Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
September-2023 Volume 26 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2023 Volume 26 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Enhancement of neural regeneration as a therapeutic strategy for Alzheimer's disease (Review)

  • Authors:
    • Junyan Gao
    • Liping Li
  • View Affiliations / Copyright

    Affiliations: Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
    Copyright: © Gao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 444
    |
    Published online on: August 1, 2023
       https://doi.org/10.3892/etm.2023.12143
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Alzheimer's disease (AD), the most common cause of dementia worldwide, has gradually become a global health concern for society and individuals with the process of global ageing. Although extensive research has been carried out on AD, the etiology and pathological mechanism of the disease are still unclear, and there is no specific drug to cure or delay AD progression. The exploration of enhancing nerve regeneration in AD has gradually attracted increasing attention. In the current review, the existing therapeutic strategies were summarized to induce nerve regeneration which can increase the number of neurons, and improve the survival of neurons, the plasticity of synapses and synaptic activity. The strategies include increasing neurotrophic expression (such as brain‑derived neurotrophic factor and nerve growth factor), inhibiting acetylcholinesterase (such as donepezil, tacrine, rivastigmine and galanthamine), elevating histone deacetylase levels (such as RGFP‑966, Tasquinimod, CM‑414 and 44B), stimulating the brain by physiotherapy (such as near‑infrared light, repetitive transcranial magnetic stimulation, and transcranial direct current stimulation) and transplanting exogenous neural stem cells. However, further evaluations need to be performed to determine the optimal treatment. The present study reviews recent interventions for enhancing adult neurogenesis and attempts to elucidate their mechanisms of action, which may provide a theoretical basis for inducing nerve regeneration to fight against AD.
View Figures

Figure 1

View References

1 

Soria Lopez JA, González HM and Léger GC: Alzheimer's disease. Handb Clin Neurol. 167:231–255. 2019.PubMed/NCBI View Article : Google Scholar

2 

Tiwari S, Atluri V, Kaushik A, Yndart A and Nair M: Alzheimer's disease: Pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine. 14:5541–5554. 2019.PubMed/NCBI View Article : Google Scholar

3 

Ayers D and Scerri C: Non-coding RNA influences in dementia. Noncoding RNA Res. 3:188–194. 2018.PubMed/NCBI View Article : Google Scholar

4 

Panza F, Lozupone M, Logroscino G and Imbimbo BP: A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol. 15:73–88. 2019.PubMed/NCBI View Article : Google Scholar

5 

Gao Y and Tan L, Yu JT and Tan L: Tau in Alzheimer's disease: Mechanisms and therapeutic strategies. Curr Alzheimer Res. 15:283–300. 2018.PubMed/NCBI View Article : Google Scholar

6 

Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, et al: APOE in the bullseye of neurodegenerative diseases: Impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener. 17(62)2022.PubMed/NCBI View Article : Google Scholar

7 

Honjo K, Black SE and Verhoeff NPLG: Alzheimer's disease, cerebrovascular disease, and the β-amyloid cascade. Can J Neurol Sci. 39:712–728. 2012.PubMed/NCBI View Article : Google Scholar

8 

Sharma K: Cholinesterase inhibitors as Alzheimer's therapeutics (review). Mol Med Rep. 20:1479–1487. 2019.PubMed/NCBI View Article : Google Scholar

9 

Hynd MR, Scott HL and Dodd PR: Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease. Neurochem Int. 45:583–595. 2004.PubMed/NCBI View Article : Google Scholar

10 

Sun MK: Roles of neural regeneration in memory pharmacology. Neural Regen Res. 13:406–407. 2018.PubMed/NCBI View Article : Google Scholar

11 

Altman J and Das GD: Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 124:319–335. 1965.PubMed/NCBI View Article : Google Scholar

12 

von Bohlen Und Halbach O: Immunohistological markers for staging neurogenesis in adult hippocampus. Cell Tissue Res. 329:409–420. 2007.PubMed/NCBI View Article : Google Scholar

13 

Low VF, Faull RL, Bennet L, Gunn AJ and Curtis MA: Neurogenesis and progenitor cell distribution in the subgranular zone and subventricular zone of the adult sheep brain. Neuroscience. 244:173–187. 2013.PubMed/NCBI View Article : Google Scholar

14 

Gould E, Reeves AJ, Graziano MS and Gross CG: Neurogenesis in the neocortex of adult primates. Science. 286:548–552. 1999.PubMed/NCBI View Article : Google Scholar

15 

Farzanehfar P: Comparative review of adult midbrain and striatum neurogenesis with classical neurogenesis. Neurosci Res. 134:1–9. 2018.PubMed/NCBI View Article : Google Scholar

16 

Tobin MK, Musaraca K, Disouky A, Shetti A, Bheri A, Honer WG, Kim N, Dawe RJ, Bennett DA, Arfanakis K and Lazarov O: Human hippocampal neurogenesis persists in aged adults and Alzheimer's disease patients. Cell Stem Cell. 24:974–982.e3. 2019.PubMed/NCBI View Article : Google Scholar

17 

Scheff SW, Price DA, Schmitt FA and Mufson EJ: Hippocampal synaptic loss in early Alzheimer's disease and mild cognitive impairment. Neurobiol Aging. 27:1372–1384. 2006.PubMed/NCBI View Article : Google Scholar

18 

Wang YJ, Gong WG, Ren QG and Zhang ZJ: Escitalopram alleviates Alzheimer's disease-type tau pathologies in the aged P301L tau transgenic mice. J Alzheimers Dis. 77:807–819. 2020.PubMed/NCBI View Article : Google Scholar

19 

Zhang L, Qin Z, Sharmin F, Lin W, Ricke KM, Zasloff MA, Stewart AFR and Chen HH: Tyrosine phosphatase PTP1B impairs presynaptic NMDA receptor-mediated plasticity in a mouse model of Alzheimer's disease. Neurobiol Dis. 156(105402)2021.PubMed/NCBI View Article : Google Scholar

20 

Yang XB, Zu HB, Zhao YF and Yao K: Agomelatine prevents amyloid plaque deposition, tau phosphorylation, and neuroinflammation in APP/PS1 mice. Front Aging Neurosci. 13(766410)2022.PubMed/NCBI View Article : Google Scholar

21 

Duan S, Guan X, Lin R, Liu X, Yan Y, Lin R, Zhang T, Chen X, Huang J, Sun X, et al: Silibinin inhibits acetylcholinesterase activity and amyloid β peptide aggregation: A dual-target drug for the treatment of Alzheimer's disease. Neurobiol Aging. 36:1792–1807. 2015.PubMed/NCBI View Article : Google Scholar

22 

He Z, Li X, Wang Z, Tu S, Feng J, Du X, Ni J, Li N and Liu Q: Esculentoside A alleviates cognitive deficits and amyloid pathology through peroxisome proliferator-activated receptor γ-dependent mechanism in an Alzheimer's disease model. Phytomedicine. 98(153956)2022.PubMed/NCBI View Article : Google Scholar : (Epub ahead of print).

23 

Wang C, Zheng D, Weng F, Jin Y and He L: Sodium butyrate ameliorates the cognitive impairment of Alzheimer's disease by regulating the metabolism of astrocytes. Psychopharmacology (Berl). 239:215–227. 2022.PubMed/NCBI View Article : Google Scholar

24 

Zhang HA, Yuan CX, Liu KF, Yang QF, Zhao J, Li H, Yang QH, Song D, Quan ZZ and Qing H: Neural stem cell transplantation alleviates functional cognitive deficits in a mouse model of tauopathy. Neural Regen Res. 17:152–162. 2022.PubMed/NCBI View Article : Google Scholar

25 

Lilja AM, Malmsten L, Röjdner J, Voytenko L, Verkhratsky A, Ögren SO, Nordberg A and Marutle A: Neural stem cell transplant-induced effect on neurogenesis and cognition in Alzheimer Tg2576 mice is inhibited by concomitant treatment with amyloid-lowering or cholinergic α7 nicotinic receptor drugs. Neural Plast. 2015(370432)2015.PubMed/NCBI View Article : Google Scholar

26 

Li W, Kong LH, Wang H, Shen F, Wang YW, Zhou H and Sun GJ: High-frequency electroacupuncture evidently reinforces hippocampal synaptic transmission in Alzheimer's disease rats. Neural Regen Res. 11:801–806. 2016.PubMed/NCBI View Article : Google Scholar

27 

Riolo G, Ricci C, De Angelis N, Marzocchi C, Guerrera G, Borsellino G, Giannini F and Battistini S: BDNF and pro-BDNF in amyotrophic lateral sclerosis: A new perspective for biomarkers of neurodegeneration. Brain Sci. 12(617)2022.PubMed/NCBI View Article : Google Scholar

28 

Levey AI, Qiu D, Zhao L, Hu WT, Duong DM, Higginbotham L, Dammer EB, Seyfried NT, Wingo TS, Hales CM, et al: A phase II study repurposing atomoxetine for neuroprotection in mild cognitive impairment. Brain. 145:1924–1938. 2022.PubMed/NCBI View Article : Google Scholar

29 

Zoladz JA, Majerczak J, Zeligowska E, Mencel J, Jaskolski A, Jaskolska A and Marusiak J: Moderate-intensity interval training increases serum brain-derived neurotrophic factor level and decreases inflammation in Parkinson's disease patients. J Physiol Pharmacol. 65:441–448. 2014.PubMed/NCBI

30 

Eyileten C, Sharif L, Wicik Z, Jakubik D, Jarosz-Popek J, Soplinska A, Postula M, Czlonkowska A, Kaplon-Cieslicka A and Mirowska-Guzel D: The relation of the brain-derived neurotrophic factor with MicroRNAs in neurodegenerative diseases and ischemic stroke. Mol Neurobiol. 58:329–347. 2021.PubMed/NCBI View Article : Google Scholar

31 

Ball S, Marangell LB, Lipsius S and Russell JM: Brain-derived neurotrophic factor in generalized anxiety disorder: results from a duloxetine clinical trial. Prog Neuropsychopharmacol Biol Psychiatry. 43:217–221. 2013.PubMed/NCBI View Article : Google Scholar

32 

Shekari A and Fahnestock M: Retrograde axonal transport of BDNF and proNGF diminishes with age in basal forebrain cholinergic neurons. Neurobiol Aging. 84:131–140. 2019.PubMed/NCBI View Article : Google Scholar

33 

Thoenen H, Zafra F, Hengerer B and Lindholm D: The synthesis of nerve growth factor and brain-derived neurotrophic factor in hippocampal and cortical neurons is regulated by specific transmitter systems. Ann N Y Acad Sci. 640:86–90. 1991.PubMed/NCBI View Article : Google Scholar

34 

Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM, Wang L, Blesch A, Kim A, Conner JM, et al: Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease. Nat Med. 15:331–337. 2009.PubMed/NCBI View Article : Google Scholar

35 

Arora S, Kanekiyo T and Singh J: Functionalized nanoparticles for brain targeted BDNF gene therapy to rescue Alzheimer's disease pathology in transgenic mouse model. Int J Biol Macromol. 208:901–911. 2022.PubMed/NCBI View Article : Google Scholar

36 

Beeri MS and Sonnen J: Brain BDNF expression as a biomarker for cognitive reserve against Alzheimer disease progression. Neurology. 86:702–703. 2016.PubMed/NCBI View Article : Google Scholar

37 

Dong BE, Chen H and Sakata K: BDNF deficiency and enriched environment treatment affect neurotransmitter gene expression differently across ages. J Neurochem. 154:41–55. 2020.PubMed/NCBI View Article : Google Scholar

38 

Paraskevopoulou F, Herman MA and Rosenmund C: Glutamatergic innervation onto striatal neurons potentiates GABAergic synaptic output. J Neurosci. 39:4448–4460. 2019.PubMed/NCBI View Article : Google Scholar

39 

Miyazaki S, Oikawa H, Takekoshi H, Hoshizaki M, Ogata M and Fujikawa T: Anxiolytic effects of acanthopanax senticosus HARMS occur via regulation of autonomic function and activate hippocampal BDNF-TrkB signaling. Molecules. 24(132)2018.PubMed/NCBI View Article : Google Scholar

40 

Li Y, Xiang L, Wang C, Song Y, Miao J and Miao M: Protection against acute cerebral ischemia/reperfusion injury by leonuri herba total alkali via modulation of BDNF-TrKB-PI3K/Akt signaling pathway in rats. Biomed Pharmacother. 133(111021)2021.PubMed/NCBI View Article : Google Scholar

41 

Yamaguchi A, Tamatani M, Matsuzaki H, Namikawa K, Kiyama H, Vitek MP, Mitsuda N and Tohyama M: Akt activation protects hippocampal neurons from apoptosis by inhibiting transcriptional activity of p53. J Biol Chem. 276:5256–5264. 2001.PubMed/NCBI View Article : Google Scholar

42 

Chimenti MS, Sunzini F, Fiorucci L, Botti E, Fonti GL, Conigliaro P, Triggianese P, Costa L, Caso F, Giunta A, et al: Potential role of cytochrome c and tryptase in psoriasis and psoriatic arthritis pathogenesis: Focus on resistance to apoptosis and oxidative stress. Front Immunol. 9(2363)2018.PubMed/NCBI View Article : Google Scholar

43 

Zhou LJ, Mo YB, Bu X, Wang JJ, Bai J, Zhang JW, Cheng AB, Ma JH, Wang YW and Xie YX: Erinacine facilitates the opening of the mitochondrial permeability transition pore through the inhibition of the PI3K/Akt/GSK-3β signaling pathway in human hepatocellular carcinoma. Cell Physiol Biochem. 50:851–867. 2018.PubMed/NCBI View Article : Google Scholar

44 

Jiang T, Wang XQ, Ding C and Du XL: Genistein attenuates isoflurane-induced neurotoxicity and improves impaired spatial learning and memory by regulating cAMP/CREB and BDNF-TrkB-PI3K/Akt signaling. Korean J Physiol Pharmacol. 21:579–589. 2017.PubMed/NCBI View Article : Google Scholar

45 

Merkouris S, Barde YA, Binley KE, Allen ND, Stepanov AV, Wu NC, Grande G, Lin CW, Li M, Nan X, et al: Fully human agonist antibodies to TrkB using autocrine cell-based selection from a combinatorial antibody library. Proc Natl Acad Sci USA. 115:E7023–E7032. 2018.PubMed/NCBI View Article : Google Scholar

46 

Tacke C, DiStefano PS, Lindsay RM, Metzdorf K, Zagrebelsky M and Korte M: Actions of the TrkB agonist antibody ZEB85 in regulating the architecture and synaptic plasticity in hippocampal neurons. Front Mol Neurosci. 15(945348)2022.PubMed/NCBI View Article : Google Scholar

47 

Chen C, Wang Z, Zhang Z, Liu X, Kang SS, Zhang Y and Ye K: The prodrug of 7,8-dihydroxyflavone development and therapeutic efficacy for treating Alzheimer's disease. Proc Natl Acad Sci USA. 115:578–583. 2018.PubMed/NCBI View Article : Google Scholar

48 

Fan CH, Lin CW, Huang HJ, Lee-Chen GJ, Sun YC, Lin W, Chen CM, Chang KH, Su MT and Hsieh-Li HM: LMDS-1, a potential TrkB receptor agonist provides a safe and neurotrophic effect for early-phase Alzheimer's disease. Psychopharmacology (Berl). 237:3173–3190. 2020.PubMed/NCBI View Article : Google Scholar

49 

Tuszynski MH, Yang JH, Barba D, U HS, Bakay RA, Pay MM, Masliah E, Conner JM, Kobalka P, Roy S and Nagahara AH: Nerve growth factor gene therapy: Activation of neuronal responses in Alzheimer disease. JAMA Neurol. 72:1139–1147. 2015.PubMed/NCBI View Article : Google Scholar

50 

Rocco ML, Soligo M, Manni L and Aloe L: Nerve growth factor: Early studies and recent clinical trials. Curr Neuropharmacol. 16:1455–1465. 2018.PubMed/NCBI View Article : Google Scholar

51 

Ding XW, Li R, Geetha T, Tao YX and Babu JR: Nerve growth factor in metabolic complications and Alzheimer's disease: Physiology and therapeutic potential. Biochim Biophys Acta Mol Basis Dis. 1866(165858)2020.PubMed/NCBI View Article : Google Scholar

52 

Tiveron C, Fasulo L, Capsoni S, Malerba F, Marinelli S, Paoletti F, Piccinin S, Scardigli R, Amato G, Brandi R, et al: ProNGF\NGF imbalance triggers learning and memory deficits, neurodegeneration and spontaneous epileptic-like discharges in transgenic mice. Cell Death Differ. 20:1017–1030. 2013.PubMed/NCBI View Article : Google Scholar

53 

Mitra S, Behbahani H and Eriksdotter M: Innovative therapy for Alzheimer's disease-with focus on biodelivery of NGF. Front Neurosci. 13(38)2019.PubMed/NCBI View Article : Google Scholar

54 

Ruberti F, Capsoni S, Comparini A, Di Daniel E, Franzot J, Gonfloni S, Rossi G, Berardi N and Cattaneo A: Phenotypic knockout of nerve growth factor in adult transgenic mice reveals severe deficits in basal forebrain cholinergic neurons, cell death in the spleen, and skeletal muscle dystrophy. J Neurosci. 20:2589–2601. 2000.PubMed/NCBI View Article : Google Scholar

55 

Soligo M, Albini M, Bertoli FL, Marzano V, Protto V, Bracci-Laudiero L, Minnone G, De Benedetti F, Chiaretti A, Mantuano E and Manni L: Different responses of PC12 cells to different pro-nerve growth factor protein variants. Neurochem Int. 129(104498)2019.PubMed/NCBI View Article : Google Scholar

56 

Isaev NK, Stelmashook EV and Genrikhs EE: Role of nerve growth factor in plasticity of forebrain cholinergic neurons. Biochemistry (Mosc). 82:291–300. 2017.PubMed/NCBI View Article : Google Scholar

57 

Delivanoglou N, Boziki M, Theotokis P, Kesidou E, Touloumi O, Dafi N, Nousiopoulou E, Lagoudaki R, Grigoriadis N, Charalampopoulos I and Simeonidou C: Spatio-temporal expression profile of NGF and the two-receptor system, TrkA and p75NTR, in experimental autoimmune encephalomyelitis. J Neuroinflammation. 17(41)2020.PubMed/NCBI View Article : Google Scholar

58 

Yan T, Zhang Z and Li D: NGF receptors and PI3K/AKT pathway involved in glucose fluctuation-induced damage to neurons and α-lipoic acid treatment. BMC Neurosci. 21(38)2020.PubMed/NCBI View Article : Google Scholar

59 

Ioannou MS and Fahnestock M: ProNGF, but not NGF, switches from neurotrophic to apoptotic activity in response to reductions in TrkA receptor levels. Int J Mol Sci. 18(599)2017.PubMed/NCBI View Article : Google Scholar

60 

Karami A, Eyjolfsdottir H, Vijayaraghavan S, Lind G, Almqvist P, Kadir A, Linderoth B, Andreasen N, Blennow K, Wall A, et al: Changes in CSF cholinergic biomarkers in response to cell therapy with NGF in patients with Alzheimer's disease. Alzheimers Dement. 11:1316–1328. 2015.PubMed/NCBI View Article : Google Scholar

61 

Pakzaban P and Chiocca EA: Nerve growth factor protects against herpes simplex virus type 1 neurotoxicity in the rat striatum. Neuroreport. 5:993–996. 1994.PubMed/NCBI View Article : Google Scholar

62 

De Rosa R, Garcia AA, Braschi C, Capsoni S, Maffei L, Berardi N and Cattaneo A: Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice. Proc Natl Acad Sci USA. 102:3811–3816. 2005.PubMed/NCBI View Article : Google Scholar

63 

Lambiase A, Pagani L, Di Fausto V, Sposato V, Coassin M, Bonini S and Aloe L: Nerve growth factor eye drop administrated on the ocular surface of rodents affects the nucleus basalis and septum: Biochemical and structural evidence. Brain Res. 1127:45–51. 2007.PubMed/NCBI View Article : Google Scholar

64 

Hohsfield LA, Geley S, Reindl M and Humpel C: The generation of NGF-secreting primary rat monocytes: A comparison of different transfer methods. J Immunol Methods. 391:112–124. 2013.PubMed/NCBI View Article : Google Scholar

65 

Eriksdotter M, Navarro-Oviedo M, Mitra S, Wahlberg L, Linderoth B, Tjernberg LO and Behbahani H: Cerebrospinal fluid from Alzheimer patients affects cell-mediated nerve growth factor production and cell survival in vitro. Exp Cell Res. 371:175–184. 2018.PubMed/NCBI View Article : Google Scholar

66 

Moyano P, Flores A, Garcia J, García JM, Anadon MJ, Frejo MT, Sola E, Pelayo A and Del Pino J: Bisphenol A single and repeated treatment increases HDAC2, leading to cholinergic neurotransmission dysfunction and SN56 cholinergic apoptotic cell death through AChE variants overexpression and NGF/TrkA/P75NTR signaling disruption. Food Chem Toxicol. 157(112614)2021.PubMed/NCBI View Article : Google Scholar

67 

Eyjolfsdottir H, Eriksdotter M, Linderoth B, Lind G, Juliusson B, Kusk P, Almkvist O, Andreasen N, Blennow K, Ferreira D, et al: Targeted delivery of nerve growth factor to the cholinergic basal forebrain of Alzheimer's disease patients: Application of a second-generation encapsulated cell biodelivery device. Alzheimers Res Ther. 8(30)2016.PubMed/NCBI View Article : Google Scholar

68 

Amaral LD, Santos NAGD, Sisti FM, Del Bel E and Santos ACD: The antibiotic doxycycline mimics the NGF signaling in PC12 cells: A relevant mechanism for neuroprotection. Chem Biol Interact. 341(109454)2021.PubMed/NCBI View Article : Google Scholar

69 

James ML, Belichenko NP, Shuhendler AJ, Hoehne A, Andrews LE, Condon C, Nguyen TV, Reiser V, Jones P, Trigg W, et al: [18F]GE-180 PET detects reduced microglia activation after LM11A-31 therapy in a mouse model of Alzheimer's disease. Theranostics. 7:1422–1436. 2017.PubMed/NCBI View Article : Google Scholar

70 

Bartus RT, Dean RL III, Beer B and Lippa AS: The cholinergic hypothesis of geriatric memory dysfunction. Science. 217:408–414. 1982.PubMed/NCBI View Article : Google Scholar

71 

Moss DE: Improving anti-neurodegenerative benefits of acetylcholinesterase inhibitors in Alzheimer's disease: Are irreversible inhibitors the future? Int J Mol Sci. 21(3438)2020.PubMed/NCBI View Article : Google Scholar

72 

Korabecny J, Spilovska K, Mezeiova E, Benek O, Juza R, Kaping D and Soukup O: A systematic review on donepezil-based derivatives as potential cholinesterase inhibitors for Alzheimer's disease. Curr Med Chem. 26:5625–5648. 2019.PubMed/NCBI View Article : Google Scholar

73 

Parsons CG, Danysz W, Dekundy A and Pulte I: Memantine and cholinesterase inhibitors: Complementary mechanisms in the treatment of Alzheimer's disease. Neurotox Res. 24:358–369. 2013.PubMed/NCBI View Article : Google Scholar

74 

Liang J, Li J, Jia R, Wang Y, Wu R, Zhang H, Hang L and Xu Y: Identification of the optimal cognitive drugs among Alzheimer's disease: A Bayesian meta-analytic review. Clin Interv Aging. 13:2061–2073. 2018.PubMed/NCBI View Article : Google Scholar

75 

Aguglia E, Onor ML, Saina M and Maso E: An open-label, comparative study of rivastigmine, donepezil and galantamine in a real-world setting. Curr Med Res Opin. 20:1747–1752. 2004.PubMed/NCBI View Article : Google Scholar

76 

Nordberg A, Darreh-Shori T, Peskind E, Soininen H, Mousavi M, Eagle G and Lane R: Different cholinesterase inhibitor effects on CSF cholinesterases in Alzheimer patients. Curr Alzheimer Res. 6:4–14. 2009.PubMed/NCBI View Article : Google Scholar

77 

Joshi S and Kapur J: N-methyl-D-aspartic acid receptor activation downregulates expression of δ subunit-containing GABAA receptors in cultured hippocampal neurons. Mol Pharmacol. 84:1–11. 2013.PubMed/NCBI View Article : Google Scholar

78 

Shih CC, Chen PY, Chen MF and Lee TJF: Differential blockade by huperzine A and donepezil of sympathetic nicotinic acetylcholine receptor-mediated nitrergic neurogenic dilations in porcine basilar arteries. Eur J Pharmacol. 868(172851)2020.PubMed/NCBI View Article : Google Scholar

79 

Ito T, Inden M, Ueda T, Asaka Y, Kurita H and Hozumi I: The neuroprotective effects of activated alpha7 nicotinic acetylcholine receptor against mutant copper-zinc superoxide dismutase 1-mediated toxicity. Sci Rep. 10(22157)2020.PubMed/NCBI View Article : Google Scholar

80 

Noh MY, Koh SH, Kim Y, Kim HY, Cho GW and Kim SH: Neuroprotective effects of donepezil through inhibition of GSK-3 activity in amyloid-beta-induced neuronal cell death. J Neurochem. 108:1116–1125. 2009.PubMed/NCBI View Article : Google Scholar

81 

Kihara T, Shimohama S, Sawada H, Honda K, Nakamizo T, Shibasaki H, Kume T and Akaike A: alpha 7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block A beta-amyloid-induced neurotoxicity. J Biol Chem. 276:13541–13546. 2001.PubMed/NCBI View Article : Google Scholar

82 

Makitani K, Nakagawa S, Izumi Y, Akaike A and Kume T: Inhibitory effect of donepezil on bradykinin-induced increase in the intracellular calcium concentration in cultured cortical astrocytes. J Pharmacol Sci. 134:37–44. 2017.PubMed/NCBI View Article : Google Scholar

83 

Arias E, Gallego-Sandin S, Villarroya M, García AG and López MG: Unequal neuroprotection afforded by the acetylcholinesterase inhibitors galantamine, donepezil, and rivastigmine in SH-SY5Y neuroblastoma cells: Role of nicotinic receptors. J Pharmacol Exp Ther. 315:1346–1353. 2005.PubMed/NCBI View Article : Google Scholar

84 

Zhao S, Zhang X and Li H: Beyond histone acetylation-writing and erasing histone acylations. Curr Opin Struct Biol. 53:169–177. 2018.PubMed/NCBI View Article : Google Scholar

85 

Ganai SA, Ramadoss M and Mahadevan V: Histone deacetylase (HDAC) inhibitors-emerging roles in neuronal memory, learning, synaptic plasticity and neural regeneration. Curr Neuropharmacol. 14:55–71. 2016.PubMed/NCBI View Article : Google Scholar

86 

Fuller NO, Pirone A, Lynch BA, Hewitt MC, Quinton MS, McKee TD and Ivarsson M: CoREST complex-selective histone deacetylase inhibitors show prosynaptic effects and an improved safety profile to enable treatment of synaptopathies. ACS Chem Neurosci. 10:1729–1743. 2019.PubMed/NCBI View Article : Google Scholar

87 

Xu K, Dai XL, Huang HC and Jiang ZF: Targeting HDACs: A promising therapy for Alzheimer's disease. Oxid Med Cell Longev. 2011(143269)2011.PubMed/NCBI View Article : Google Scholar

88 

Kumar V, Kundu S, Singh A and Singh S: Understanding the role of histone deacetylase and their inhibitors in neurodegenerative disorders: Current targets and future perspective. Curr Neuropharmacol. 20:158–178. 2022.PubMed/NCBI View Article : Google Scholar

89 

Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJ, Zhou Y, Wang X, Mazitschek R, et al: HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 459:55–60. 2009.PubMed/NCBI View Article : Google Scholar

90 

Janczura KJ, Volmar CH, Sartor GC, Rao SJ, Ricciardi NR, Lambert G, Brothers SP and Wahlestedt C: Inhibition of HDAC3 reverses Alzheimer's disease-related pathologies in vitro and in the 3xTg-AD mouse model. Proc Natl Acad Sci USA. 115:E11148–E11157. 2018.PubMed/NCBI View Article : Google Scholar

91 

Chen YA, Lu CH, Ke CC, Chiu SJ, Chang CW, Yang BH, Gelovani JG and Liu RS: Evaluation of class IIa histone deacetylases expression and in vivo epigenetic imaging in a transgenic mouse model of Alzheimer's disease. Int J Mol Sci. 22(8633)2021.PubMed/NCBI View Article : Google Scholar

92 

Li Y, Sang S, Ren W, Pei Y, Bian Y, Chen Y and Sun H: Inhibition of histone deacetylase 6 (HDAC6) as a therapeutic strategy for Alzheimer's disease: A review (2010-2020). Eur J Med Chem. 226(113874)2021.PubMed/NCBI View Article : Google Scholar

93 

Cuadrado-Tejedor M, Garcia-Barroso C, Sánchez-Arias JA, Rabal O, Pérez-González M, Mederos S, Ugarte A, Franco R, Segura V, Perea G, et al: A first-in-class small-molecule that acts as a dual inhibitor of HDAC and PDE5 and that rescues hippocampal synaptic impairment in Alzheimer's disease mice. Neuropsychopharmacology. 42:524–539. 2017.PubMed/NCBI View Article : Google Scholar

94 

Rabal O, Sánchez-Arias JA, Cuadrado-Tejedor M, de Miguel I, Pérez-González M, García-Barroso C, Ugarte A, Estella-Hermoso de Mendoza A, Sáez E, Espelosin M, et al: Design, synthesis, biological evaluation and in vivo testing of dual phosphodiesterase 5 (PDE5) and histone deacetylase 6 (HDAC6)-selective inhibitors for the treatment of Alzheimer's disease. Eur J Med Chem. 150:506–524. 2018.PubMed/NCBI View Article : Google Scholar

95 

Koch G, Martorana A and Caltagirone C: Transcranial magnetic stimulation: Emerging biomarkers and novel therapeutics in Alzheimer's disease. Neurosci Lett. 719(134355)2020.PubMed/NCBI View Article : Google Scholar

96 

Bursali C, Özkan FÜ, Kaysin MY, Dortcan N, Aktas I and Külcü DG: Effectiveness of repetitive transcranial magnetic stimulation in patients with failed back surgery syndrome: A double-blind randomized placebo-controlled study. Pain Physician. 24:E23–E30. 2021.PubMed/NCBI

97 

Minzenberg MJ and Leuchter AF: The effect of psychotropic drugs on cortical excitability and plasticity measured with transcranial magnetic stimulation: Implications for psychiatric treatment. J Affect Disord. 253:126–140. 2019.PubMed/NCBI View Article : Google Scholar

98 

Zhao J, Li Z, Cong Y, Zhang J, Tan M, Zhang H, Geng N, Li M, Yu W and Shan P: Repetitive transcranial magnetic stimulation improves cognitive function of Alzheimer's disease patients. Oncotarget. 8:33864–33871. 2017.PubMed/NCBI View Article : Google Scholar

99 

Sabbagh M, Sadowsky C, Tousi B, Agronin ME, Alva G, Armon C, Bernick C, Keegan AP, Karantzoulis S, Baror E, et al: Effects of a combined transcranial magnetic stimulation (TMS) and cognitive training intervention in patients with Alzheimer's disease. Alzheimers Dement. 16:641–650. 2020.PubMed/NCBI View Article : Google Scholar

100 

Saitoh Y, Hosomi K, Mano T, Takeya Y, Tagami S, Mori N, Matsugi A, Jono Y, Harada H, Yamada T and Miyake A: Randomized, sham-controlled, clinical trial of repetitive transcranial magnetic stimulation for patients with Alzheimer's dementia in Japan. Front Aging Neurosci. 14(993306)2022.PubMed/NCBI View Article : Google Scholar

101 

Ahmed MA, Darwish ES, Khedr EM, El Serogy YM and Ali AM: Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer's dementia. J Neurol. 259:83–92. 2012.PubMed/NCBI View Article : Google Scholar

102 

Trojano L, Conson M, Maffei R and Grossi D: Categorical and coordinate spatial processing in the imagery domain investigated by rTMS. Neuropsychologia. 44:1569–1574. 2006.PubMed/NCBI View Article : Google Scholar

103 

Turriziani P, Smirni D, Zappalà G, Mangano GR, Oliveri M and Cipolotti L: Enhancing memory performance with rTMS in healthy subjects and individuals with mild cognitive Impairment: The role of the right dorsolateral prefrontal cortex. Front Hum Neurosci. 6(62)2012.PubMed/NCBI View Article : Google Scholar

104 

Sanches C, Levy R, Benisty S, Volpe-Gillot L, Habert MO, Kas A, Ströer S, Pyatigorskaya N, Kaglik A, Bourbon A, et al: Testing the therapeutic effects of transcranial direct current stimulation (tDCS) in semantic dementia: A double blind, sham controlled, randomized clinical trial. Trials. 20(632)2019.PubMed/NCBI View Article : Google Scholar

105 

Bunai T, Hirosawa T, Kikuchi M, Fukai M, Yokokura M, Ito S, Takata Y, Terada T and Ouchi Y: tDCS-induced modulation of GABA concentration and dopamine release in the human brain: A combination study of magnetic resonance spectroscopy and positron emission tomography. Brain Stimul. 14:154–160. 2021.PubMed/NCBI View Article : Google Scholar

106 

Lefebvre S and Liew SL: Anatomical parameters of tDCS to modulate the motor system after stroke: A review. Front Neurol. 8(29)2017.PubMed/NCBI View Article : Google Scholar

107 

Boggio PS, Ferrucci R, Mameli F, Martins D, Martins O, Vergari M, Tadini L, Scarpini E, Fregni F and Priori A: Prolonged visual memory enhancement after direct current stimulation in Alzheimer's disease. Brain Stimul. 5:223–230. 2012.PubMed/NCBI View Article : Google Scholar

108 

Batsikadze G, Moliadze V, Paulus W, Kuo MF and Nitsche MA: Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol. 591:1987–2000. 2013.PubMed/NCBI View Article : Google Scholar

109 

Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, Cohen LG, Fregni F, Herrmann CS, Kappenman ES, et al: A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 127:1031–1048. 2016.PubMed/NCBI View Article : Google Scholar

110 

Iaccarino HF, Singer AC, Martorell AJ, Rudenko A, Gao F, Gillingham TZ, Mathys H, Seo J, Kritskiy O, Abdurrob F, et al: Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature. 540:230–235. 2016.PubMed/NCBI View Article : Google Scholar

111 

Bradford A, Barlow A and Chazot PL: Probing the differential effects of infrared light sources IR1072 and IR880 on human lymphocytes: Evidence of selective cytoprotection by IR1072. J Photochem Photobiol B. 81:9–14. 2005.PubMed/NCBI View Article : Google Scholar

112 

Grillo SL, Duggett NA, Ennaceur A and Chazot PL: Non-invasive infra-red therapy (1072 nm) reduces β-amyloid protein levels in the brain of an Alzheimer's disease mouse model, TASTPM. J Photochem Photobiol B. 123:13–22. 2013.PubMed/NCBI View Article : Google Scholar

113 

Wang M, Cao J, Amakye WK, Gong C, Li Q and Ren J: Mid infrared light treatment attenuates cognitive decline and alters the gut microbiota community in APP/PS1 mouse model. Biochem Biophys Res Commun. 523:60–65. 2020.PubMed/NCBI View Article : Google Scholar

114 

Huang N, Yao D, Jiang W, Wei C, Li M, Li W, Mu H, Gao M, Ma Z, Lyu J and Tong Z: Safety and efficacy of 630-nm red light on cognitive function in older adults with mild to moderate Alzheimer's disease: Protocol for a randomized controlled study. Front Aging Neurosci. 12(143)2020.PubMed/NCBI View Article : Google Scholar

115 

Figueiro MG and Leggett S: Intermittent light exposures in humans: A case for dual entrainment in the treatment of Alzheimer's disease. Front Neurol. 12(625698)2021.PubMed/NCBI View Article : Google Scholar

116 

Ying Y and Wang JZ: Illuminating neural circuits in Alzheimer's disease. Neurosci Bull. 37:1203–1217. 2021.PubMed/NCBI View Article : Google Scholar

117 

Ourednik J, Ourednik V, Lynch WP, Schachner M and Snyder EY: Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat Biotechnol. 20:1103–1110. 2002.PubMed/NCBI View Article : Google Scholar

118 

Alessandrini M, Preynat-Seauve O, De Bruin K and Pepper MS: Stem cell therapy for neurological disorders. S Afr Med J. 109:70–77. 2019.PubMed/NCBI View Article : Google Scholar

119 

Kang JM, Yeon BK, Cho SJ and Suh YH: Stem cell therapy for Alzheimer's disease: A review of recent clinical trials. J Alzheimers Dis. 54:879–889. 2016.PubMed/NCBI View Article : Google Scholar

120 

Zhang B, Yan W, Zhu Y, Yang W, Le W, Chen B, Zhu R and Cheng L: Nanomaterials in neural-stem-cell-mediated regenerative medicine: Imaging and treatment of neurological diseases. Adv Mater. 30(e1705694)2018.PubMed/NCBI View Article : Google Scholar

121 

Shu H, Guo Z, Chen X, Qi S, Xiong X, Xia S, Huang Q, Lan L, Gong J, Huang S, Yang B, et al: Intracerebral transplantation of neural stem cells restores manganese-induced cognitive deficits in mice. Aging Dis. 12:371–385. 2021.PubMed/NCBI View Article : Google Scholar

122 

Csobonyeiova M, Polak S, Zamborsky R and Danisovic L: Recent progress in the regeneration of spinal cord injuries by induced pluripotent stem cells. Int J Mol Sci. 20(3838)2019.PubMed/NCBI View Article : Google Scholar

123 

Banda E and Grabel L: Directed differentiation of human embryonic stem cells into neural progenitors. Methods Mol Biol. 1307:289–298. 2016.PubMed/NCBI View Article : Google Scholar

124 

Shahbazi E, Mirakhori F, Ezzatizadeh V and Baharvand H: Reprogramming of somatic cells to induced neural stem cells. Methods. 133:21–28. 2018.PubMed/NCBI View Article : Google Scholar

125 

Daadi MM: Generation of neural stem cells from induced pluripotent stem cells. Methods Mol Biol. 1919:1–7. 2019.PubMed/NCBI View Article : Google Scholar

126 

Matsui T, Akamatsu W, Nakamura M and Okano H: Regeneration of the damaged central nervous system through reprogramming technology: Basic concepts and potential application for cell replacement therapy. Exp Neurol. 260:12–18. 2014.PubMed/NCBI View Article : Google Scholar

127 

Zhang L, Dong ZF and Zhang JY: Immunomodulatory role of mesenchymal stem cells in Alzheimer's disease. Life Sci. 246(117405)2020.PubMed/NCBI View Article : Google Scholar

128 

Yip S, Aboody KS, Burns M, Imitola J, Boockvar JA, Allport J, Park KI, Teng YD, Lachyankar M, McIntosh T, et al: Neural stem cell biology may be well suited for improving brain tumor therapies. Cancer J. 9:189–204. 2003.PubMed/NCBI View Article : Google Scholar

129 

Park KI: Transplantation of neural stem cells: Cellular & gene therapy for hypoxic-ischemic brain injury. Yonsei Med J. 41:825–835. 2000.PubMed/NCBI View Article : Google Scholar

130 

Zhao L, Liu JW, Kan BH, Shi HY, Yang LP and Liu XY: Acupuncture accelerates neural regeneration and synaptophysin production after neural stem cells transplantation in mice. World J Stem Cells. 12:1576–1590. 2020.PubMed/NCBI View Article : Google Scholar

131 

De Feo D, Merlini A, Laterza C and Martino G: Neural stem cell transplantation in central nervous system disorders: From cell replacement to neuroprotection. Curr Opin Neurol. 25:322–333. 2012.PubMed/NCBI View Article : Google Scholar

132 

Yu JH, Seo JH, Lee JY, Lee MY and Cho SR: Induction of Neurorestoration From Endogenous Stem Cells. Cell Transplant. 25:863–882. 2016.PubMed/NCBI View Article : Google Scholar

133 

Wu K, Zhang R, Lu Y, Wen L, Li Y, Duan R, Yao Y and Jia Y: Lin28B regulates the fate of grafted mesenchymal stem cells and enhances their protective effects against Alzheimer's disease by upregulating IGF-2. J Cell Physiol. 234:21860–21876. 2019.PubMed/NCBI View Article : Google Scholar

134 

Sun B, Taing A, Liu H, Nie G, Wang J, Fang Y, Liu L, Xue Y, Shi J, Liao YP, et al: Nerve growth factor-conjugated mesoporous silica nanoparticles promote neuron-like PC12 cell proliferation and neurite growth. J Nanosci Nanotechnol. 16:2390–2393. 2016.PubMed/NCBI View Article : Google Scholar

135 

Mili B, Das K, Kumar A, Saxena AC, Singh P, Ghosh S and Bag S: Preparation of NGF encapsulated chitosan nanoparticles and its evaluation on neuronal differentiation potentiality of canine mesenchymal stem cells. J Mater Sci Mater Med. 29(4)2017.PubMed/NCBI View Article : Google Scholar

136 

Mortazavi Y, Sheikhsaran F, Khamisipour GK, Soleimani M, Teimuri A and Shokri S: The evaluation of nerve growth factor over expression on neural lineage specific genes in human mesenchymal stem cells. Cell J. 18:189–196. 2016.PubMed/NCBI View Article : Google Scholar

137 

Lee HJ, Lim IJ, Park SW, Kim YB, Ko Y and Kim SU: Human neural stem cells genetically modified to express human nerve growth factor (NGF) gene restore cognition in the mouse with ibotenic acid-induced cognitive dysfunction. Cell Transplant. 21:2487–2496. 2012.PubMed/NCBI View Article : Google Scholar

138 

Ma Y, Li C, Huang Y, Wang Y, Xia X and Zheng JC: Exosomes released from neural progenitor cells and induced neural progenitor cells regulate neurogenesis through miR-21a. Cell Commun Signal. 17(96)2019.PubMed/NCBI View Article : Google Scholar

139 

Zhang R, Mao W, Niu L, Bao W, Wang Y, Wang Y, Zhu Y, Yang Z, Chen J, Dong J, et al: NSC-derived exosomes enhance therapeutic effects of NSC transplantation on cerebral ischemia in mice. Elife. 12(e84493)2023.PubMed/NCBI View Article : Google Scholar

140 

Ma Y, Wang K, Pan J, Fan Z, Tian C, Deng X, Ma K, Xia X, Huang Y and Zheng JC: Induced neural progenitor cells abundantly secrete extracellular vesicles and promote the proliferation of neural progenitors via extracellular signal-regulated kinase pathways. Neurobiol Dis. 124:322–334. 2019.PubMed/NCBI View Article : Google Scholar

141 

Zhang J, Li S, Li L, Li M, Guo C, Yao J and Mi S: Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 13:17–24. 2015.PubMed/NCBI View Article : Google Scholar

142 

Xin H, Wang F, Li Y, Lu QE, Cheung WL, Zhang Y, Zhang ZG and Chopp M: Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from MicroRNA 133b-overexpressing multipotent mesenchymal stromal cells. Cell Transplant. 26:243–257. 2017.PubMed/NCBI View Article : Google Scholar

143 

Gan C and Ouyang F: Exosomes released from bone-marrow stem cells ameliorate hippocampal neuronal injury through transferring miR-455-3p. J Stroke Cerebrovasc Dis. 31(106142)2022.PubMed/NCBI View Article : Google Scholar

144 

Li D, Zhang P, Yao X, Li H, Shen H, Li X, Wu J and Lu X: Exosomes derived from miR-133b-modified mesenchymal stem cells promote recovery after spinal cord injury. Front Neurosci. 12(845)2018.PubMed/NCBI View Article : Google Scholar

145 

Takata T, Nonaka W, Iwama H, Kobara H, Deguchi K, Masugata H, Touge T, Miyamoto O, Nakamura T, Itano T and Masaki T: Light exercise without lactate elevation induces ischemic tolerance through the modulation of microRNA in the gerbil hippocampus. Brain Res. 1732(146710)2020.PubMed/NCBI View Article : Google Scholar

146 

Zhu Q, Zhang N, Hu N, Jiang R, Lu H, Xuan A, Long D and Chen Y: Neural stem cell transplantation improves learning and memory by protecting cholinergic neurons and restoring synaptic impairment in an amyloid precursor protein/presenilin 1 transgenic mouse model of Alzheimer's disease. Mol Med Rep. 21:1172–1180. 2020.PubMed/NCBI View Article : Google Scholar

147 

Kim HJ, Seo SW, Chang JW, Lee JI, Kim CH, Chin J, Choi SJ, Kwon H, Yun HJ, Lee JM, et al: Stereotactic brain injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer's disease dementia: A phase 1 clinical trial. Alzheimers Dement (N Y). 1:95–102. 2015.PubMed/NCBI View Article : Google Scholar

148 

Gauthier S, Rosa-Neto P, Morais JA and Webster C: World Alzheimer Report, 2021: Journey through the diagnosis of dementia. Alzheimer's Disease International. 2021.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Gao J and Li L: Enhancement of neural regeneration as a therapeutic strategy for Alzheimer's disease (Review). Exp Ther Med 26: 444, 2023.
APA
Gao, J., & Li, L. (2023). Enhancement of neural regeneration as a therapeutic strategy for Alzheimer's disease (Review). Experimental and Therapeutic Medicine, 26, 444. https://doi.org/10.3892/etm.2023.12143
MLA
Gao, J., Li, L."Enhancement of neural regeneration as a therapeutic strategy for Alzheimer's disease (Review)". Experimental and Therapeutic Medicine 26.3 (2023): 444.
Chicago
Gao, J., Li, L."Enhancement of neural regeneration as a therapeutic strategy for Alzheimer's disease (Review)". Experimental and Therapeutic Medicine 26, no. 3 (2023): 444. https://doi.org/10.3892/etm.2023.12143
Copy and paste a formatted citation
x
Spandidos Publications style
Gao J and Li L: Enhancement of neural regeneration as a therapeutic strategy for Alzheimer's disease (Review). Exp Ther Med 26: 444, 2023.
APA
Gao, J., & Li, L. (2023). Enhancement of neural regeneration as a therapeutic strategy for Alzheimer's disease (Review). Experimental and Therapeutic Medicine, 26, 444. https://doi.org/10.3892/etm.2023.12143
MLA
Gao, J., Li, L."Enhancement of neural regeneration as a therapeutic strategy for Alzheimer's disease (Review)". Experimental and Therapeutic Medicine 26.3 (2023): 444.
Chicago
Gao, J., Li, L."Enhancement of neural regeneration as a therapeutic strategy for Alzheimer's disease (Review)". Experimental and Therapeutic Medicine 26, no. 3 (2023): 444. https://doi.org/10.3892/etm.2023.12143
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team