|
1
|
Arceo-Mendoza RM and Camacho PM:
Postmenopausal osteoporosis: Latest guidelines. Endocrinol Metab
Clin North Am. 50:167–178. 2021.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Gopinath V: Osteoporosis. Med Clin North
Am. 107:213–225. 2023.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Ayers C, Kansagara D, Lazur B, Fu R, Kwon
A and Harrod C: Effectiveness and safety of treatments to prevent
fractures in people with low bone mass or primary osteoporosis: A
living systematic review and network meta-analysis for the American
college of physicians. Ann Intern Med. 176:182–195. 2023.PubMed/NCBI View
Article : Google Scholar
|
|
4
|
Zhang C, Feng J, Wang S, Gao P, Xu L, Zhu
J, Jia J, Liu L, Liu G, Wang J, et al: Incidence of and trends in
hip fracture among adults in urban China: A nationwide
retrospective cohort study. PLoS Med. 17(e1003180)2020.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Galluzzi L, Pietrocola F, Levine B and
Kroemer G: Metabolic control of autophagy. Cell. 159:1263–1276.
2014.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Nuschke A, Rodrigues M, Stolz DB, Chu CT,
Griffith L and Wells A: Human mesenchymal stem cells/multipotent
stromal cells consume accumulated autophagosomes early in
differentiation. Stem Cell Res Ther. 5(140)2014.PubMed/NCBI View
Article : Google Scholar
|
|
7
|
Whitehouse CA, Waters S, Marchbank K,
Horner A, McGowan NW, Jovanovic JV, Xavier GM, Kashima TG, Cobourne
MT, Richards GO, et al: Neighbor of Brcal gene (Nbrl) functions as
a negative regulator of postnatal osteoblastic bone formation and
p38 MAPK activity. Proc Natl Acad Sci USA. 107:12913–12918.
2010.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Chang KH, Sengupta A, Nayak RC, Duran A,
Lee SJ, Pratt RG, Wellendorf AM, Hill SE, Watkins M, Gonzalez-Nieto
D, et al: p62 is required for stem cell/progenitor retention
through inhibition of IKK/NF-kappaB/Cc14 signaling at the bone
marrow macrophage-osteoblast niche. Cell Rep. 9:2084–2097.
2014.PubMed/NCBI View Article : Google Scholar
|
|
9
|
He Q, Koprich JB, Wang Y, Yu WB, Xiao BG,
Brotchie JM and Wang J: Treatment with trehalose prevents
behavioral and neurochemical deficits produced in an AAV
α-Synuclein rat model of Parkinson's disease. Mol Neurobiol.
53:2258–2268. 2016.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Kakoty V, Sarathlal KC, Dubey SK, Yang CH
and Taliyan R: Neuroprotective effects of trehalose and sodium
butyrate on preformed fibrillar form of α-synuclein-induced rat
model of Parkinson's disease. ACS Chem Neurosci. 12:2643–2660.
2021.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Qing H, Koprich JB, Wang Y, Yu WB, Xiao
BG, Brotchie JM and Wang J: Treatment with trehalose prevents
behavioral and neurochemical deficits produced in an AAV
α-synuclein rat model of Parkinson's disease. Mol Neurobiol.
53:2258–2268. 2016.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Ho TT, Warr MR, Adelman ER, Lansinger OM,
Flach J, Verovskaya EV, Figueroa ME and Passegué E: Autophagy
maintains the metabolism and function of young and old stem cells.
Nature. 543:205–210. 2017.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Zhou K, Zheng Z, Li Y, Han W, Zhang J, Mao
Y, Chen H, Zhang W, Liu M, Xie L, et al: TFE3, a potential
therapeutic target for Spinal Cord Injury via augmenting autophagy
flux and alleviating ER stress. Theranostics. 10:9280–9302.
2020.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Williamson SR, Eble JN and Palanisamy N:
Sclerosing TFEB rearrangement renal cell carcinoma: A recurring
histologic pattern. Hum Pathol. 62:175–179. 2016.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Franco-Juárez B, Coronel-Cruz C,
Hernández-Ochoa B, Gómez-Manzo S, Cárdenas-Rodríguez N,
Arreguin-Espinosa R, Bandala C, Canseco-Ávila LM and Ortega-Cuellar
D: TFEB; Beyond its role as an autophagy and lysosomes regulator.
Cells. 11(3153)2022.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Chen M, Dai Y, Liu S, Fan Y, Ding Z and Li
D: TFEB biology and agonists at a glance. Cells.
10(333)2021.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Nishizaki Y, Yoshizane C, Toshimori Y,
Arai N, Akamatsu S, Hanaya T, Arai S, Ikeda M and Kurimoto M:
Disaccharide-trehalose inhibits bone resorption in ovariectomized
mice. Nutr Res. 20:653–664. 2000.
|
|
18
|
Yoshizane C, Arai N, Arai C, Yamamoto M,
Nishizaki Y, Hanaya T, Arai S, Ikeda M and Kurimoto M: Trehalose
suppresses osteoclast differentiation in ovariectomized mice:
Correlation with decreased in vitro interleukin-6 production by
bone marrow cells. Nutr Res. 20:1485–1491. 2000.
|
|
19
|
Komori T: Animal models for osteoporosis.
Eur J Pharmacol. 759:287–294. 2015.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Xu X, Wang R, Wu R, Yan W, Shi T, Jiang Q
and Shi D: Trehalose reduces bone loss in experimental biliary
cirrhosis rats via ERK phosphorylation regulation by enhancing
autophagosome formation. FASEB J. 34:8402–8415. 2020.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Melia TJ, Lystad AH and Simonsen A:
Autophagosome biogenesis: From membrane growth to closure. J Cell
Biol. 219(e202002085)2020.PubMed/NCBI View Article : Google Scholar
|