|
1
|
Wen X, Lou Y, Song S, He Z, Chen J, Xie Z,
Shi X, Wen C and Shao TX: Qu-Zhuo-Tong-Bi decoction alleviates
gouty arthritis by regulating butyrate-producing bacteria. Front
Pharmacol. 11(610556)2021.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Dalbeth N, Gosling AL, Gaffo A and
Abhishek A: Gout. Lancet. 388:2039–2052. 2021.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Cheng JJ, Ma XD, Ai GX, Yu QX, Chen XY,
Yan F, Li YC, Xie JH, Su ZR and Xie QF: Palmatine protects against
msu-induced gouty arthritis via regulating the NF-κB/NLRP3 and Nrf2
pathways. Drug Des Devel Ther. 16:2119–2132. 2022.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Keller SF and Mandell BF: Management and
cure of gouty arthritis. Med Clin North Am. 105:297–310.
2021.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Bernardes ACFPF, Matosinhos RC, de Paula
Michel Araújo MC, Barros CH, de Oliveira Aguiar Soares RD, Costa
DC, Sachs D and Saúde-Guimarães DA: Sesquiterpene lactones from
lychnophora species: Antinociceptive, anti-inflammatory, and
antioxidant pathways to treat acute gout. J Ethnopharmacol.
269(113738)2021.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Sun Z, Li Z, Tan Y, Wang X, Wang C, Dong
M, Liu H, Chen H, Li Y, Li L and Wang D: Anti-gouty arthritis and
anti-hyperuricemia properties of sanghuangporus vaninii and
inonotus hispidus in rodent models. Nutrients.
14(4421)2022.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Cabău G, Crișan TO, Klück V, Popp RA and
Joosten LAB: Urate-induced immune programming: Consequences for
gouty arthritis and hyperuricemia. Immunol Rev. 294:92–105.
2020.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Vazirpanah N, Ottria A, van der Linden M,
Wichers CGK, Schuiveling M, van Lochem E, Phipps-Green A, Merriman
T, Zimmermann M, Jansen M, et al: mTOR inhibition by metformin
impacts monosodium urate crystal-induced inflammation and cell
death in gout: A prelude to a new add-on therapy. Ann Rheum Dis.
78:663–671. 2019.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Liu GY and Sabatini DM: mTOR at the nexus
of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol.
21:183–203. 2020.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Al-Bari MAA and Xu P: Molecular regulation
of autophagy machinery by mTOR-dependent and -independent pathways.
Ann N Y Acad. 1467:3–20. 2020.PubMed/NCBI View Article : Google Scholar
|
|
11
|
De Vita V and Melnik BC: Activation of
mechanistic target of rapamycin complex 1: The common link between
rheumatoid arthritis and diabetes mellitus. Rheumatology.
58:377–379. 2018.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Mirza-Aghazadeh-Attari M, Ekrami EM,
Aghdas SAM, Mihanfar A, Hallaj S, Yousefi B, Safa A and Majidinia
M: Targeting PI3K/Akt/mTOR signaling pathway by polyphenols:
implication for cancer therapy. Life Sci.
255(117481)2020.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Wang N, Feng T, Liu X and Liu Q: Curcumin
inhibits migration and invasion of non-small cell lung cancer cells
through up-regulation of miR-206 and suppression of PI3K/AKT/mTOR
signaling pathway. Acta Pharm. 70:399–409. 2020.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Li Y, Cao X, Liu Y, Zhao Y and Herrmann M:
Neutrophil extracellular traps formation and aggregation
orchestrate induction and resolution of sterile crystal-mediated
inflammation. Front Immunol. 9(1559)2018.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Hidalgo A, Libby P, Soehnlein O, Aramburu
IV, Papayannopoulos V and Silvestre-Roig C: Neutrophil
extracellular traps: from physiology to pathology. Cardiovasc Res.
118:2737–2753. 2022.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Caution K, Young N, Robledo-Avila F,
Krause K, Abu Khweek A, Hamilton K, Badr A, Vaidya A, Daily K, et
al: Caspase-11 mediates neutrophil chemotaxis and extracellular
trap formation during acute arthritis through alteration of cofilin
phosphorylation. Front Immunol. 10(2519)2019.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Zhou Q, Yu DH, Liu Y and Liu SM: Total
saponins from Discorea nipponica Makino ameliorate urate excretion
inhyperuricemic rats. Pharmacogn Mag. 11:567–573. 2015.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Zhou Q, Yu DH, Zhang N and Liu SM:
Anti-inflammatory effect of total saponins from Dioscorea
nipponica Makino on gouty arthritis and its influence on NALP3
inflammasome. Chin J Integr Med. 25:663–670. 2019.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Zhou Q, Lin FF, Liu SM and Sui XF:
Influence of the total saponin fraction from Dioscorea
nipponica Makino on TLR2/4-IL-1R receptor signal pathway in
rats of gouty arthritis. J Ethnopharmacol. 206:274–282.
2017.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Dai Q, Zhou D, Xu L and Song X: Curcumin
alleviates rheumatoid arthritis-induced inflammation and synovial
hyperplasia by targeting mTOR pathway in rats. Drug Des Devel Ther.
12:4095–4105. 2018.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Singh JA and Gaffo A: Gout epidemiology
and comorbidities. Semin Arthritis Rheum. 50:S11–S16.
2020.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Rabanal-Ruiz Y, Otten EG and Korolchuk VI:
mTORC1 as the main gateway to autophagy. Essays Biochem.
61:565–584. 2017.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Zhong Z, Sanchez-Lopez E and Karin M:
Autophagy, NLRP3 inflammasome and autoinflammatory/immune diseases.
Clin Exp Rheumatol. 34 (4 Suppl 98):S12–S16. 2016.PubMed/NCBI
|
|
25
|
Liu L, Zhu X, Zhao T, Yu Y, Xue Y and Zou
H: Sirt1 ameliorates monosodium urate crystal-induced inflammation
by altering macrophage polarization via the PI3K/Akt/STAT6 pathway.
Rheumatology (Oxford). 58:1674–1683. 2019.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Terkeltaub R: What makes gouty
inflammation so variable. BMC Med. 15(158)2017.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Presneau N, Shalaby A, Idowu B, Gikas P,
Cannon SR, Gout I, Diss T, Tirabosco R and Flanagan AM: Potential
therapeutic targets for chordoma: PI3K/AKT/TSC1/TSC2/mTOR pathway.
Br J Cancer. 100:1406–1414. 2009.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Jiang A, Zhang Y, Wu D, Li S, Liu Z, Yang
Z and Wei Z: Sodium molybdate induces heterophil extracellular
traps formation in chicken. Ecotoxicol Environ Saf.
210(111886)2021.PubMed/NCBI View Article : Google Scholar
|