polyglutamine-mediated toxicity.
Hum Mol Genet. 15:1587–1599. 2006.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Zhuchenko O, Bailey J, Bonnen P, Ashizawa
T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY and Lee
CC: Autosomal dominant cerebellar ataxia (SCA6) associated with
small polyglutamine expansions in the alpha 1A-voltage-dependent
calcium channel. Nat Genet. 15:62–69. 1997.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Gierga K, Schelhaas HJ, Brunt ER, Seidel
K, Scherzed W, Egensperger R, de Vos RA, den Dunnen W, Ippel PF,
Petrasch-Parwez E, et al: Spinocerebellar ataxia type 6 (SCA6):
neurodegeneration goes beyond the known brain predilection sites.
Neuropathol Appl Neurobiol. 35:515–527. 2009.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Schulz JB, Borkert J, Wolf S,
Schmitz-Hübsch T, Rakowicz M, Mariotti C, Schoels L, Timmann D, van
de Warrenburg B, Dürr A, et al: Visualization, quantification and
correlation of brain atrophy with clinical symptoms in
spinocerebellar ataxia types 1, 3 and 6. Neuroimage. 49:158–168.
2010.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Soong BW and Paulson HL: Spinocerebellar
ataxias: An update. Curr Opin Neurol. 20:438–446. 2007.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Rochester L, Galna B, Lord S, Mhiripiri D,
Eglon G and Chinnery PF: Gait impairment precedes clinical symptoms
in spinocerebellar ataxia type 6. Mov Disord. 29:252–255.
2014.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Panouillères MTN, Joundi RA,
Benitez-Rivero S, Cheeran B, Butler CR, Németh AH, Miall RC and
Jenkinson N: Sensorimotor adaptation as a behavioural biomarker of
early spinocerebellar ataxia type 6. Sci Rep.
7(2366)2017.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Rentiya Z, Hutnik R, Mekkam YQ and Bae J:
The pathophysiology and clinical manifestations of spinocerebellar
ataxia type 6. Cerebellum. 19:459–464. 2020.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Tamura I, Takei A, Hamada S, Nonaka M,
Kurosaki Y and Moriwaka F: Cognitive dysfunction in patients with
spinocerebellar ataxia type 6. J Neurol. 264:260–267.
2017.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Suenaga M, Kawai Y, Watanabe H, Atsuta N,
Ito M, Tanaka F, Katsuno M, Fukatsu H, Naganawa S and Sobue G:
Cognitive impairment in spinocerebellar ataxia type 6. J Neurol
Neurosur Psychiatry. 79:496–499. 2008.
|
|
91
|
Bour LJ, van Rootselaar AF, Koelman JH and
Tijssen MA: Oculomotor abnormalities in myoclonic tremor: A
comparison with spinocerebellar ataxia type 6. Brain. 131(Pt
9):2295–2303. 2008.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Christova P, Anderson JH and Gomez CM:
Impaired eye movements in presymptomatic spinocerebellar ataxia
type 6. Arch Neurol. 65:530–536. 2008.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Takeichi N, Fukushima K, Sasaki H, Yabe I,
Tashiro K and Inuyama Y: Dissociation of smooth pursuit and
vestibulo-ocular reflex cancellation in SCA-6. Neurology.
54:860–866. 2000.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Ueno T, Nishizawa H, Suzuki C, Nunomura JI
and Tomiyama M: Downbeat nystagmus as an initial clinical sign in
spinocerebellar ataxia type 6. Neurol Sci. 38:1543–1545.
2017.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Colen CB, Ketko A, George E and Van
Stavern GP: Periodic alternating nystagmus and periodic alternating
skew deviation in spinocerebellar ataxia type 6. J Neuroophthalmol.
28:287–288. 2008.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Hashimoto T, Sasaki O, Yoshida K, Takei Y
and Ikeda S: Periodic alternating nystagmus and rebound nystagmus
in spinocerebellar ataxia type 6. Mov Disord. 18:1201–1204.
2003.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Huh YE, Kim J, Kim H, Park S, Jeon BS, Kim
J, Cho JW and Zee DS: Vestibular performance during
high-acceleration stimuli correlates with clinical decline in SCA6.
Cerebellum. 14:284–291. 2015.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Lee SU, Kim JS, Kim HJ, Choi JY, Park JY,
Kim JM and Yang X: Evolution of the vestibular function during head
impulses in spinocerebellar ataxia type 6. J Neurol. 267:1672–1678.
2020.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Benton CS, de Silva R, Rutledge SL,
Bohlega S, Ashizawa T and Zoghbi HY: Molecular and clinical studies
in SCA-7 define a broad clinical spectrum and the infantile
phenotype. Neurology. 51:1081–1086. 1998.PubMed/NCBI View Article : Google Scholar
|
|
100
|
van de Warrenburg BP, Frenken CW, Ausems
MG, Kleefstra T, Sinke RJ, Knoers NV and Kremer HP: Striking
anticipation in spinocerebellar ataxia type 7: The infantile
phenotype. J Neurol. 248:911–914. 2001.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Rub U, Schols L, Paulson H, Auburger G,
Kermer P, Jen JC, Seidel K, Korf HW and Deller T: Clinical
features, neurogenetics and neuropathology of the polyglutamine
spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol.
104:38–66. 2013.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Martin J, Van Regemorter N, Del-Favero J,
Lofgren A and Van Broeckhoven C: Spinocerebellar ataxia type 7
(SCA7)-correlations between phenotype and genotype in one large
Belgian family. J Neurol Sci. 168:37–46. 1999.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Horton LC, Frosch MP, Vangel MG,
Weigel-DiFranco C, Berson EL and Schmahmann JD: Spinocerebellar
ataxia type 7: Clinical course, phenotype-genotype correlations,
and neuropathology. Cerebellum. 12:176–193. 2013.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Hernandez-Castillo CR, Diaz R, Rezende
TJR, Adanyeguh I, Harding IH, Mochel F and Fernandez-Ruiz J:
Cervical spinal cord degeneration in spinocerebellar ataxia type 7.
AJNR Am J Neuroradiol. 42:1735–1739. 2021.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Azevedo PB, Rocha AG, Keim LMN, Lavinsky
D, Furtado GV, De Mattos EP, Vargas FR, Leotti VB, Saraiva-Pereira
ML and Jardim LB: Rede Neurogenetica. Ophthalmological and
neurologic manifestations in pre-clinical and clinical phases of
spinocerebellar ataxia type 7. Cerebellum. 18:388–396.
2019.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Gouw LG, Kaplan CD, Haines JH, Digre KB,
Rutledge SL, Matilla A, Leppert M, Zoghbi HY and Ptacek LJ: Retinal
degeneration characterizes a spinocerebellar ataxia mapping to
chromosome 3p. Nat Genet. 10:89–93. 1995.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Garden GA and La Spada AR: Molecular
pathogenesis and cellular pathology of spinocerebellar ataxia type
7 neurodegeneration. Cerebellum. 7:138–149. 2008.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Velázquez-Pérez L, Cerecedo-Zapata CM,
Hernández-Hernández O, Martínez-Cruz E, Tapia-Guerrero YS,
González-Piña R, Salas-Vargas J, Rodríguez-Labrada R,
Gurrola-Betancourth R, Leyva-García N, et al: A comprehensive
clinical and genetic study of a large Mexican population with
spinocerebellar ataxia type 7. Neurogenetics. 16:11–21.
2015.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Oh AK, Jacobson KM, Jen JC and Baloh RW:
Slowing of voluntary and involuntary saccades: An early sign in
spinocerebellar ataxia type 7. Ann Neurol. 49:801–804.
2001.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Miller RC, Tewari A, Miller JA, Garbern J
and Van Stavern GP: Neuro-ophthalmologic features of
spinocerebellar ataxia type 7. J Neuroophthalmol. 29:180–186.
2009.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Nakamura K, Jeong SY, Uchihara T, Anno M,
Nagashima K, Nagashima T, Ikeda S, Tsuji S and Kanazawa I: SCA17, a
novel autosomal dominant cerebellar ataxia caused by an expanded
polyglutamine in TATA-binding protein. Hum Mol Genet. 10:1441–1448.
2001.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Toyoshima Y and Takahashi H:
Spinocerebellar ataxia type 17 (SCA17). Adv Exp Med Biol.
1049:219–231. 2018.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Rolfs A, Koeppen AH, Bauer I, Bauer P,
Buhlmann S, Topka H, Schols L and Riess O: Clinical features and
neuropathology of autosomal dominant spinocerebellar ataxia
(SCA17). Ann Neurol. 54:367–375. 2003.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Maltecca F, Filla A, Castaldo I, Coppola
G, Fragassi NA, Carella M, Bruni A, Cocozza S, Casari G, Servadio A
and De Michele G: Intergenerational instability and marked
anticipation in SCA-17. Neurology. 61:1441–1443. 2003.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Nethisinghe S, Lim WN, Ging H, Zeitlberger
A, Abeti R, Pemble S, Sweeney MG, Labrum R, Cervera C, Houlden H,
et al: Complexity of the genetics and clinical presentation of
spinocerebellar ataxia 17. Front Cell Neurosci.
12(429)2018.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Reetz K, Kleiman A, Klein C, Lencer R,
Zuehlke C, Brockmann K, Rolfs A and Binkofski F: CAG repeats
determine brain atrophy in spinocerebellar ataxia 17: A VBM study.
PLoS One. 6(e15125)2011.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Nielsen TT, Mardosiene S, Lokkegaard A,
Stokholm J, Ehrenfels S, Bech S, Friberg L, Nielsen JK and Nielsen
JE: Severe and rapidly progressing cognitive phenotype in a
SCA17-family with only marginally expanded CAG/CAA repeats in the
TATA-box binding protein gene: A case report. BMC Neurol.
12(73)2012.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Kim JY, Kim SY, Kim JM, Kim YK, Yoon KY,
Kim JY, Lee BC, Kim JS, Paek SH, Park SS, et al: Spinocerebellar
ataxia type 17 mutation as a causative and susceptibility gene in
parkinsonism. Neurology. 72:1385–1389. 2009.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Stevanin G, Fujigasaki H, Lebre AS,
Camuzat A, Jeannequin C, Dode C, Takahashi J, San C, Bellance R,
Brice A and Durr A: Huntington's disease-like phenotype due to
trinucleotide repeat expansions in the TBP and JPH3 genes. Brain.
126(Pt 7):1599–1603. 2003.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Hübner J, Sprenger A, Klein C, Hagenah J,
Rambold H, Zühlke C, Kömpf D, Rolfs A, Kimmig H and Helmchen C: Eye
movement abnormalities in spinocerebellar ataxia type 17 (SCA17).
Neurology. 69:1160–1168. 2007.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Mariotti C, Alpini D, Fancellu R, Soliveri
P, Grisoli M, Ravaglia S, Lovati C, Fetoni V, Giaccone G, Castucci
A, et al: Spinocerebellar ataxia type 17 (SCA17): Oculomotor
phenotype and clinical characterization of 15 Italian patients. J
Neurol. 254:1538–1546. 2007.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Lee SU, Kim JS, Yoo D, Kim A, Kim HJ, Choi
JY, Park JY, Jeong SH, Kim JM and Park KW: Ocular motor findings
aid in differentiation of spinocerebellar ataxia type 17 from
Huntington's disease. Cerebellum. 22:1–13. 2023.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Migliaccio AA, Halmagyi GM, McGarvie LA
and Cremer PD: Cerebellar ataxia with bilateral vestibulopathy:
Description of a syndrome and its characteristic clinical sign.
Brain. 127(Pt 2):280–293. 2004.PubMed/NCBI View Article : Google Scholar
|