|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Zhu AX, Dayyani F, Yen CJ, Ren Z, Bai Y,
Meng Z, Pan H, Dillon P, Mhatre SK, Gaillard VE, et al:
Alpha-fetoprotein as a potential surrogate biomarker for
atezolizumab + bevacizumab treatment of hepatocellular carcinoma.
Clin Cancer Res. 28:3537–3545. 2022.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Llovet JM, Kelley RK, Villanueva A, Singal
AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J and
Finn RS: Hepatocellular carcinoma. Nat Rev Dis Primers.
7(6)2021.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Anwanwan D, Singh SK, Singh S, Saikam V
and Singh R: Challenges in liver cancer and possible treatment
approaches. Biochim Biophys Acta Rev Cancer.
1873(188314)2020.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Zheng C, Zheng L, Yoo JK, Guo H, Zhang Y,
Guo X, Kang B, Hu R, Huang JY, Zhang Q, et al: Landscape of
infiltrating T cells in liver cancer revealed by single-cell
sequencing. Cell. 169:1342–1356.e16. 2017.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Wei SC, Duffy CR and Allison JP:
Fundamental mechanisms of immune checkpoint blockade therapy.
Cancer Discov. 8:1069–1086. 2018.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Finn RS, Qin S, Ikeda M, Galle PR, Ducreux
M, Kim TY, Kudo M, Breder V, Merle P, Kaseb AO, et al: Atezolizumab
plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J
Med. 382:1894–1905. 2020.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Zayac A and Almhanna K: Hepatobiliary
cancers and immunotherapy: Where are we now and where are we
heading? Transl Gastroenterol Hepatol. 5(8)2020.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Ding X, He M, Chan A, Song QX, Sze SC,
Chen H, Man MKH, Man K, Chan SL, Lai PBS, et al: Genomic and
epigenomic features of primary and recurrent hepatocellular
carcinomas. Gastroenterology. 157:1630–1645.e6. 2019.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Finn RS, Ryoo BY, Merle P, Kudo M,
Bouattour M, Lim HY, Breder V, Edeline J, Chao Y, Ogasawara S, et
al: Pembrolizumab as second-line therapy in patients with advanced
hepatocellular carcinoma in KEYNOTE-240: A randomized,
double-blind, phase III trial. J Clin Oncol. 38:193–202.
2020.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Yau T, Park JW, Finn RS, Cheng AL,
Mathurin P, Edeline J, Kudo M, Harding JJ, Merle P, Rosmorduc O, et
al: Nivolumab versus sorafenib in advanced hepatocellular carcinoma
(CheckMate 459): A randomised, multicentre, open-label, phase 3
trial. Lancet Oncol. 23:77–90. 2022.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Ren Z, Xu J, Bai Y, Xu A, Cang S, Du C, Li
Q, Lu Y, Chen Y, Guo Y, et al: Sintilimab plus a bevacizumab
biosimilar (IBI305) versus sorafenib in unresectable hepatocellular
carcinoma (ORIENT-32): A randomised, open-label, phase 2-3 study.
Lancet Oncol. 22:977–990. 2021.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Kudo M: Durvalumab plus tremelimumab in
unresectable hepatocellular carcinoma. Hepatobiliary Surg Nutr.
11:592–596. 2022.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Sangro B, Melero I, Wadhawan S, Finn RS,
Abou-Alfa GK, Cheng AL, Yau T, Furuse J, Park JW, Boyd Z, et al:
Association of inflammatory biomarkers with clinical outcomes in
nivolumab-treated patients with advanced hepatocellular carcinoma.
J Hepatol. 73:1460–1469. 2020.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Zhu AX, Finn RS, Edeline J, Cattan S,
Ogasawara S, Palmer D, Verslype C, Zagonel V, Fartoux L, Vogel A,
et al: Pembrolizumab in patients with advanced hepatocellular
carcinoma previously treated with sorafenib (KEYNOTE-224): A
non-randomised, open-label phase 2 trial. Lancet Oncol. 19:940–952.
2018.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Ho WJ, Danilova L, Lim SJ, Verma R, Xavier
S, Leatherman JM, Sztein MB, Fertig EJ, Wang H, Jaffee E and
Yarchoan M: Viral status, immune microenvironment and immunological
response to checkpoint inhibitors in hepatocellular carcinoma. J
Immunother Cancer. 8(e000394)2020.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Avgerinos KI, Spyrou N, Mantzoros CS and
Dalamaga M: Obesity and cancer risk: Emerging biological mechanisms
and perspectives. Metabolism. 92:121–135. 2019.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Ringel AE, Drijvers JM, Baker GJ, Catozzi
A, García-Cañaveras JC, Gassaway BM, Miller BC, Juneja VR, Nguyen
TH, Joshi S, et al: Obesity shapes metabolism in the tumor
microenvironment to suppress anti-tumor immunity. Cell.
183:1848–1866.e26. 2020.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Akce M, Liu Y, Zakka K, Martini DJ, Draper
A, Alese OB, Shaib WL, Wu C, Wedd JP, Sellers MT, et al: Impact of
sarcopenia, BMI, and inflammatory biomarkers on survival in
advanced hepatocellular carcinoma treated with anti-PD-1 antibody.
Am J Clin Oncol. 44:74–81. 2021.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Bellissimo F, Pinzone MR, Cacopardo B and
Nunnari G: Diagnostic and therapeutic management of hepatocellular
carcinoma. World J Gastroenterol. 21:12003–12021. 2015.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Tsuchiya N, Sawada Y, Endo I, Saito K,
Uemura Y and Nakatsura T: Biomarkers for the early diagnosis of
hepatocellular carcinoma. World J Gastroenterol. 21:10573–10583.
2015.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Cao W, Chen Y, Han W, Yuan J, Xie W, Liu
K, Qiu Y, Wang X and Li X: Potentiality of α-fetoprotein (AFP) and
soluble intercellular adhesion molecule-1 (sICAM-1) in prognosis
prediction and immunotherapy response for patients with
hepatocellular carcinoma. Bioengineered. 12:9435–9451.
2021.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Spahn S, Roessler D, Pompilia R, Gabernet
G, Gladstone BP, Horger M, Biskup S, Feldhahn M, Nahnsen S, Hilke
FJ, et al: Clinical and genetic tumor characteristics of responding
and non-responding patients to PD-1 inhibition in hepatocellular
carcinoma. Cancers (Basel). 12(3830)2020.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Sun X, Mei J, Lin W, Yang Z, Peng W, Chen
J, Zhang Y, Xu L and Chen M: Reductions in AFP and PIVKA-II can
predict the efficiency of anti-PD-1 immunotherapy in HCC patients.
BMC Cancer. 21(775)2021.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Hatanaka T, Kakizaki S, Hiraoka A, Tada T,
Hirooka M, Kariyama K, Tani J, Atsukawa M, Takaguchi K, Itobayashi
E, et al: Prognostic impact of C-reactive protein and
alpha-fetoprotein in immunotherapy score in hepatocellular
carcinoma patients treated with atezolizumab plus bevacizumab: A
multicenter retrospective study. Hepatol Int. 16:1150–1160.
2022.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Scheiner B, Pomej K, Kirstein MM, Hucke F,
Finkelmeier F, Waidmann O, Himmelsbach V, Schulze K, von Felden J,
Fründt TW, et al: Prognosis of patients with hepatocellular
carcinoma treated with immunotherapy-development and validation of
the CRAFITY score. J Hepatol. 76:353–363. 2022.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Guan R, Mei J, Lin W, Deng M, Li S and Guo
R: Is the CRAFITY score a superior predictor of prognosis and
adverse events in hepatocellular carcinoma patients treated with
locoregional-immunotherapy? Hepatol Int. 17:1279–1288.
2023.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Yang M, Pan Y and Wang W: Prognostic
significance of the CRAFITY score in hepatocellular carcinoma
treated with immunotherapy: A systematic review and meta-analysis.
BMC Cancer. 23(236)2023.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Dharmapuri S, Özbek U, Lin JY, Sung M,
Schwartz M, Branch AD and Ang C: Predictive value of neutrophil to
lymphocyte ratio and platelet to lymphocyte ratio in advanced
hepatocellular carcinoma patients treated with anti-PD-1 therapy.
Cancer Med. 9:4962–4970. 2020.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Muhammed A, Fulgenzi CAM, Dharmapuri S,
Pinter M, Balcar L, Scheiner B, Marron TU, Jun T, Saeed A,
Hildebrand H, et al: The systemic inflammatory response identifies
patients with adverse clinical outcome from immunotherapy in
hepatocellular carcinoma. Cancers (Basel). 14(186)2021.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Ochi H, Kurosaki M, Joko K, Mashiba T,
Tamaki N, Tsuchiya K, Marusawa H, Tada T, Nakamura S, Narita R, et
al: Usefulness of neutrophil-to-lymphocyte ratio in predicting
progression and survival outcomes after atezolizumab-bevacizumab
treatment for hepatocellular carcinoma. Hepatol Res. 53:61–71.
2023.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Jeon SH, Lee YJ, Kim HD, Nam H, Ryoo BY,
Park SH, Yoo C and Shin EC: Dynamic changes in peripheral blood
monocytes early after anti-PD-1 therapy predict clinical outcomes
in hepatocellular carcinoma. Cancer Immunol Immunother. 72:371–384.
2023.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Riedl JM, Barth DA, Brueckl WM, Zeitler G,
Foris V, Mollnar S, Stotz M, Rossmann CH, Terbuch A, Balic M, et
al: C-reactive protein (CRP) levels in immune checkpoint inhibitor
response and progression in advanced non-small cell lung cancer: A
Bi-center study. Cancers (Basel). 12(2319)2020.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Klümper N, Saal J, Berner F,
Lichtensteiger C, Wyss N, Heine A, Bauernfeind FG, Ellinger J,
Brossart P, Diem S, et al: C reactive protein flare predicts
response to checkpoint inhibitor treatment in non-small cell lung
cancer. J Immunother Cancer. 10(e004024)2022.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Ramsey S: The role of the systemic
inflammatory response as a biomarker in immunotherapy for renal
cell cancer. Mol Diagn Ther. 13:277–281. 2009.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Chung MW, Kim MJ, Won EJ, Lee YJ, Yun YW,
Cho SB, Joo YE, Hwang JE, Bae WK, Chung IJ, et al: Gut microbiome
composition can predict the response to nivolumab in advanced
hepatocellular carcinoma patients. World J Gastroenterol.
27:7340–7349. 2021.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Mao J, Wang D, Long J, Yang X, Lin J, Song
Y, Xie F, Xun Z, Wang Y, Wang Y, et al: Gut microbiome is
associated with the clinical response to anti-PD-1 based
immunotherapy in hepatobiliary cancers. J Immunother Cancer.
9(e003334)2021.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Zhang L, Wu YN, Chen T, Ren CH, Li X and
Liu GX: Relationship between intestinal microbial dysbiosis and
primary liver cancer. Hepatobiliary Pancreat Dis Int. 18:149–157.
2019.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Schwabe RF and Greten TF: Gut microbiome
in HCC-mechanisms, diagnosis and therapy. J Hepatol. 72:230–238.
2020.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Temraz S, Nassar F, Kreidieh F, Mukherji
D, Shamseddine A and Nasr R: Hepatocellular carcinoma immunotherapy
and the potential influence of gut microbiome. Int J Mol Sci.
22(7800)2021.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Dapito DH, Mencin A, Gwak GY, Pradere JP,
Jang MK, Mederacke I, Caviglia JM, Khiabanian H, Adeyemi A,
Bataller R, et al: Promotion of hepatocellular carcinoma by the
intestinal microbiota and TLR4. Cancer Cell. 21:504–516.
2012.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Peng X, Gong C, Zhang W and Zhou A:
Advanced development of biomarkers for immunotherapy in
hepatocellular carcinoma. Front Oncol. 12(1091088)2023.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Vaisman-Mentesh A, Gutierrez-Gonzalez M,
DeKosky BJ and Wine Y: The molecular mechanisms that underlie the
immune biology of anti-drug antibody formation following treatment
with monoclonal antibodies. Front Immunol. 11(1951)2020.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Davda J, Declerck P, Hu-Lieskovan S,
Hickling TP, Jacobs IA, Chou J, Salek-Ardakani S and Kraynov E:
Immunogenicity of immunomodulatory, antibody-based, oncology
therapeutics. J Immunother Cancer. 7(105)2019.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Enrico D, Paci A, Chaput N, Karamouza E
and Besse B: Antidrug antibodies against immune checkpoint
blockers: Impairment of drug efficacy or indication of immune
activation? Clin Cancer Res. 26:787–792. 2020.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Kim C, Yang H, Kim I, Kang B, Kim H, Kim
H, Lee WS, Jung S, Lim HY, Cheon J and Chon HJ: Association of high
levels of antidrug antibodies against atezolizumab with clinical
outcomes and T-cell responses in patients with hepatocellular
carcinoma. JAMA Oncol. 8:1825–1829. 2022.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Peters S, Galle PR, Bernaards CA,
Ballinger M, Bruno R, Quarmby V, Ruppel J, Vilimovskij A, Wu B,
Sternheim N and Reck M: Evaluation of atezolizumab immunogenicity:
Efficacy and safety (Part 2). Clin Transl Sci. 15:141–157.
2022.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Myler H, Pedras-Vasconcelos J, Phillips K,
Hottenstein CS, Chamberlain P, Devanaryan V, Gleason C, Goodman J,
Manning MS, Purushothama S, et al: Anti-drug antibody validation
testing and reporting harmonization. AAPS J. 24(4)2021.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Sadreddini S, Baradaran B, Aghebati-Maleki
A, Sadreddini S, Shanehbandi D, Fotouhi A and Aghebati-Maleki L:
Immune checkpoint blockade opens a new way to cancer immunotherapy.
J Cell Physiol. 234:8541–8549. 2019.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Pardoll DM: The blockade of immune
checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264.
2012.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Kwok G, Yau TC, Chiu JW, Tse E and Kwong
YL: Pembrolizumab (Keytruda). Hum Vaccin Immunother. 12:2777–2789.
2016.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Beaver JA, Hazarika M, Mulkey F, Mushti S,
Chen H, He K, Sridhara R, Goldberg KB, Chuk MK, Chi DC, et al:
Patients with melanoma treated with an anti-PD-1 antibody beyond
RECIST progression: A US food and drug administration pooled
analysis. Lancet Oncol. 19:229–239. 2018.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Ailia MJ, Heo J and Yoo SY: Navigating
through the PD-1/PDL-1 landscape: A systematic review and
meta-analysis of clinical outcomes in hepatocellular carcinoma and
their influence on immunotherapy and tumor microenvironment. Int J
Mol Sci. 24(6495)2023.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Zhu AX, Abbas AR, de Galarreta MR, Guan Y,
Lu S, Koeppen H, Zhang W, Hsu CH, He AR, Ryoo BY, et al: Molecular
correlates of clinical response and resistance to atezolizumab in
combination with bevacizumab in advanced hepatocellular carcinoma.
Nat Med. 28:1599–1611. 2022.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Paver EC, Cooper WA, Colebatch AJ,
Ferguson PM, Hill SK, Lum T, Shin JS, O'Toole S, Anderson L,
Scolyer RA and Gupta R: Programmed death ligand-1 (PD-L1) as a
predictive marker for immunotherapy in solid tumours: A guide to
immunohistochemistry implementation and interpretation. Pathology.
53:141–156. 2021.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Doroshow DB, Bhalla S, Beasley MB, Sholl
LM, Kerr KM, Gnjatic S, Wistuba II, Rimm DL, Tsao MS and Hirsch FR:
PD-L1 as a biomarker of response to immune-checkpoint inhibitors.
Nat Rev Clin Oncol. 18:345–362. 2021.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Dong ZY, Wu SP, Liao RQ, Huang SM and Wu
YL: Potential biomarker for checkpoint blockade immunotherapy and
treatment strategy. Tumour Biol. 37:4251–4261. 2016.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Kim MS, Xu A, Haslam A and Prasad V:
Quality of biomarker defined subgroups in FDA approvals of
PD-1/PD-L1 inhibitors 2014 to 2020. Int J Cancer. 150:1905–1910.
2022.PubMed/NCBI View Article : Google Scholar
|
|
59
|
He S and Tang S: WNT/β-catenin signaling
in the development of liver cancers. Biomed Pharmacother.
132(110851)2020.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Perugorria MJ, Olaizola P, Labiano I,
Esparza-Baquer A, Marzioni M, Marin JJG, Bujanda L and Banales JM:
Wnt-β-catenin signalling in liver development, health and disease.
Nat Rev Gastroenterol Hepatol. 16:121–136. 2019.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Llovet JM, Montal R, Sia D and Finn RS:
Molecular therapies and precision medicine for hepatocellular
carcinoma. Nat Rev Clin Oncol. 15:599–616. 2018.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Pinyol R, Sia D and Llovet JM: Immune
exclusion-Wnt/CTNNB1 class predicts resistance to immunotherapies
in HCC. Clin Cancer Res. 25:2021–2023. 2019.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Ruiz de Galarreta M, Bresnahan E,
Molina-Sánchez P, Lindblad KE, Maier B, Sia D, Puigvehi M, Miguela
V, Casanova-Acebes M, Dhainaut M, et al: β-catenin activation
promotes immune escape and resistance to anti-PD-1 therapy in
hepatocellular carcinoma. Cancer Discov. 9:1124–1141.
2019.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Harding JJ, Nandakumar S, Armenia J,
Khalil DN, Albano M, Ly M, Shia J, Hechtman JF, Kundra R, El Dika
I, et al: Prospective genotyping of hepatocellular carcinoma:
Clinical implications of next-generation sequencing for matching
patients to targeted and immune therapies. Clin Cancer Res.
25:2116–2126. 2019.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Wang Z, Sheng YY, Gao XM, Wang CQ, Wang
XY, Lu XU, Wei JW, Zhang KL, Dong QZ and Qin LX: β-catenin mutation
is correlated with a favorable prognosis in patients with
hepatocellular carcinoma. Mol Clin Oncol. 3:936–940.
2015.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Chen L, Zhou Q, Liu J and Zhang W: CTNNB1
alternation is a potential biomarker for immunotherapy prognosis in
patients with hepatocellular carcinoma. Front Immunol.
12(759565)2021.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Caja L, Dituri F, Mancarella S,
Caballero-Diaz D, Moustakas A, Giannelli G and Fabregat I: TGF-β
and the tissue microenvironment: Relevance in fibrosis and cancer.
Int J Mol Sci. 19(1294)2018.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Chen J, Gingold JA and Su X:
Immunomodulatory TGF-β signaling in hepatocellular carcinoma.
Trends Mol Med. 25:1010–1023. 2019.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Mariathasan S, Turley SJ, Nickles D,
Castiglioni A, Yuen K, Wang Y, Kadel EE III, Koeppen H, Astarita
JL, Cubas R, et al: TGFβ attenuates tumour response to PD-L1
blockade by contributing to exclusion of T cells. Nature.
554:544–548. 2018.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Horn LA, Chariou PL, Gameiro SR, Qin H,
Iida M, Fousek K, Meyer TJ, Cam M, Flies D, Langermann S, et al:
Remodeling the tumor microenvironment via blockade of LAIR-1 and
TGF-β signaling enables PD-L1-mediated tumor eradication. J Clin
Invest. 132(e155148)2022.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Wu ZH, Yang DL, Wang L and Liu J:
Epigenetic and immune-cell infiltration changes in the tumor
microenvironment in hepatocellular carcinoma. Front Immunol.
12(793343)2021.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Dai Y, Qiang W, Lin K, Gui Y, Lan X and
Wang D: An immune-related gene signature for predicting survival
and immunotherapy efficacy in hepatocellular carcinoma. Cancer
Immunol Immunother. 70:967–979. 2021.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Klempner SJ, Fabrizio D, Bane S, Reinhart
M, Peoples T, Ali SM, Sokol ES, Frampton G, Schrock AB, Anhorn R
and Reddy P: Tumor mutational burden as a predictive biomarker for
response to immune checkpoint inhibitors: A review of current
evidence. Oncologist. 25:e147–e159. 2020.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Samstein RM, Lee CH, Shoushtari AN,
Hellmann MD, Shen R, Janjigian YY, Barron DA, Zehir A, Jordan EJ,
Omuro A, et al: Tumor mutational load predicts survival after
immunotherapy across multiple cancer types. Nat Genet. 51:202–206.
2019.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Marabelle A, Fakih M, Lopez J, Shah M,
Shapira-Frommer R, Nakagawa K, Chung HC, Kindler HL, Lopez-Martin
JA, Miller WH Jr, et al: Association of tumour mutational burden
with outcomes in patients with advanced solid tumours treated with
pembrolizumab: Prospective biomarker analysis of the multicohort,
open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 21:1353–1365.
2020.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Xu J, Zhang Y, Jia R, Yue C, Chang L, Liu
R, Zhang G, Zhao C, Zhang Y, Chen C, et al: Anti-PD-1 antibody
SHR-1210 combined with apatinib for advanced hepatocellular
carcinoma, gastric, or esophagogastric junction cancer: An
open-label, dose escalation and expansion study. Clin Cancer Res.
25:515–523. 2019.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Ang C, Klempner SJ, Ali SM, Madison R,
Ross JS, Severson EA, Fabrizio D, Goodman A, Kurzrock R, Suh J and
Millis SZ: Prevalence of established and emerging biomarkers of
immune checkpoint inhibitor response in advanced hepatocellular
carcinoma. Oncotarget. 10:4018–4025. 2019.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Eso Y, Shimizu T, Takeda H, Takai A and
Marusawa H: Microsatellite instability and immune checkpoint
inhibitors: Toward precision medicine against gastrointestinal and
hepatobiliary cancers. J Gastroenterol. 55:15–26. 2020.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Malapelle U, Parente P, Pepe F, De Luca C,
Pisapia P, Sgariglia R, Nacchio M, Gragnano G, Russo G, Conticelli
F, et al: Evaluation of micro satellite instability and mismatch
repair status in different solid tumors: A multicenter analysis in
a real world setting. Cells. 10(1878)2021.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Cohen R, Hain E, Buhard O, Guilloux A,
Bardier A, Kaci R, Bertheau P, Renaud F, Bibeau F, Fléjou JF, et
al: Association of primary resistance to immune checkpoint
inhibitors in metastatic colorectal cancer with misdiagnosis of
microsatellite instability or mismatch repair deficiency status.
JAMA Oncol. 5:551–555. 2019.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Marcus L, Lemery SJ, Keegan P and Pazdur
R: FDA approval summary: Pembrolizumab for the treatment of
microsatellite instability-high solid tumors. Clin Cancer Res.
25:3753–3758. 2019.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Prasad V, Kaestner V and Mailankody S:
Cancer drugs approved based on biomarkers and not tumor Type-FDA
approval of pembrolizumab for mismatch repair-deficient solid
cancers. JAMA Oncol. 4:157–158. 2018.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Bonneville R, Krook MA, Kautto EA, Miya J,
Wing MR, Chen HZ, Reeser JW, Yu L and Roychowdhury S: Landscape of
microsatellite instability across 39 cancer types. JCO Precis
Oncol. 2017(PO.17.00073)2017.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Kawaoka T, Ando Y, Yamauchi M, Suehiro Y,
Yamaoka K, Kosaka Y, Fuji Y, Uchikawa S, Morio K, Fujino H, et al:
Incidence of microsatellite instability-high hepatocellular
carcinoma among Japanese patients and response to pembrolizumab.
Hepatol Res. 50:885–888. 2020.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Ando Y, Yamauchi M, Suehiro Y, Yamaoka K,
Kosaka Y, Fuji Y, Uchikawa S, Kodama K, Morio K, Fujino H, et al:
Complete response to pembrolizumab in advanced hepatocellular
carcinoma with microsatellite instability. Clin J Gastroenterol.
13:867–872. 2020.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Mukai S, Kanzaki H, Ogasawara S, Ishino T,
Ogawa K, Nakagawa M, Fujiwara K, Unozawa H, Iwanaga T, Sakuma T, et
al: Exploring microsatellite instability in patients with advanced
hepatocellular carcinoma and its tumor microenvironment. JGH Open.
5:1266–1274. 2021.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Buchler T: Microsatellite instability and
metastatic colorectal cancer-a clinical perspective. Front Oncol.
12(888181)2022.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Cercek A, Lumish M, Sinopoli J, Weiss J,
Shia J, Lamendola-Essel M, El Dika IH, Segal N, Shcherba M,
Sugarman R, et al: PD-1 blockade in mismatch repair-deficient,
locally advanced rectal cancer. N Engl J Med. 386:2363–2376.
2022.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Turner KM, Delman AM, Wima K, Quillin RC,
Shah SA, Ahmad SA, Patel SH and Wilson GC: Microsatellite
instability is associated with worse overall survival in resectable
colorectal liver metastases. Am J Surg. 225:322–327.
2023.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Wu T and Dai Y: Tumor microenvironment and
therapeutic response. Cancer Lett. 387:61–68. 2017.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Oura K, Morishita A, Tani J and Masaki T:
Tumor immune microenvironment and immunosuppressive therapy in
hepatocellular carcinoma: A review. Int J Mol Sci.
22(5801)2021.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Zheng X, Jin W, Wang S and Ding H:
Progression on the roles and mechanisms of tumor-infiltrating T
lymphocytes in patients with hepatocellular carcinoma. Front
Immunol. 12(729705)2021.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Xu X, Tan Y, Qian Y, Xue W, Wang Y, Du J,
Jin L and Ding W: Clinicopathologic and prognostic significance of
tumor-infiltrating CD8+ T cells in patients with hepatocellular
carcinoma: A meta-analysis. Medicine (Baltimore).
98(e13923)2019.PubMed/NCBI View Article : Google Scholar
|
|
94
|
El-Khoueiry AB, Sangro B, Yau T, Crocenzi
TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling TH Rd, et al:
Nivolumab in patients with advanced hepatocellular carcinoma
(CheckMate 040): An open-label, non-comparative, phase 1/2 dose
escalation and expansion trial. Lancet. 389:2492–2502.
2017.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Wang C, Singer M and Anderson AC:
Molecular dissection of CD8(+) T-cell dysfunction. Trends Immunol.
38:567–576. 2017.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Ma J, Zheng B, Goswami S, Meng L, Zhang D,
Cao C, Li T, Zhu F, Ma L, Zhang Z, et al: PD1Hi
CD8+ T cells correlate with exhausted signature and poor
clinical outcome in hepatocellular carcinoma. J Immunother Cancer.
7(331)2019.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Ng HHM, Lee RY, Goh S, Tay ISY, Lim X, Lee
B, Chew V, Li H, Tan B, Lim S, et al: Immunohistochemical scoring
of CD38 in the tumor microenvironment predicts responsiveness to
anti-PD-1/PD-L1 immunotherapy in hepatocellular carcinoma. J
Immunother Cancer. 8(e000987)2020.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Gu X, Guan J, Xu J, Zheng Q, Chen C, Yang
Q, Huang C, Wang G, Zhou H, Chen Z and Zhu H: Model based on five
tumour immune microenvironment-related genes for predicting
hepatocellular carcinoma immunotherapy outcomes. J Transl Med.
19(26)2021.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Maravelia P, Silva DN, Rovesti G, Chrobok
M, Stål P, Lu YC and Pasetto A: Liquid biopsy in hepatocellular
carcinoma: Opportunities and challenges for immunotherapy. Cancers
(Basel). 13(4334)2021.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Cheng F, Su L and Qian C: Circulating
tumor DNA: A promising biomarker in the liquid biopsy of cancer.
Oncotarget. 7:48832–48841. 2016.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Cabel L, Riva F, Servois V, Livartowski A,
Daniel C, Rampanou A, Lantz O, Romano E, Milder M, Buecher B, et
al: Circulating tumor DNA changes for early monitoring of anti-PD1
immunotherapy: A proof-of-concept study. Ann Oncol. 28:1996–2001.
2017.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Peng Y, Mei W, Ma K and Zeng C:
Circulating tumor DNA and minimal residual disease (MRD) in solid
tumors: Current horizons and future perspectives. Front Oncol.
11(763790)2021.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Winograd P, Hou S, Court CM, Lee YT, Chen
PJ, Zhu Y, Sadeghi S, Finn RS, Teng PC, Wang JJ, et al:
Hepatocellular carcinoma-circulating tumor cells expressing PD-L1
are prognostic and potentially associated with response to
checkpoint inhibitors. Hepatol Commun. 4:1527–1540. 2020.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Cheng AL, Hsu C, Chan SL, Choo SP and Kudo
M: Challenges of combination therapy with immune checkpoint
inhibitors for hepatocellular carcinoma. J Hepatol. 72:307–319.
2020.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Lee JS and Ruppin E: Multiomics prediction
of response rates to therapies to inhibit programmed cell death 1
and programmed cell death 1 ligand 1. JAMA Oncol. 5:1614–1618.
2019.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Lu S, Stein JE, Rimm DL, Wang DW, Bell JM,
Johnson DB, Sosman JA, Schalper KA, Anders RA, Wang H, et al:
Comparison of biomarker modalities for predicting response to
PD-1/PD-L1 checkpoint blockade: A systematic review and
meta-analysis. JAMA Oncol. 5:1195–1204. 2019.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Giraldo NA, Nguyen P, Engle EL, Kaunitz
GJ, Cottrell TR, Berry S, Green B, Soni A, Cuda JD, Stein JE, et
al: Multidimensional, quantitative assessment of PD-1/PD-L1
expression in patients with Merkel cell carcinoma and association
with response to pembrolizumab. J Immunother Cancer.
6(99)2018.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Kim H, Kwon HJ, Kim ES, Kwon S, Suh KJ,
Kim SH, Kim YJ, Lee JS and Chung JH: Comparison of the predictive
power of a combination versus individual biomarker testing in
non-small cell lung cancer patients treated with immune checkpoint
inhibitors. Cancer Res Treat. 54:424–433. 2022.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Hurkmans DP, Kuipers ME, Smit J, van
Marion R, Mathijssen RHJ, Postmus PE, Hiemstra PS, Aerts JGJV, von
der Thüsen JH and van der Burg SH: Tumor mutational load,
CD8+ T cells, expression of PD-L1 and HLA class I to
guide immunotherapy decisions in NSCLC patients. Cancer Immunol
Immunother. 69:771–777. 2020.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Yin S, Chen Z, Chen D and Yan D:
Strategies targeting PD-L1 expression and associated opportunities
for cancer combination therapy. Theranostics. 13:1520–1544.
2023.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Lemaire V, Shemesh CS and Rotte A:
Pharmacology-based ranking of anti-cancer drugs to guide clinical
development of cancer immunotherapy combinations. J Exp Clin Cancer
Res. 40(311)2021.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Marei HE, Hasan A, Pozzoli G and
Cenciarelli C: Cancer immunotherapy with immune checkpoint
inhibitors (ICIs): Potential, mechanisms of resistance, and
strategies for reinvigorating T cell responsiveness when resistance
is acquired. Cancer Cell Int. 23(64)2023.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Pires da Silva I, Ahmed T, McQuade JL,
Nebhan CA, Park JJ, Versluis JM, Serra-Bellver P, Khan Y, Slattery
T, Oberoi HK, et al: Clinical models to define response and
survival with anti-PD-1 antibodies alone or combined with
ipilimumab in metastatic melanoma. J Clin Oncol. 40:1068–1080.
2022.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Rotte A: Predictive models for response
and survival in patients treated with anti-PD-1 monotherapy or with
anti-PD-1 and ipilimumab combination: Editorial commentary. Ann
Transl Med. 11(227)2023.PubMed/NCBI View Article : Google Scholar
|