Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
September-2023 Volume 26 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2023 Volume 26 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

lncRNA and circRNA expression profiles in the hippocampus of Aβ25‑35‑induced AD mice treated with Tripterygium glycoside

  • Authors:
    • Liang Tang
    • Yan Wang
    • Ju Xiang
    • Dawei Yang
    • Yan Zhang
    • Qin Xiang
    • Jianming Li
  • View Affiliations / Copyright

    Affiliations: Department of Basic Biology, Changsha Medical College, Changsha, Hunan 410219, P.R. China
    Copyright: © Tang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 426
    |
    Published online on: July 19, 2023
       https://doi.org/10.3892/etm.2023.12125
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Tripterygium glycosides (TG) have been reported to ameliorate Alzheimer's disease (AD), although the mechanism involved remains to be determined. In the present study, the lncRNA and circRNA expression profiles of an AD mouse model treated with TG were assessed using microarrays. lncRNAs, mRNAs, and circRNAs in the hippocampi of 3 AD+normal saline (NS) mice and 3 AD+TG mice were detected using microarrays. The most differentially expressed lncRNAs, mRNAs, and circRNAs were screened between the AD+NS and AD+TG groups. The differentially expressed lncRNAs and circRNAs were analyzed using GO enrichment and KEGG analyses. Co‑expression analysis of lncRNAs, circRNAs, and mRNAs was performed by calculating the correlation coefficients. Protein‑protein interaction (PPI) network analysis was performed on mRNAs using STRING. The lncRNA‑target‑transcription factor (TF) network was analyzed using the Network software. In total, 661 lncRNAs, 64 circRNAs, and 503 mRNAs were found to be differentially expressed in AD mice treated with TG. Pou4f1, Egr2, Mag, and Nr4a1 were the hub genes in the PPI network. The KEGG results showed that the mRNAs that were co‑expressed with lncRNAs were enriched in the TNF, PI3K‑Akt, and Wnt signaling pathways. LncRNA‑target‑TF network analysis indicated that TFs, including Cebpa, Zic2, and Rxra, were the most likely to regulate the detected lncRNAs. The circRNA‑miRNA interaction network indicated that 275 miRNAs may bind to the 64 circRNAs. In conclusion, these findings provide a novel perspective on AD pathogenesis, and the detected lncRNAs, mRNAs, and circRNAs may serve as novel therapeutic targets for the management of AD.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Mucke L: Alzheimer's disease. Nature. 461:895–897. 2009.PubMed/NCBI View Article : Google Scholar

2 

Wenk GL: Neuropathologic changes in Alzheimer's disease. J Clin Psychiatry. 64:7–10. 2003.PubMed/NCBI

3 

Du Q, Zhu X and Si J: Angelica polysaccharide ameliorates memory impairment in Alzheimer's disease rat through activating BDNF/TrkB/CREB pathway. Exp Biol Med (Maywood). 245:1–10. 2020.PubMed/NCBI View Article : Google Scholar

4 

Zhou B, Tan J, Zhang C and Wu Y: Neuroprotective effect of polysaccharides from Gastrodia elata blume against corticosterone-induced apoptosis in PC12 cells via inhibition of the endoplasmic reticulum stress-mediated pathway. Mol Med Rep. 17:1182–1190. 2018.PubMed/NCBI View Article : Google Scholar

5 

Wei M, Liu Y, Pi Z, Li S, Hu M, He Y, Yue K, Liu T and Liu Z, Song F and Liu Z: Systematically characterize the anti-Alzheimer's disease mechanism of lignans from S. chinensis based on in-vivo ingredient analysis and target-network pharmacology strategy by UHPLC-Q-TOF-MS. Molecules. 24(1203)2019.PubMed/NCBI View Article : Google Scholar

6 

Guo X, Ye YJ, Song K, An LP and Sheng Y: Mechanism of schisandrae chinensis fructus lignans in alleviating learning and memory ability in D-galactose aging mice. Chin J Exp Trad Med Formulae. 26:85–91. 2020.

7 

Wu J, Qu JQ, Zhou YJ, Zhou YJ, Li YY, Huang NQ, Deng CM and Luo Y: Icariin improves cognitive deficits by reducing the deposition of β-amyloid peptide and inhibition of neurons apoptosis in SAMP8 mice. Neuroreport. 31:663–671. 2020.PubMed/NCBI View Article : Google Scholar

8 

Li Z, Zhang XB, Gu JH, Zeng YQ and Li JT: Breviscapine exerts neuroprotective effects through multiple mechanisms in APP/PS1 transgenic mice. Mol Cell Biochem. 468:1–11. 2020.PubMed/NCBI View Article : Google Scholar

9 

Chen Y, Chen Y, Liang Y, Chen H, Ji X and Huang M: Berberine mitigates cognitive decline in an Alzheimer's disease mouse model by targeting both tau hyperphosphorylation and autophagic clearance. Biomed Pharmacother. 121(109670)2020.PubMed/NCBI View Article : Google Scholar

10 

Quan QK, Li X, Feng JJ, Hou JX, Li M and Zhang BW: Ginsenoside Rg1 reduces β-amyloid levels by inhibiting CDΚ5-induced PPARγ phosphorylation in a neuron model of Alzheimer's disease. Mol Med Rep. 22:3277–3288. 2020.PubMed/NCBI View Article : Google Scholar

11 

Zhang B, Li Q, Chu X, Sun S and Chen S: Salidroside reduces tau hyperphosphorylation via up-regulating GSK-3β phosphorylation in a tau transgenic Drosophila model of Alzheimer's disease. Transl Neurodegener. 5:1–6. 2016.PubMed/NCBI View Article : Google Scholar

12 

Bao J, Liu W, Zhou HY, Gui YR, Yan YH, Wu MJ, Xiao YF, Shang JT, Long GF and Shu XJ: Epigallocatechin-3-gallate alleviates cognitive deficits in APP/PS1 mice. Curr Med Sci. 40:18–27. 2020.PubMed/NCBI View Article : Google Scholar

13 

Hase T, Shishido S, Yamamoto S, Yamashita R, Nukima H, Taira S, Toyoda T, Abe K, Hamaguchi T, Ono K, et al: Rosmarinic acid suppresses Alzheimer's disease development by reducing amyloid β aggregation by increasing monoamine secretion. Sci Rep. 9:1–13. 2019.PubMed/NCBI View Article : Google Scholar

14 

Luo J, Song W, Xu Y, Chen GY, Hu Q and Tao QW: Benefits and safety of tripterygium glycosides and total glucosides of paeony for rheumatoid arthritis: An overview of systematic reviews. Chin J Integr Med. 25:696–703. 2019.PubMed/NCBI View Article : Google Scholar

15 

Wu X, Huang Y, Zhang Y, He C, Zhao Y, Wang L and Gao J: Efficacy of tripterygium glycosides combined with ARB on diabetic nephropathy: A meta-analysis. Biosci Rep. 40(BSR20202391)2020.PubMed/NCBI View Article : Google Scholar

16 

Li T, Zhou HC and Chen J: Effects of tripterygium wilfordii polyglycosides on the proliferation, apoptosis and PI3K/AKT signaling pathway of human oral cancer KB cells. J Guangdong Coll Pharm. 35:653–657. 2019.(In Chinese).

17 

Ma CL, Zhang BL and Liu XM: Effects of tripterygium glycosides on migration and angiogenesis of lung adenocarcinoma cell by inhibiting PI3K/AKT signaling. Anhui Med Pharm J. 26:235–238. 2022.(In Chinese).

18 

Wang M, Chen TG, Yang XL, Zhang DL, Zhou KS, Nan W and Zhang HH: Effect of tripterygium glycosides on inflammatory factors induced by lipopolysaccharide in rat astrocytes. Chin J Clin Pharmacol. 35:154–158. 2019.(In Chinese).

19 

Tang L, Xiang Q, Xiang J, Zhang Y and Li J: Tripterygium glycoside ameliorates neuroinflammation in a mouse model of Aβ25-35-induced Alzheimer's disease by inhibiting the phosphorylation of IκBα and p38. Bioengineered. 12:8540–8554. 2021.PubMed/NCBI View Article : Google Scholar

20 

Sun X and Malhotra A: Noncoding RNAs (ncRNA) in hepato cancer: A review. J Environ Pathol Toxicol Oncol. 37:15–25. 2018.PubMed/NCBI View Article : Google Scholar

21 

Faghihi M, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, Finch CE, Laurent GS III, Kenny PJ and Wahlestedt C: Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase. Nat Med. 14:723–730. 2008.PubMed/NCBI View Article : Google Scholar

22 

Massone S, Vassallo I, Fiorino G, Castelnuovo M, Barbieri F, Borghi R, Tabaton M, Robello M, Gatta E, Russo C, et al: 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease. Neurobiol Dis. 41:308–317. 2011.PubMed/NCBI View Article : Google Scholar

23 

Massone S, Ciarlo E, Vella S, Nizzari M, Florio T, Russo C, Cancedda R and Pagano A: NDM29, a RNA polymerase III-dependent non coding RNA, promotes amyloidogenic processing of APP and amyloid β secretion. Biochim Biophys Acta. 1823:1170–1177. 2012.PubMed/NCBI View Article : Google Scholar

24 

Ciarlo E, Massone S, Penna I, Nizzari M, Gigoni A, Dieci G, Russo C, Florio T, Cancedda R and Pagano A: An intronic ncRNA-dependent regulation of SORL1 expression affecting Aβ formation is upregulated in post-mortem Alzheimer's disease brain samples. Dis Model Mech. 6:424–433. 2013.PubMed/NCBI View Article : Google Scholar

25 

Mus E, Hof PR and Tiedge H: Dendritic BC200 RNA in aging and in Alzheimer's disease. Proc Natl Acad Sci USA. 104:10679–10684. 2007.PubMed/NCBI View Article : Google Scholar

26 

Parenti R, Paratore S, Torrisi A and Cavallaro S: A natural antisense transcript against Rad18, specifically expressed in neurons and upregulated during beta-amyloid-induced apoptosis. Eur J Neurosci. 26:2444–2457. 2007.PubMed/NCBI View Article : Google Scholar

27 

Verduci L, Tarcitano E, Strano S, Yarden Y and Blandino G: CircRNAs: Role in human diseases and potential use as biomarkers. Cell Death Dis. 12:1–12. 2021.PubMed/NCBI View Article : Google Scholar

28 

Dube U, Del-Aguila JL, Li Z, Budde JP, Jiang S, Hsu S, Ibanez L, Fernandez MV, Farias F, Norton J, et al: An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nat Neurosci. 22:1903–1912. 2019.PubMed/NCBI View Article : Google Scholar

29 

Ma N, Pan J, Ye X, Yu B, Zhang W and Wan J: Whole-transcriptome analysis of APP/PS1 mouse brain and identification of circRNA-miRNA-mRNA networks to investigate AD pathogenesis. Mol Ther Nucleic Acids. 18:1049–1062. 2019.PubMed/NCBI View Article : Google Scholar

30 

Gruner H, Cortes-Lopez M, Cooper DA, Bauer M and Miura P: CircRNA accumulation in the aging mouse brain. Sci Rep. 6(38907)2016.PubMed/NCBI View Article : Google Scholar

31 

National Research Council (US) Institute for Laboratory Animal Research. Guide for the Care and Use of Laboratory Animals. National Academies Press, Washington, DC, 1996.

32 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and Smyth GK: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43(e47)2015.PubMed/NCBI View Article : Google Scholar

33 

R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 2012. http://www.R-project.org/.

34 

RStudio Team: RStudio, Integrated Development for R. RStudio, Inc., Boston MA, 2015. http://www.rstudio.com/.

35 

Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, et al: TM4: A free, open-source system for microarray data management and analysis. Biotechniques. 34:374–378. 2003.PubMed/NCBI View Article : Google Scholar

36 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.PubMed/NCBI View Article : Google Scholar

37 

Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ and Marra MA: Circos: An information aesthetic for comparative genomics. Genome Res. 19:1639–1645. 2009.PubMed/NCBI View Article : Google Scholar

38 

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al: STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47:D607–D613. 2019.PubMed/NCBI View Article : Google Scholar

39 

Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al: Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nat Genet. 25:25–29. 2000.PubMed/NCBI View Article : Google Scholar

40 

The Gene Ontology Consortium. The gene ontology resource: 20 years and still GOing strong. Nucleic Acids Res. 47:D330–D338. 2019.PubMed/NCBI View Article : Google Scholar

41 

Kanehisa M: Post-genome Informatics. Oxford University press Inc., New York, NY, 2000.

42 

Wucher V, Legeai F, Hedan B, Rizk G, Lagoutte L, Leeb T, Jagannathan V, Cadieu E, David A, Lohi H, et al: FEELnc: A tool for long non-coding RNA annotation and its application to the dog transcriptome. Nucleic Acids Res. 45(e57)2017.PubMed/NCBI View Article : Google Scholar

43 

Alkan F, Wenzel A, Palasca O, Kerpedjiev P, Rudebeck AF, Stadler PF, Hofacker IL and Gorodkin J: RIsearch2: Suffix array-based large-scale prediction of RNA-RNA interactions and siRNA off-targets. Nucleic Acids Res. 45(e60)2017.PubMed/NCBI View Article : Google Scholar

44 

Wenzel A, Akbasli E and Gorodkin J: RIsearch: Fast RNA-RNA interaction search using a simplified nearest-neighbor energy model. Bioinformatics. 28:2738–2746. 2012.PubMed/NCBI View Article : Google Scholar

45 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003.PubMed/NCBI View Article : Google Scholar

46 

Shen Y, Peng X and Shen C: Identification and validation of immune-related lncRNA prognostic signature for breast cancer. Genomics. 112:2640–2646. 2020.PubMed/NCBI View Article : Google Scholar

47 

Luo ZH, Walid AA, Xie Y, Long H, Xiao W, Xu L, Fu Y, Feng L and Xiao B: Construction and analysis of a dysregulated lncRNA-associated ceRNA network in a rat model of temporal lobe epilepsy. Seizure. 69:105–114. 2019.PubMed/NCBI View Article : Google Scholar

48 

Wei CW, Luo T, Zou SS and Wu AS: The role of long noncoding RNAs in central nervous system and neurodegenerative diseases. Front Behav Neurosci. 12(175)2018.PubMed/NCBI View Article : Google Scholar

49 

Singh A, Kukreti R, Saso L and Kukreti S: Oxidative stress: A key modulator in neurodegenerative diseases. Molecules. 24(1583)2019.PubMed/NCBI View Article : Google Scholar

50 

Yang Z, Jiang S, Shang J, Jiang Y, Dai Y, Xu B, Yu Y, Liang Z and Yang Y: LncRNA: Shedding light on mechanisms and opportunities in fibrosis and aging. Ageing Res Rev. 52:17–31. 2019.PubMed/NCBI View Article : Google Scholar

51 

Swerdlow RH: Mitochondria and mitochondrial cascades in Alzheimer's disease. J Alzheimers Dis. 62:1403–1416. 2018.PubMed/NCBI View Article : Google Scholar

52 

Hezroni H, Perry RBT and Ulitsky I: Long noncoding RNAs in development and regeneration of the neural lineage. Cold Spring Harb Symp Quant Biol. 84:165–177. 2019.PubMed/NCBI View Article : Google Scholar

53 

Tang L, Liu L, Li G, Jiang P, Wang Y and Li J: Expression profiles of long noncoding RNAs in intranasal LPS-mediated Alzheimer's disease model in mice. BioMed Res Int. 2019(9642589)2019.PubMed/NCBI View Article : Google Scholar

54 

Deng M, Yang H, Xie X, Liang G and Gan L: Comparative expression analysis of POU4F1, POU4F2 and ISL1 in developing mouse cochleovestibular ganglion neurons. Gene Expr Patterns. 15:31–37. 2014.PubMed/NCBI View Article : Google Scholar

55 

Yadav R and Srivastava P: Establishment of resveratrol and its derivatives as neuroprotectant against monocrotophos-induced alteration in NIPBL and POU4F1 protein through molecular docking studies. Environ Sci Pollut Res Int. 27:291–304. 2020.PubMed/NCBI View Article : Google Scholar

56 

Jeanneteau F, Barrère C, Vos M, De Vries CJM, Rouillard C, Levesque D, Dromard Y, Moisan MP, Duric V, Franklin TC, et al: The stress-induced transcription factor NR4A1 adjusts mitochondrial function and synapse number in prefrontal cortex. J Neurosci. 38:1335–1350. 2018.PubMed/NCBI View Article : Google Scholar

57 

McNulty SE, Barrett RM, Vogel-Ciernia A, Malvaez M, Hernandez N, Davatolhagh MF, Matheos DP, Schiffman A and Wood MA: Differential roles for Nr4a1 and Nr4a2 in object location vs. object recognition long-term memory. Learn Mem. 19:588–592. 2012.PubMed/NCBI View Article : Google Scholar

58 

Zhang Z and Yu J: NR4A1 promotes cerebral ischemia reperfusion injury by repressing Mfn2-mediated mitophagy and inactivating the MAPK-ERK-CREB signaling pathway. Neurochem Res. 43:1963–1977. 2018.PubMed/NCBI View Article : Google Scholar

59 

Chen YL, Wang Y, Erturk A, Kallop D, Jiang Z, Weimer RM, Kaminker J and Sheng M: Activity-induced Nr4a1 regulates spine density and distribution pattern of excitatory synapses in pyramidal neurons. Neuron. 83:431–443. 2014.PubMed/NCBI View Article : Google Scholar

60 

LeBlanc SE, Srinivasan R, Ferri C, Mager GM, Gillian-Daniel AL, Wrabetz L and Svaren J: Regulation of cholesterol/lipid biosynthetic genes by Egr2/Krox20 during peripheral nerve myelination. J Neurochem. 93:737–748. 2005.PubMed/NCBI View Article : Google Scholar

61 

Llorens F, Gil V and del Río JA: Emerging functions of myelin-associated proteins during development, neuronal plasticity, and neurodegeneration. FASEB J. 25:463–475. 2011.PubMed/NCBI View Article : Google Scholar

62 

Wang Z, Xu P, Chen B, Zhang Z, Zhang C, Zhan Q, Huang S, Xia ZA and Peng W: Identifying circRNA-associated-ceRNA networks in the hippocampus of Aβ1-42-induced Alzheimer's disease-like rats using microarray analysis. Aging (Albany NY). 10:775–788. 2018.PubMed/NCBI View Article : Google Scholar

63 

Zhang Y, Yu F, Bao S and Sun J: Systematic characterization of circular RNA-associated CeRNA network identified novel circRNA biomarkers in Alzheimer's disease. Front Bioeng Biotechnol. 7(222)2019.PubMed/NCBI View Article : Google Scholar

64 

Castillo E, Leon J, Mazzei G, Abolhassani N, Haruyama N, Saito T, Saido T, Hokama M, Iwaki T, Ohara T, et al: Comparative profiling of cortical gene expression in Alzheimer's disease patients and mouse models demonstrates a link between amyloidosis and neuroinflammation. Sci Rep. 7(17762)2017.PubMed/NCBI View Article : Google Scholar

65 

Fielder E, Von Zglinicki T and Jurk D: The DNA damage response in neurons: Die by apoptosis or survive in a senescence-like state? J Alzheimer's Dis. 60:S107–S131. 2017.PubMed/NCBI View Article : Google Scholar

66 

Coimbra-Costa D, Alva N, Duran M, Carbonel T and Rama R: Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain. Redox Biol. 12:216–225. 2017.PubMed/NCBI View Article : Google Scholar

67 

Galluzzi L, Pedro JMBS, Blomgren K and Kroemer G: Autophagy in acute brain injury. Nat Rev Neurosci. 17:467–484. 2016.PubMed/NCBI View Article : Google Scholar

68 

Wang G, Han B, Shen L, Wu S, Yang L, Liao J, Wu F, Li M, Leng S, Zang F, et al: Silencing of circular RNA HIPK2 in neural stem cells enhances functional recovery following ischaemic stroke. EBioMedicine. 52(102660)2020.PubMed/NCBI View Article : Google Scholar

69 

Yang M, Xiang G, Yu D, Yang G, He W, Yang S, Zhou G and Liu A: Hsa_circ_0002468 regulates the neuronal differentiation of SH-SY5Y cells by modulating the MiR-561/E2F8 axis. Med Sci Monit. 25:2511–2519. 2019.PubMed/NCBI View Article : Google Scholar

70 

Zhang N, Gao Y, Yu S, Sun XH and Shen K: Berberine attenuates Aβ42-induced neuronal damage through regulating circHDAC9/miR-142-5p axis in human neuronal cells. Life Sci. 252(117637)2020.PubMed/NCBI View Article : Google Scholar

71 

Yang H, Wang H, Shang H, Chen X, Yang S, Qu Y, Ding J and Li X: Circular RNA circ_0000950 promotes neuron apoptosis, suppresses neurite outgrowth and elevates inflammatory cytokines levels via directly sponging miR-103 in Alzheimer's disease. Cell Cycle. 18:2197–2214. 2019.PubMed/NCBI View Article : Google Scholar

72 

Shi Z, Chen T, Yao Q, Zheng L, Zhang Z, Wang J, Hu Z, Cui H, Han Y, Han X, et al: The circular RNA cirs-7 promotes APP and BACE 1 degradation in an NF-κB-dependent manner. FEBS J. 284:1096–1109. 2017.PubMed/NCBI View Article : Google Scholar

73 

Li Y, Lv Z, Zhang J, Ma Q, Li Q, Song L, Gong L, Zhu Y, Li X, Hao Y and Yang Y: Profiling of differentially expressed circular RNAs in peripheral blood mononuclear cells from Alzheimer's disease patients. Metab Brain Dis. 35:201–213. 2020.PubMed/NCBI View Article : Google Scholar

74 

Chen D, Guo Y, Qi L, Tang X, Liu Y, Yang X, Hu GY, Shuai Q, Yong Y, Wang D, et al: Circular RNA NF1-419 enhances autophagy to ameliorate senile dementia by binding Dynamin-1 and adaptor protein 2 B1 in AD-like mice. Aging (Albany NY). 11:12002–12031. 2019.PubMed/NCBI View Article : Google Scholar

75 

Han B, Zhang Y, Zhang Y, Bai Y, Chen XF, Huang R, Wu FF, Shou L, Chao J, Zhang J, et al: Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: Implications for cerebral ischemic stroke. Autophagy. 14:1164–1184. 2018.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Tang L, Wang Y, Xiang J, Yang D, Zhang Y, Xiang Q and Li J: lncRNA and circRNA expression profiles in the hippocampus of Aβ<sub>25‑35</sub>‑induced AD mice treated with Tripterygium glycoside. Exp Ther Med 26: 426, 2023.
APA
Tang, L., Wang, Y., Xiang, J., Yang, D., Zhang, Y., Xiang, Q., & Li, J. (2023). lncRNA and circRNA expression profiles in the hippocampus of Aβ<sub>25‑35</sub>‑induced AD mice treated with Tripterygium glycoside. Experimental and Therapeutic Medicine, 26, 426. https://doi.org/10.3892/etm.2023.12125
MLA
Tang, L., Wang, Y., Xiang, J., Yang, D., Zhang, Y., Xiang, Q., Li, J."lncRNA and circRNA expression profiles in the hippocampus of Aβ<sub>25‑35</sub>‑induced AD mice treated with Tripterygium glycoside". Experimental and Therapeutic Medicine 26.3 (2023): 426.
Chicago
Tang, L., Wang, Y., Xiang, J., Yang, D., Zhang, Y., Xiang, Q., Li, J."lncRNA and circRNA expression profiles in the hippocampus of Aβ<sub>25‑35</sub>‑induced AD mice treated with Tripterygium glycoside". Experimental and Therapeutic Medicine 26, no. 3 (2023): 426. https://doi.org/10.3892/etm.2023.12125
Copy and paste a formatted citation
x
Spandidos Publications style
Tang L, Wang Y, Xiang J, Yang D, Zhang Y, Xiang Q and Li J: lncRNA and circRNA expression profiles in the hippocampus of Aβ<sub>25‑35</sub>‑induced AD mice treated with Tripterygium glycoside. Exp Ther Med 26: 426, 2023.
APA
Tang, L., Wang, Y., Xiang, J., Yang, D., Zhang, Y., Xiang, Q., & Li, J. (2023). lncRNA and circRNA expression profiles in the hippocampus of Aβ<sub>25‑35</sub>‑induced AD mice treated with Tripterygium glycoside. Experimental and Therapeutic Medicine, 26, 426. https://doi.org/10.3892/etm.2023.12125
MLA
Tang, L., Wang, Y., Xiang, J., Yang, D., Zhang, Y., Xiang, Q., Li, J."lncRNA and circRNA expression profiles in the hippocampus of Aβ<sub>25‑35</sub>‑induced AD mice treated with Tripterygium glycoside". Experimental and Therapeutic Medicine 26.3 (2023): 426.
Chicago
Tang, L., Wang, Y., Xiang, J., Yang, D., Zhang, Y., Xiang, Q., Li, J."lncRNA and circRNA expression profiles in the hippocampus of Aβ<sub>25‑35</sub>‑induced AD mice treated with Tripterygium glycoside". Experimental and Therapeutic Medicine 26, no. 3 (2023): 426. https://doi.org/10.3892/etm.2023.12125
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team